PACIFIC JOURNAL OF MATHEMATICS
Vol. 126, No. 1, 1987

ON SOME REFLEXIVE OPERATOR ALGEBRAS
CONSTRUCTED FROM TWO SETS OF CLOSED
OPERATORS AND FROM A SET OF
REFLEXIVE OPERATOR ALGEBRAS

E. V. KissIN

In an earlier article by Kissin a new class of reflexive algebras
possessing non-inner derivations implemented by bounded operators was
introduced. Its method supplies us with many examples of reflexive
algebras which have non-inner derivations implemented by bounded
operators and for which effective analysis appears to be possible.

0. Introduction. It is generally well-known that all the derivations of
W *-algebras are inner. Christensen [1] and Wagner [S] have proved that
the same is true of nest and quasitriangular algebras. Furthermore,
although Gilfeather, Hopenwasser and Larson [2] have shown that some
CSL-algebras may have non-inner derivations, none of these derivations
are implemented by bounded operators. The present paper extends the
approach adopted in the earlier article [3] and considers a new method of
constructing reflexive operator algebras & from two given sets of closed
operators { F;}7-!, {G,;}7=! and from a given set of reflexive operator
algebras { 7, }/_, (n can be a finite number or infinity).

The structure of these algebras and their properties are very interest-
ing. For example, one can show that, if certain conditions are applied to
the operators { F;} and {G,}, then the algebras &/ are semi-simple and
totally symmetric without, however, becoming C*-algebras [4]. These
algebras also possess the following property: if A is reversible and belongs
to &7, then 47! also belongs to «7. But in this paper we shall confine our
discussion to two subjects:

(1) Under what conditions on { F;} and {G,} are the algebras &/
reflexive?
(i) What is the structure of Lat &/?

Usually, when studing CSL-algebras, one considers the pairs
(#7,Lat &) in the same way as one considers the pairs (7, &/’) when
studing W *-algebras. However, it has been suggested [3] that in the
general case of operator algebras ./ it would be more useful to consider
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the triplets (7, Lat &, Ad /) where Ad .« consists of all bounded opera-
tors which generate derivations on 2. As well as the obvious connection
between o/ and Ad ./, there is also a close link between Lat.«/ and
Ad «:
(i) All operators 4 in Ad &/ generate one-parameter groups of homeo-
morphisms of Lat &/ (M — exp(t4)M).
(ii) For every subspace M in Lat.#/, the set Ad.&/,, = { B € Ad &:
BM C M} is a Lie subalgebra of Ad &/ and
&= () Ad«,,
Melat
if &7 is reflexive. 4

A knowledge of the structure of Ad =/ enables us to obtain a clearer
description of the nature of Lat «Z. This can be done by establishing the
structure of the orbits in Lat ./ with respect to Ad &7.

In many cases, however, these triplets degenerate into pairs. For
example, if &7 is a W *-algebra, then Lat o7 is the set of all projections in
&', and Ad &=+ &’; as a result the triplet turns into the pair
(, &'). If o is a CSL-algebra, then Ad &/ = &/ and the triplet becomes
the pair (&7, Lat /). But, in the case of an arbitrary operator algebra,
Ad &7 is not usually equal to &7+ &/ and Ad &/ does not contain Lat 27
in this case, therefore, the triplet does not degenerate into a pair.

One of the simplest classes of this type of algebras is %, [3]. This
class consists of all the reflexive algebras &/ which satisfy the following
conditions:

(a) The quotient Lie algebra Ad 27/« is non-trivial;

(b) For every M in Lat o/ the codimension of Ad .«7,, in Ad & is less

than or equal to 1.

According to these conditions, no CSL- or W *-algebras (except for the
factors B(H) ® I,) belong to #,. For algebras from %, effective analysis
appears to be possible. The structure of the quotient Lie algebra Ad &7/,
for /€ #,, is quite simple and enables us to obtain a description of
Lat o7 in terms of the orbits in Lat & with respect to Ad 7 [3].

The new method introduced in the article provides us with a wide
variety of algebras from %,, although not all the algebras obtained by this
method belong to %2, (see Example 2). There is reason to think that this
method may in fact provide us with all the algebras from %; which
satisfy some extra conditions on Lat 7.

Theorem 2.4 investigates the structure of Lat.o/ and Theorem 2.5
considers some sufficient conditions for the algebras .2/ to be reflexive.
Section 3 deals with a particular case when all J; = B(H,) and a detailed
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description of Lat./ is obtained in Theorem 3.5. Two examples of
algebras &/ when n = 2 are also considered. In Example 1,
dim(Ad &//2/) = 2 and all operators from Ad &/ which do not belong to
&/ generate non-inner derivations on /. In Example 2, Ad &/ = o/,
although the structure of Lat & is the same as in Example 1.

I would like to thank the referee of this article for his helpful
suggestions, and am grateful to Dr. J. A. Erdos for his useful advice.

1. Preliminaries and notation. Let » be an integer or infinity, let H,,
for1 <i<n (1 <i<oo,if n= o), be Hilbert spaces and let J; be
reflexive operator algebras on H,. (A subalgebra 7 of B(H) is reflexive if
I = AlgLat 7, where Lat.7 is the set of all closed subspaces invariant
under operators from 7, and AlgLat g is the algebra of all operators in
B( H) which leave every member of Lat. 7 invariant.) Let F; and G,, for
1 < i < n, be closed operators from H,,, into H,. By D(F,) and D(G,)
we shall denote their domains in H, ,. Let F,* and G* be the adjoint
operators from H, into H,,, and let D(F;*) and D(G}) be their domains
in H,. Set D, = H,, D)} =H, (if n < )

D,,,=D(F)nD(G) and D}=D(F*)nD(G})
for1 <i<n.Then D,C H,and D* C H,.

Let us impose some restrictions on the operators { F;} and { G,}.

(R,) D; and D} are dense in H, for all i.

(R,) G, # 0 for all i.

By % we shall denote the set of all sequences T = {T;}”_; such that

(A) T, €7, T,,,D(G)) € D(G)) and T;,, D(F)) € D(F));

(A TG | pey = GiTi+1 | pay

(A;) the operators (F T, — T,F)| p F) extend to bounded operators

Ty, from H, into H;;

(A 4)sup||T}|| < oo and sup||T¢|| < oo.

From (R,) it follows that for every i there only exists one bounded
operator T which extends (F.T;, — T,F,)| p(g)- For every i let %, be a
subalgebra of 7, such that an operator B belongs to %, if and only if
there exists a sequence {7, } € % for which B = T,.

Let 5# be the direct sum of all H,. For every sequence T = {T;} from
U let A” = (4,;) be the operator on J# such that

(1) Aii = T;" Aii+1 = T}:; and all other Aij =0.
By (A,), AT is bounded. Put
U(H#)={AT: T u);
I(#)={4=(4,) €B(#): 4,;=0ifi>j-1}.
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By & we shall denote the set of operators on J# generated by all sums of
operators from #(5¢) and from I(5¢).

For example, if n = 2, then F and G are closed operators from H,
into H,, = H, ® H,, 9, for i =1, 2, are reflexive subalgebras of
B(H)), I(s#) = {0} and

A= U(H#) = {A = (? ;’:) € B(+#): (1) T, € 7,,T,D(G) c D(G)

and T,D(F) € D(F); (2) TG | pgy = GT; | pe6ys

(3) TFlD(F) = (FT2 - TIF)lD(F)'}

Let </ be a subalgebra of B(H). Then
Ad/={Be€ B(H):[B,A] =BA - ABe «/ forall 4 € «/}.

Operators from Ad ./ generate bounded derivations on /. It can be
easily checked that Ad &7 is a Lie algebra and that 7 and its commutant
&' are Lie ideals in Ad «.

The rank one operator z = (z, x) y will be denoted by x ® y.

2. Reflexivity of 7. In this section, in Theorem 2.4 we shall obtain
some information about Lat &/ and in Theorem 2.5 we shall state some
sufficient conditions for an algebra 7 to be reflexive.

LemMA 2.1. &7 is an algebra and I( 5¢) is a weakly closed ideal in <.

Proof. 1t is obvious that I(5#) is a weakly closed ideal in /. Let
T={T;} and T' = {T;} belong to %. It is easy to see that their linear
combinations also belong to #. Therefore linear combinations of opera-
tors A7 and A7 belong to % (). Let B = { B,} where B, = T,T/. Then
B satisfies conditions (A;) and (A ,). Since the operators

(FiBi+1 - BiFi) | D(F)

= (FT,y, — T,F)T/, | pry + T(FT/,s — T'F) | pery

1

extend to the bounded operators T;T/,, + T,T5, we get that B satisfies
(A;) and that

(2) By = T;T/., + TT;.
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From (2) it follows immediately that B satisfies (A,) and hence B € %.
From simple computations and from (1) and (2) it follows that

ATAT = A% mod I(#).

Therefore .« is an algebra and the lemma is proved.

LEMMA 2.2. (i) The operators F, + tG; and F* + tG} are closable for
every complex t.
(i1) For every {T;} € U
(AY) T,*D(F*) € D(F*) and T*D(G) € D(G});
(A%) G*T* | peGry = T;'ilGi*lD(G,-*);
(A%) (T%F* — F*T*)| D(F*) = TFT |D(F,‘.")'

Proof..For every complex ¢ the domain of the operator F,* + /G*
is D¥. Since D is dense in H,, there exists the adjoint operator
(F* + iG*)*. We also have that

(E_* + t'Gi*)*lDM = (F; + tGi)ID,ﬂ.

Since (F* + 1G¥)* is closed, the operator F, + tG; is closable. Similarly
we can prove that the operator F;* + ¢G}* is closable. Thus (i) is proved.

From (A,) it follows that for every {7, } € %, for every y € D(G,)
and for every x € D(G}¥)

(3)  (Giy,T*x) = (T,G,y,x) = (GT, 1y, x) = (y, T;*,G¥x).
Hence for every x € D(G}¥)
(4) Ti*x € D(Gi*) and Gi*Ti* |D(G,-*) = T‘j-lGi* l D(G¥)*

1

Thus (A%) is proved.
From (A,) it follows that for every y € D(F,) and every x € D(F*)

(5) (Fy,T*x) = (T,Fy,x)

= ((FTuy = Tp)y, x) = (5, (T2, E* - T2)x).
Therefore for every x € D(F;*)
(6) T*x € D(F*) and T2|ppe = (T, F* — F*T*) | peeny

Thus (A%) is proved. From (4) and (6) it follows that (A%) holds which
concludes the proof of the lemma.
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DEFINITION. By S/ we shall denote the closure of the operator
F, + tG, which is defined on D,,, and by R} we shall denote the closure
of the operator F,* + {G* which is defined on D}. By D(S/) and by
D(R!) we shall denote their domains.

It is easy to see that (R}))*| ., = F, + 1G,. Since (R})* is closed, we
get that

(7) Sic (RY)™.
Since S; is the closure of F, |, and (Rp)* = (F* | ps)*, it follows that
(8) S; < F, < (R})™.

By 5%, we shall denote the null subspace in . Forevery 0 <i <n
let 5#, be the direct sum of H,,..., H,, We shall consider ¢, as a
subspace in 2. It is easy to see that 5, € Lat o/.

For every K € LatJ; let X be the direct sum of 5#,_, and K.
Then X" can be considered as a subspace in %, so that X#'C ¢, and
X'€ Lat «/.

Let S be a closed operator from H,,, into H,. Put

M= {(i) x€ D(S)and y = Sx}.
Then M; is a closed subspace in H; ® H,,; which can be considered as a
closed subspace in #. Therefore M, is a closed subspace in 5. By A%
we shall denote the direct sum of 5#,_;, and M, and we shall consider
M as a closed subspace in 2.

LeMMA 2.3. (i) Let S be a closed operator from H, , into H, and let D
be a linear manifold in D(S) such that

1) S is the closure of the oprator S | ;

2) TD C D forevery T € U, 1;

3) T5|D = (8T;11, — T,S) | p for every {T,} € %.
Then A € Lat /.

(ii) Let S be a closed operator from H, into H,_ , and let D be a linear
manifold in D(S) such that

1) D is dense in H;;

2) S is the closure of the operator S | p;

3) T*D C D forevery T € %,.

8) (TS = ST¥)| p = T |  for every (T} € 4.
Then M#i. € Lat .
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Proof. 1f an operator A belongs to I(J¥), then it is easy to see that
At € #,_, forevery & € 5.
Let T= (T} € % and A" € (). Then A™¢ € #,_, for every
¢ € 5,_,. Suppose that £ = (%) € M{. Then
ATt =¢ mod H#,_,
where

’

§' = (y/) €H,®H_ ,, x'=T,x and y' =Ty+ TEx'

X
Let x € D. Then, by 2), x" € D. Since y = Sx, we get, by 3), that
y' = T,8x +(ST,,, — T,8)x = ST, 1x.

Hence ¢’ € M.. Thus, if §¢ = (2) € M. and if x € D, then 47¢ € /L.
But, by 1), the elements £ = (), where x € D, are dense in M. Therefore
AT¢ € ML for every £ € M which completes the proof of (i).

Now let S be a closed operator from H, into H, ,. We only need
condition 3) for condition 4) to be defined correctly. By 1), S$* is a closed
operator from H,,, into H,. Let x € D and y € D(S*). Then for every
{Tk} € GZ/? by 4)9

(T4, 8%) = (¥, T;%,8x)
= (n[sT7 + T2]x) = ([1i5* + Te] v, %).
By 2),
T,y € D(S*) and S*Tiyi|pesey = (TiS* + Ti) | pise)-
Applying (i) to S* we obtain that .#%, € Lat .«Z. The proof is complete.

THEOREM 2.4. Subspaces M's;, Mg\« and MYy belong to Lat o for
1 < i < n and for all complex t.

Proof. Put D =D, ;. Then D C D(S/) and it follows from the
definition of S/ that S/ is the closure of S/| . It follows from (A,) that
TD,,, c D, , forevery T € %, ,. Finally, by (A,), and by (A;), we get

(8T, — T,S)) | ., = (FT,,y — TF, + (GT,,, — T,G,)) |,
= (FiTi+1 - Tze) ID,-H = TF, ID,.+1~

Therefore, by Lemma 2.3, 4§, € Lat «/.
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Now put D = D*. By the definition of R}, we have that D € D(R})
and that the closure of R!|, is R.. By (R,;), D is dense in H,. It follows
from Lemma 2.2 (A¥) that T*D C D for every T € %,. Thus, conditions
1), 2) and 3) of Lemma 2.3 (ii) hold. By Lemma 2.2 (A,) and (A;),

(T%,Ri — RIT*)| b
= (T4, F* — F*T* + {(T%,G* — G*T*)) | pe = T | ps-

Therefore condition 4) of Lemma 2.3(ii) holds and .#/ Ry € Lat .

At last, if S =F, and D = D(F,), then it can be easily seen that
conditions 2) and 3) of Lemma 2.3(i) follows from (A,) and (A,).
Therefore A },. € Lat &/ and this completes the proof of the theorem.

Now we shall prove the main result of the section.

THEOREM 2.5. If for every i, 1 < i < n, either

(@) N,ec D(S/) = D, and the closure of G,| p is G,
or

(b) N,cc D(R}) = D} and the closure of G} | p. is G},
then  is reflexive.

Proof. Let B = (B;;) € AlgLat #. Since &, € Lat &/, we obtain that
B,;=0if i > j. For every K € LatJ; the subspace X¥'=#,_, ® K is
contained in 5, and belongs to Lat./. Since all algebras 7, are

reflexive, we obtain that
9) B,eJ.

12 l

Now let

Fx i
2= (%)= () e i
where x € D(F,). Considering M, }p as a subspace in S we obtain that
Bz = z’ mod 5%,_, where

P Y ,
z = ( ,) €H ®H,,, X' =By

x
and y’ = B;;y + B;; 1.
Since M }, C M} and since, by Theorem 2.4, /. € Lat &/, we have
that z’ € M;.. Therefore
(10) x' =B ;11X € D(Fi)a

y'=B;Fx + B;;;1x = Fx" = F;B; 1, 1X.

14
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Thus
(11) Bii+1lD(F,) = (FiBi+11+1 - BuE’) | D(F)"

Now let (a) hold for some i and let

z= (Srix) € M}, where x € D(S]).
x
Then repeating the argument above we obtain that
B 11X € D(Sti)’
B;;S/x + By 1x = S/Bji1;01X-
If x € D, ,, then x € D(S]) and, by (a),

B 11X € N D(Szi) =D,,;.
teC
Therefore
B, (F, + tG))x + B, 1x = (F, + 1G,) B, 1,1 X.

From this and from (11) we immediately obtain that
(12) BiiGilD,»H =GB, 1l Dyt
Let x € D(G,). Since, by (a), the closure of G|,  is G, there exists a
sequence {x,} such that x, € D, ,, {x,} converges to x and {G,x,}
converges to G,x. Then, by (12),

B, G;x = lim B;,G,x, = imG,B,  ;,;,1X,-

12) 1 12 "’n 1
Since the sequence { B, ,;,,X,} converges to B;.,;,,x and since G, is
closed, we obtain that

(13) B,.11:1x € D(G;) and B,G;x =GB, ,x.
Now let (b) hold for some i and let
iy* :
z= ((Rz) x) wherexeD((R;)*).
x
Repeating the same argument as for F; we obtain that

B,,1i1x € D((RI)*),
B, (R)*x + B,,,1x = (R)*B,, ...
Therefore for every y € DX
(Bxy, (R)*x) = (7, B,(R!)"x)
= (9 [ Bisr +(R)*Brarpur] x) = ([-Bifur + B1isaRil y, x)

([-Bxi1 + BA 1 F* + iGF)] y, x).
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Repeating the same argument as in Lemma 2.2 we obtain from (11) that
BXD(F*) c D(F*)
and that
Bl D(E*) = (Bitli+117i* - E'*Bif) ID(E*)'
Taking this into account and since D* C D(F;*), we obtain

(Bxy, (R))*x) = ([F*B% + iBY.,,,G*] y. x).
From this formula it follows that
Bty e D(R!) and R!BYy = (F*B* + iB*,,..G})y.
Therefore, by (b), for every y € D*
Bty e (\ D(R;) =D

teC
and
(F* + iG¥)Bxy = (F*BX + iBX ,,..G*)y.
Thus
G*B | D* = B 1;:1GF] D+
Let y € D* and z € D(G,). Then
(G, Bariirz) = (BX1,11G¥y, 2) = (G*Biy, z) = (1, B,G,2).

Since, by (b), the closure of G*| . is G¥, we obtain from this formula
that

(13') B,,,,..D(G,) € D(G,) and B,.Gi| p,y = GiBit1i+1l pe))-

Put T, = B,,. It follows from (9), (10), (11), (13) and (13’) that conditions
(Ay), (A,) and (A;) hold for the sequence 7' = {7;} and that B, ; = Tj.
Since B is bounded, T also satisfies condition (A,). Therefore the
sequence T = {T,} belongs to % and B — A" € I(#). Thus B € &/
which concludes the proof of the theorem.

COROLLARY 2.6. If for every i at least one of the operators F, or G, is
bounded, then < is reflexive.

Proof. We obtain easily that D,,; = D(S]) for every i and for ¢ # 0.
Therefore, by Theorem 2.5(a), = is reflexive.
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3. Structure of Lat.«/. In Lemma 2.3 and Theorem 2.4 we obtained
some information about the structure of Lat /. But further investigation
of its structure in the general case of arbitrary reflexive algebras { 7} is
very difficult. Therefore in this section we shall consider the simplest case
when all 7, = B(H,). In Lemma 3.1 we shall show that if all %, are
weakly dense in B(H,), then the sufficient conditions of Lemma 2.3 for a
subspace .# to belong to Lat./ are also necessary. Imposing some
further restriction (R;) on the operators { F;} and {G,} we shall obtain
the main result of the section (Theorem 3.5) which describes the structure
of Lat «.

LeMMA 3.1. Let all I, = B(H;) and let all %; be weakly dense in
B(H,). If # € Lat &, then M is either 3 or one of the subspaces 3, for
0 < i < n, or there exist an integer 1 < i < n and a closed operator S from
H, , into H; such that

(1) D(S) is densein H, _ ;;

(2) TD(S) € D(S) forevery T € %, ;

(3) Tg | ps) = (ST;1 — T.S) | p(sy for every sequence {Ty} € U;
and that M = M .

Proof. Let ze #. If z € H#,,, but z & ¥, then )#,_, C A, since
I(s#) c o/. Therefore if n = oo and if for every i there exists z, € #
such that z, € 5, , but z;, & 5, then A = .

Suppose that # # 5. Then there exists an integer i such that
MCH, ., but A G H.(If n < oo, then it is obvious. If n = oo, then it
follows from the argument above.) Hence 5#,_; C # and we get that
M=H,_, ® M, where M is a closed subspace in H, ® H, , which is
considered as a subspace in .

Suppose that # + 5, ;. Let us show that M N H, = {0}. Let z # 0

belong to M N H,. Then for every T = {T,} € % we have that
Az=Tz modH#,_, M.

Since 5#,_, C #, we obtain that T,z € #. Hence Tz € # for every
T € %,. Since %, is weakly dense in B(H,), the set {Tz: T € %,} is dense
in H,. Therefore, since # is closed, we obtain that H;, C .#. Hence
H,=#,_, ® H, is contained in . Since A + i, there exists x € A
such that x € H,,,. Using that %, , is weakly dense in B(H,, ;) and
repeating the above argument we obtain that H, , C .#. Hence # = 5%,

which contradicts the assumption that /# # 5%, ,. Thus M N H, = {0}.
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Since M is closed, there exists a closed operator S from H,; into H,
such that

M=M§={z=(i):xeD(s)gH,+1andy=ser,}.

Therefore # = M.
Now for every T = {T,} € % and for every z = (J) € M} we have
that A7z = z’ mod J#,_,, where

’

z’=(y ), x'=T_,x and y =Ty+ Tpx.
x L

Since # € Lat o/ and since 5#,_; C #, we have that z’ € M/. Hence
(14) T...x € D(S) and T,Sx + Tpx = ST, x

14

for every x € D(S). Thus conditions (2) and (3) of the lemma hold. From
weak density of %,,, in B(H,,,) and from (14) it follows that D(S) is
dense in H, ;. Hence condition (1) holds and the lemma is proved.

From this lemma and from Lemma 2.3 we obtain the following
corollary.

COROLLARY 3.2. Let all 7, = B(H;) and let all U, be weakly dense in
B(H,). Then Lat «/ consists of , of all subspaces H#, for 0 < i < n, and
of all subspaces M’ for 1 < i < n, where S are closed operators from H,,
into H; which satisfy the conditions of Lemma 3.1.

Now let { x;}7_; and { y;}7_, be sequences such that

(B)) y;€ D, C H, (B¥) x, € D¥ C H,,

(By) yi = Gyisr (BY) x40 = G*x;,

(Bs) sup|| y;ll < o0, sup|| F;y; |l < o0;

(BF) supllx,|| < oo, sup|| F;*x,|| < co.

By X we shall denote the set of sequences {x;} which satisfy
conditions (Bf)—(Bf), and by Y we shall denote the set of sequences { y,}
which satisfy conditions (B,)—(B;). It is obvious that X and Y are linear
manifolds.

LeMMA 3.3. Let all 7, = B(H,). If {x;,} € X and {y,} € Y, then the
sequence of operators { x; ® y;} belongs to %.

Proof. Put T, = x,; ® y,. For every x € H,, by (B,), we have that
Tx = (x,x;)y; € D,
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Hence condition (A,) holds. By (B,) and by (B¥), for every x € D(G,)
TGx=(Gx,x,)y = (x,G,-"‘xi)G,-y,-Jr1
= (%,%,:1)G Y1 = GT 11X
Hence condition (A ,) holds. Next, for every x € D(F;) we have that
(FTion — TE)x = (x,x, ) Fyiy —(Fx, x,),
= (%, %) Fyir = (%, F*x,) yi = Tix,
where the operator
(15) Ty, = X1 ® By — F*x; ®
is bounded. Hence condition (A ;) holds. Finally, by (B;), (B¥) and (15),
sup||7;|| = supl|x; ® y;|| < supl|x; |sup] y[| < o0
and

sup“ TE ” = SuP"xi+1 ® Fy,y1 — F*x; ® Yi”

< sup||x; 41 [Isupll ,y;.1 | + supll y;lsup]| F*x, || < co.

Thus condition (A ,) holds and therefore the sequence { x; ® y;} belongs
to %. The lemma is proved.

DEerINITION. For every k let Y, (X, ) be the set of elements in D, (D})
such that y € Y,(x € X,) if there exists a sequence { y,} € Y ({x,} € X)
for which y =y, (x = x,).

Since X and Y are linear manifolds, X, and Y, are also linear
manifolds.

Lemma 34. (i) If {x,}) € X and {y,} €Y and if {T,} € U, then
(T*x,} € Xand {T,y) € Y.

(i) If all %, are weakly dense in B(H;) and if X + {0} and Y # {0},
then all X; and Y, are dense in H,.

Proof. Let us prove that {T,y,} € Y. Since y, € D,, we have, by (A,),
that 7.y, € D,. Hence (B;) holds. By (A ,) and by (B,),
G(Ts1is1) = T(G,y,s1) = Ty;.
Thus (B,) holds for { 7}y,}. By (A;), by (A,) and by (B,),

sup|| 7,3, ]| < sup|| T, |[sup] y, | < oo
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and

sup|| F,T; 11 yiall = SuP“(TiFi + T)«:)Yi+1”
< sup| T |lsup|| F,y;41 |l + sup|| Ty [supll y,.1 | < oo.

Hence (B,) holds for { T;y,}. Thus the sequence { 7 y,} satisfies conditions
(B;)—(B;) and therefore {T,y;} € Y. In the same way, using conditions
(A*%)—(A%) and (Bf)—(Bf), we obtain that { T;x,} € X, and (i) is proved.
Now suppose that Y # {0}. Then there exists a sequence {y;,} € ¥
and the smallest £ such that y, # 0. It follows from (B,) that y, # 0 for
i>k.By(i),{T.y} €Y forevery {T,} € %. Since %, are weakly dense
in B(H,) and since y;, # 0 for i > k, the linear manifolds Y, are dense in
H, for i > k. Suppose that 1 < k. Then y,_, = G,_,y, = 0. Hence, by

(A2)5
Gl ye = TGy = 0,

and therefore T, y, € KerG, _, for every {T;} € %. Since %, is weakly
dense in B(H,), KerG,_, is dense in B(H,). Hence G,_, = 0 which
contradicts (R,). Therefore y, ; # 0 which contradicts the assumption
that 1 < k is the smallest number such that y, # 0. Hence £ = 1 and all
Y, are dense in H,. In the same we obtain that if X # {0}, then all X, are
dense in H,, and the lemma is proved.

Let us impose further restrictions on the operators { F;} and {G,}.

(R;) Let all X, and Y, are dense in H,.

Since the operators S; are closed, the operators S/ |, are closable.

DEFINITION. By Q, we shall denote the closed operator (R;| x)* and
by P/ we shall denote the closure of S|y .

Then P/ C S/ and, since R}| x C R}, we have that (R}))* C Q. Tak-
ing (7) into account we obtain that

(16) Pic S/ c(R)* c o

THEOREM 3.5. Let (R;) hold. Then Lat./ consists of H, of all
subspaces K, for 0 < i < n, and of all subspaces M for 1 < i < n, where
S can be P/, S}, F,, (R.)*, Q! or any closed operator from H,, | into H, such
that

(1) PP c S C Q! for somet,

(2) TD(S) € D(S) forevery T € U, .
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Proof. 1t was already proved in Theorem 2.4 that subspaces /#;,
M (gy» and A belong to Lat.o/. Repeating the same argument and
using Lemma 2.3 we obtain that the subspaces .#} and .#y, also belong
to Lat «7. Now let S be a closed operator which satisfies the conditions of
the theorem. Since Y, , € D(P/) € D(S), condition (1) of Lemma 3.1
holds. Condition (2) of Lemma 3.1 follows from condition (2) of the
theorem. Since ./ i;- belongs to Lat.eZ, Q! satisfies condition (3) of
Lemma 3.1. Therefore taking into account that § = Q;| ), We obtain

(T8 + Tz) | nesy) = (TQ! + Tx) | ns)

=0T, ID(S) = 8T 41 'D(S)’
so that condition (3) of Lemma 3.1 holds. Therefore #% € Lat <.

Now let S be a closed operator from H,, into H; which satisfies the
conditions of Lemma 3.1 and let us prove that it satisfies the conditions of
this theorem. It obviously satisfies condition (2) of the theorem.

Let {x,} € X and {y,} € Y. Then, by Lemma 3.3, the operator
X;+1 ® y;,, belongs to %, ;. It follows from condition (2) of Lemma 3.1
that for every z € D(S)

(X141 ® Yir1)2 = (2,%,41) yiunr € D(S).
Since, by condition (1) of Lemma 3.1, D(S) is dense in H,,,, we get that
Y, ; € D(S). It follows from condition (3) of Lemma 3.1 and from (15)
that for every z € D(S)
(x; ® ;) Sz + (x40 ® Fy;01)2 — (‘Fi*xi ® Yi)z = S(x,41 ® yis1) 2.
Hence

(17)  (Sz,x)y; + (2, %0 ) F Yy — (Z> Fi*xi))’i = (2, %141) Sis1

Let z € Y,,,. Then (z, F*x,) = (F,z,x;). Put V=S — F,. We obtain

from (17) that

(18) (Vz, %)y = (2, %:1) Vin

By (B,), y; = G,y;,,- Since X, , is dense in H,, ,, we can choose x,,,

such that (z, x,,,) # 0. Then it follows from (18) that for every y € Y,
Vy =1G,y,

where ¢t = (Vz, x;)/(z, x,,,). Therefore we obtain that

(19) Sly,, = (F;+1G)ly,, = S/y,.-

Thus P/ € S. Using (19) we obtain from (17) that for every z € D(S)
(Sz,x,)y, _(Z’ E*xi))’i = (2, %4 )16, Y, 11
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By (B,), y; = G,y,;,, and, by (Bf), x,,, = G*x,. Hence
(Sz,x,) —(z, F*x,) = t(z,Gxx,).
Therefore (Sz, x;) = (z, R}x;) which means that
Sc(Rily) =0
Thus P/ € S C Q! and S satisfies condition (1) of this theorem which
completes the proof.
Now suppose that n < oo, that all H, = H, that all G, = I and that
all 7, = B(H). Then
D, =D(F), D =D(E¥),

all Y,=D=N"!D,,, and all X,=D*=Nr_!'D*. If D and D* are
dense in H, then % consists of all sequences {7;}’_; such that T}, = ---
= T, = T, where T belongs to

A={TeB(H):(a) TD,C D;

(b) the operators (F,T — TF,) |, extend to bounded operators 7y }.

From Corollary 2.6 it follows that 7 is reflexive. We also have that the
operators P/ are the closures of the operators (F, + tI), = F,| , + I,
that S/ = F, + ¢I, that R: = F* + {I and that

0l = ((E* + t'I)lD*)* = (E*lD*)* +.

Therefore (R!)* = S/, S;=F, and it follows from Theorem 3.5 that
Lat &/ consists of H#, for i =0,...,n, and of all subspaces M for
i = 1,...,n — 1, where S can be P!, S/, Q! or any closed operator such that

(1) PF c S c Q! for some t;

(2) TD(S) € D(S) forevery T € A.

If the operators { F;} are such that for every i the closure of F,|  is
F; and the closure of F;* | ;. is F;*, then

P/=F+t=S§
and
Qi =(F*|p)" +t=(F*)"+U=F+d=S5,.

Therefore we obtain the following theorem which was proved in [3]
(Theorem 4.4(ii)) (the theorem was erroneously stated without condition

(b))-
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THEOREM 3.6. If (a) D and D* are dense in H; (b) for every i the
closure of F,| ,, is F, and the closure of F;* | . is F*, then Lat & consists of
K. fori=0,...,n, and of all subspaces J{gt fori=1,...,n — 1 and for
teC.

If the conditions of Theorem 3.6 do not hold, then the structure of
Lat &7 is more complicated, and even in comparatively simple cases it is
difficult to describe it fully.

ExAMPLE. Let F;C F,C --- C F,_,. Then D = D(F,) and D* =
D(FX* ). Hence all P/ = F, + I and all

Q; = (E* lD*)* t = (Ettl)* tu=F,_,+1l
Then for every 1 < k < n — 1 and for every ¢ € C we have that
F+tCF +tCEF,_, +1l.

By property (a) of A, TD(F,) € D(F,) for every T € A. Therefore Lat &/
contains all subspaces 5, for i =0,...,n, and all subspaces #% for
i=1,...,n— 1, where S can be any of the operators F, + ¢/ for 1 <k
< n — 1 and for ¢t € C. The following question arises: do other operators
R exist, apart from F,, k = 2,...,n — 2, such that

() FCRCF, j;

(2) TD(R) € D(R) forevery T € A.
If such operators do not exist, then we have a full description of Lat o. If
they do exist, then each of them generates a set of subspaces .#%,,, for
i=1,...,n—1and for t € C, which belong to Lat <.

Finally, we shall briefly consider two examples of algebras &7 for
n = 2 and provide full descriptions of Lat.2/ and of Ad /. The case
when the operator G is the identity was investigated in [3]. In Theorem 4.3
it was shown that Ad &+ &/. In Example 2 a closed operator F was
considered such that Ad &=+ { N} + { B}, where N and B do not
belong to 7, so that dim(Ad &//27) = 2. It was also proved that &/’ =
{1} + {N} so that B generates a non-inner derivation on /. Now we
shall consider an example of a reflexive algebra ./ constructed from two
closed operators F and G such that Ad &=+ { N} + { B}. But for
this algebra &/’ = {1}, so that all operators from Ad ./ which do not
belong to &/ generate non-inner derivations on /.

ExampiE 1. Let H; = H, = H = K ® K, where K is an infinite-di-
mensional Hilbert space and let 5= H & H. Let { e,}_; be an orthogo-
nal basis in K and let W be an unbounded operator on K such that

We, = ne,.
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For a complex a set

F=(‘1W2 Wz) and G=(W2 O).
0 aW 0 w

Then
D(F)=D(W?) & D(W?), D(G)=D(W?) e D(W),
D, = D(F), Dy = D(G).

Therefore restrictions (R;), (R,) and (R;) on operators F and G hold.
Obviously G is the closure of G|, and F is the closure of F'| ;. Also

(a+1)W? w?

P=S=F+1G=
ro 0 (a+ )W

) fort # —a

and
_ {0 W2)_
S = =P .
- (O 0 -

We also have that D(S,) = D,, if t #+ —a and D(S_,) = K & D(W?). So
N,cc D(S,) = D, and, by Theorem 2.5, .« is reflexive.

We have that
N a+t)w? 0
R,=F* +1G* = (a ) B fort # —a
w? (a+)yw?
and
R =( 0 0)
- w? 0/

It is easy to check that S, = R¥ = Q,. Therefore, by Theorem 3.5, Lat &/
consists of ¢, 5, # and of all Mg, forz € C.

Set
0 0 0 0 0 0 0 O
o 0 0 0 1o 1 0 0
N=lw=> o o 7| ™ B=1g o 1 of
0o W' 0 0 00 0 0

Then B,N € B(5¥) and it is easy to check that [N, B] = NB — BN = N.
It can be proven that Ad &=+ { N} + { B} and that &/’ = {I}, so
that all linear combinations of the operators N and B generate non-inner
derivations on /. One can also show that &/ € R;.
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In the following example we shall consider a reflexive algebra &/
constructed from two closed operators F and G such that Ad &=/,
although the structure of Lat & is the same as in Example 1.

ExAMPLE 2. Let 5 and W be the same as in Example 1. Set

(W 0 _(w 0
F‘(o W) and G (0 W-l)'

Then
D(F)=D(W)e D(W), D(G)=D(W)eK,
D,=D(F) and Dj = D,.

The operators F and G satisfy restrictions (R,), (R,) and (R ;). Repeating
the same argument as in Example 1 we obtain that & is reflexive, that
Lat & consists of 5%, »#;, # and of all M, for t € C, and that G is the
closure of G|, and F is the closure of F|,. It can be proven that
Ad &=/, so that all derivations on &/ implemented by bounded
operators are inner.
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