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SCHRODINGER OPERATORS WITH A
NONSPHERICAL RADIATION CONDITION

Y OSHIMI SAITO

The Schrodinger operators with potentials p(x) which do not
necessarily converge to a constant at infinity will be discussed. The
potential p(x) = x, /|x|, x = (x;, X5,..., X,) € R", is an example. The
radiation condition associated with such Schrodinger operators is shown
to have the form vu — iyA (VR)u = small at infinity, where R =
R(x, \) is a solution of the eikonal equation |VR|*> = 1 — p(x)/A. This
radiation condition is “nonspherical” in the sense that YR is not
proportional to the vector X = x/|x| in general. The limiting absorption
principle will be obtained using a priori estimates for the radiation
condition.

Introduction. Let us consider the inhomogeneous Schrodinger equa-
tion

N
(0.1) (T-Nu=—-Y Du+V(x)u—Au=f inR",
j=1

where D, = 3/0x; + ib,(x) with the “magnetic potentials” b;(x), A is a
positive number, the “potential” ¥(x) is a real-valued function on R" and
f(x) is a given function. In this paper we are going to consider a class of
potentials ¥(x) which contains potentials V(x) such that V(x) = O(1)
and 9V /0x, = O(|x|™) at x = 0o0. One example of such a function is
V(x) = x,/|x| where x, is the first coordinate of x = (x|, x,,..., xy) €
RY. We shall study the limiting absorption principle and the unique
existence of the solution u = u(A, f) of the equation (0.1) introducing a
“nonspherical” radiation condition

(0.2) (Dj - i\/Xﬁj)u(x) is small at x = o0 (j=1,2,...,N).

Condition (0.2) is nonspherical in the sense that 8 = (B, 8,,..., By) is
the outward normal of a surface which is not a sphere in general, whereas
it seems that the outward normal X = x/|x| of a sphere always appeared
in the radiation conditions which were used up to now for various types of
Schrodinger operators.

Let us first assume that V(x) becomes small at x = co. Then the
unique existence of the solution u = u(A, f) of the equation (0,1) with
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the appropriate boundary conditions at infinity x = oo has been studied
in many papers, some of which will be mentioned later. The conditions at
infinity have been various kinds of generalizations of the Sommerfeld
radiation conditions

aa_u — ifAu(x) = o(lxl_(N—l)/z),
(0.3) | x|

u(x) = O(]xl_(N—l)/z)
as |x| — oo.

In 1962 Eidus [6] showed that the unique existence of the solution
u(A, f) of the equation (0.1) in R® with

2
dsS =0,

) du ;
(0.4) plirr:oLp W—z\/Xu

where S, = {x € R’/|x| = p}. Here b(x) is assumed to be 0 in a
neighborhood of x = o0, V(x) is assumed to satisfy

(0.5) V(x)=0(x"") (x|~ o)

with @ > 1 and f satisfies f(x) = O(|x|">"#) with 8 > 0. The solution
u(A, f) was constructed by the limiting absorption method, that is,
u(A, f) is obtained as the limit

(0.6) u(A, f) = ]i?(}u(}\ + ie, f),
where u(A + ie, f) is the solution of (0,1) with A replaced by A + ie
(e > 0).

Ikebe-Saito [8] also used the limiting absorption method to show the

unique existence of u(A, f) of the equation (0.1) in RV with the radiation
condition

(0.7) f 1 +]x])** P|(D — WA %)ul’ dx < oo,
RN

(08) L, @ 1) () dx < oo,

where 8 is a fixed constant with § > 1,

|(D - ix/X)?)ulz = gl|Dju(x) — i\/}T)'Eu(x)l2 and X =x/|x|.
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Here V(x) is assumed to be decomposed into the sum of the long-range
potential ¥;(x) and the short-range potential V,(x), i.e., we have

V(x) = Vi(x) + Vy(x),
(0.9) Vi(x)=o(lx]),  av/elx|=o(|x|" )

Va(x) = of|x[")
with € > 0 at infinity. Let us note that X is the outward unit normal of the
sphere S¥~! = {x € RV/|x| = 1}. When b,(x) are assumed to be identi-

cally 0, the operator —A + V(x) can be transformed into the ordinary
differential operator

(0.10) L= —-d*/dr*+ B(r)+ C(r) (re(0,0))

with the operator valued coefficients B(r), C(r). For fixed r > 0 B(r)
and C(r) are operators in L,(S" 1) of the forms

1
(0.11) B(r) = = (Zy + (N = 1)(N - 3)),

C(r)=V(re) (weS8S¥ 1)

with the Laplace-Beltrami operator %, on S"~!. In this case the limiting
absorption method can be applied to the operator L (Saito [21], [22]). The
radiation condition for L has the form

(1 + r)2(8—1) U'(I‘) — i‘/xv(r)HZLz(SN") ar < 00,

fo 1+ r) P o(r) | z2svry dr < o0,

(0.12)

where v(r) = r" Y2y(rw), w € SV, is regarded as an L,(SY 1)-val-
ued function on (0, o0).

There exists another type of radiation condition. Let V(x) be the sum
of a long-range potential ¥;(x) and the short-range potential V,(x) and
let b,(x) = 0. Saito [21], [22] and Isozaki [9] proved that the estimate

(0.13) L, @+ = (0K u(x) [ d

<cf (1)U dx

is valid for the solution (0.1), where C = C(A) is a positive constant
depending only on A (and the operator T') and
ov ov )

_,c-"__
0x, X 5

(0.14) v =gradv = (
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Here K = K(x, A) is an exact or approximate solution of the eikonal
equation

(0.15) VK" + ¥i(x) = A (IvK12= ) (g—i) )

j=1
and the essential part of (VK )(x, A) has the form
(0.16) VK(x,\)=®(x,\)X (% =x/|x]).

The transformation of the operator T to the ordinary differential operator
(0.10) works in the proof of (0.13), too. On the other hand, Mochizuki-
Uchiyama [15] constructed a similar type of radiation condition

(0.17) fR (1 +x])° v - ik(x, \)%)ul* dx < o,

to get the limiting absorption principle for the Schrodinger operator T
with the “oscillating” long-range potential V(x). Here V(x) satisfies

V(x)=0(1),
(0.18) av/a)x| = o(|x|7),
02V /0x[* + aV(x) = O(|x|" ")

as |x| = oo with constants a > 0 and & > 0. In addition V(x) is assumed
to behave uniformly as |x| = oo (cf. Mochizuku-Uchiyama [16], §8,
(V2-4)).

In all these works the outward normal X of the unit sphere appears in
the radiation condition and the limiting absorption principle holds for the
operator (0.10) as well as the Schrodinger operator 7. Therefore all these
radiation conditions may be classified as “spherical” radiation conditions.

The potential that we are going to consider is “wilder” than a
longe-range potential or an oscillating long-range potential in the sense
that our potential V(x) essentially satisfies only the first two conditions of
(0.18). The Schrodinger operator with such a potential has been studied
from various viewpoints. There are many papers discussing the essential
selfadjointness of Schrodinger operators (see e.g., Kato [13], Eastham-
Evans-McLeod [4], Read [19]). As for the nonexistence of the eigenvalues,
the works by Mochizuki [15] and Eastham-Kalf [5] should be noted. We
are now going to study the absolute continuous spectrum. Ben-Artzi [3]
and Jager-Rejto [11] proved the limiting absorption principle for a
Schrodinger operator with an exploding potential V(x) which is assumed
to go to +o00 at x = oo, though our potential does not satisfy their
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conditions. On the other hand, the commutator method developed by
Mourre [18] and Jensen-Mourre-Perry [12] can be applied to our potential
to show the existence of the limit

(0.19) (T-(A+i0)" = lifr(}(T — (At ie))™

for large enough A. In this sense the limiting absorption principle has
been already established. What we are going to do in this paper is to
introduce a radiation condition of “nonspherical” type

(0.20), fRN (1 +1x)*° °|(D F X B)u(x)| dx < oo

to show that u (x) = (T — (X £ i0))"'f satisfy (0.20) ,, and that the
equation (0.1) with (0.20), (or (0.20)_) and (0.8) has a unique solution

u,=u,(Af) Here B = B(x,A) = (B, B,,--., By) is expressed as
(021) B=vR  (orBi(x,\)=03R(x,A)/dx;, j=1,2,...,N),
where R(x, A) is a solution of the eikonal equation

(0.22) |IVR)> =1 - V(x)/A.

Though B is the outward normal of the surface R(x, A) = r, this surface
is not necessarily a sphere. In fact, when V(x) = x,/|x|, the surface
R(x, A) = r is an ellipsoid. We can also see that the usage of the operator
(0.10) instead of the Schrodinger operator T is inadequate. It seems that
the radial variable r = |x| should be replaced by R(x, A) in our situation.
At the same time another proof for the limiting absorption principle for
our potential along the line of Fidus [6], Jager [10], Agmon [1], Ikebe-Saito
[8] will be obtained.

In the studies of the Schrodinger operator with a long-range or an
oscillating long-range potential, after establishing the existence and
uniqueness of the solution of the inhomogeneous Schrédinger equation,
we could derive an asymptotic formula for the solution which turned out
to be a starting point for spectral and scattering theory for the Schro-
dinger operator (see, e.g., Saito [21], [22], Mochizuki-Uchiyama [17]).
It is also expected that we could develop spectral and scattering theory for
our potential. This will be discussed elsewhere.

We shall give the rigorous definition on the potentials V'(x) and b;(x)
and state our main theorem in §1. In the following two sections (§2 and
§3) we shall show two a priori estimates for a solution of the Schrodinger
equation (0.1). These estimates will be used in §4 to show the limiting
absorption principle for large enough A, whence follows the uniform
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existence of the solution u = u(A, f) of the equation (0.1) with the
radiation condition (0.20) and (0.8). In §5 we shall give two concluding
remarks, one of which is related to a stronger estimate for the radiation
condition (0.20) similar to (0.17).

1. Mainresult. Let us consider the differential operator
N
(1.1) T=— Dj2+p(x)+Q(x)

j=1

in R, where
(12) D;=08,+ib(x) (3;=0/0x,,i=V=1, j=12,...,N)
and N is a positive integer with N > 2. The given functions p(x), Q(x)

and b;(x) are presumed to satisfy the following two assumptions:

Assumption 1.1.
(p) p(x) is a bounded, real-valued function on R" such that p €
C*(RY — {0}) with estimates

3% (x) < c[x[™  (lal<2, x € RV - {0}),

where a = (@, a,,..., ay) is an arbitrary multi-index with non-
negative integers a; (1 <j < N). |a|=ea; + a, + -+ +ay and ¢
is a positive constant. We set 0% = 91052 - - - 9.

(Q) Q(x) is a real-valued, measurable function on R" and there exists
v > 0 such that

[JE

N—4+v

(1.3) M,(x) =f

-yl |x — ]

is locally bounded on R". Further, there exist positive constants &,
ry such that

(1.4) o)< c(1+]s)° (Ix]=r),
¢ being as in (p).
(B) bi(x), j=1,2,..., N, are real-valued C' functions on R" satisfy-

ing

(1.5) 1By (x)|<c@+]x)"" (Ix|=1)
where

(1.6) B, = ajb, — a,bj

and c, &, r, are as above.
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(UC) The unique continuation property holds for the differential oper-
atorT=-A+p+ Q.

As for the potential p(x) we need another assumption.

Assumption 1.2.

(R) There exists A, (= sup, cgv p(x)) such that for any A > A, the
differential equation

N

(1.7) VR’ =1 —ﬂ(}\—xl (IVR|2= Z(ajR)2

Jj=1

has a solution R = R(x, A) for |x| > r, which satisfies the follow-
ing (1)—(iii):
(i) For each A > A, R(x,A) is a real-valued, C3 function for
|x| = r,, r, being as above.

(ii) Setting
(1.8) g(x,A) =|x|'R(x, \)
we have
(1.9) co<g(x,\)<¢

for all |x| > r, and A > A, with positive constants ¢, and c;.
(iii) We have
1 (j=0),

(1.10) |x/(37g)(x, A) = {0 (j=1,2,3)

uniformly for x € {x € RV /|x| > r,}. Here d’g denotes an arbitrary jth
derivative of g.

REMARK 1.3.
(i) Let p(x) = x,/|x|, where x = (x;, X,,..., xy). Then p(x) satis-
fies (p) in Assumption 1.1. Set A, = 1 and define R(x, A) for A > A, by

(1.11) R(x,A) =a(N)|x|—b(N)x,
with
a(A\) =@ +1/0)"+ (1 -1\,
(1.12) 12 1
b(A) =3{(@ +1/A)* - (1 -1/)"7)
Then it is easy to see that R(x, A) satisfies (R) in Assumption 1.2 with
p(x) = x,/|x|, A, > 1 and an arbitrary A, > 0.
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(i) Suppose that p(x) satisfy (p) in Assumption 1.1. Then it follows
from Lions ([13], Chapters 2 and 5) that there exists a solution R(x, A) of
(1.7) which satisfies (1.9) and (1.10) with j = 0. It seems to be open
whether R(x, A) satisfies (1.10) with j = 1,2, 3 in general. (See Added in
Proof.)

(iii) In the trivial case of p(x) = 0, we can take R(x, A) = |x|.

In order to state the main results we need some definitions and
notations including the extension of R(x, A) to the complex plane.

DEFINITION 1.4. Let z = A + ip € C with A > A, where A is as in
Assumption 1.2. Let R(x, A) be as in Assumption 1.2. Then R(x, z) is
defined by

(1.13) R(x,z) = R(x, |z|2/}\) (r=r).
We set

B = B(x,z)=VR(x,z),
(114) {Bj=Bj(x,Z)=3jR(x’z) (]=1,2,,N)

Notation 1.5.

R: real numbers,

C: complex numbers,

D, =39, +ib(x) (j=1,2,...,N, 3,=3/0x)),

Du = (Dyu, Dyu,..., Dyu),

Vu = (0,u,0,u,...,0yu),

Re z: the real part of z,

Im z: the imaginary part of z.

L,,(G) (¥ €R) denotes the Hilbert space of all functions f on G
such that (1 + |x|)’f is square integrable over G. The norm
and inner product of L, (G) are denoted by || ||, and
(» )y.c» respectively. Weset L, (RY)=L, , || ll,zr =1 I,
and (, ),gv =(, ), When y = 0, we shall omit the sub-
script 0 as in L,(G), || ||, etc.

H, is all L, functions with L, distribution derivatives up to the
mth order, inclusive.

cr is the class of m-times continuously differentiable functions.

Gy is the class of infinitely continuously differentiable functions
with compact support in R”.

M, is the class of all locally M functions.



NONSPHERICAL RADIATION CONDITION 339

Let us consider the inhomogeneous Schrodinger equation

(1.15) (T—Z)u= —]§1Dj2u+ (P(x)+Q(x)—Z)u=f,

uel, ;NH,

Joc?

where 6 is a fixed constant such that

(1.16) l<’o‘smin(1+£,1)

2 2

with € given in Assumption 1.1, (Q), and f(x) is a given function. The
following is our main result.

THEOREM 1.6. Assume Assumptions 1.1 and 1.2.
(i) Then there exists a unique solution u = u(z, f) of (1.15) with
fe€ L, foranyz =X + ip with p # 0.
(ii) There exists A, > O such that A, > A and there exist limits

(1.17) lim w(dtip, f)=u.(A,f) inL, 0 H,
p>0,p—

Joc

for any A\ > A and any f€ L,;. The functions u (A, f) are unique
solutions of the equation (1.5) with the generalized radiation conditions

(1.18) (D ¥ i‘/X,B)uHB_LEm < 0,

respectively, where X is as in Assumption 1.2,

(119) (D F XB)uls s,
N
N fE (1+ |X|)2(8~1)j§1 |Dju ¥ i\/X,Bju|2 dx,

and E, = {x € R ||x| = r,}.

(i) Let M = {z = A+ ip/A; <A< A, 0 <|p| < py} with Ay <)
< A, and py > 0. Then there exists a positive constant C = C(M) depend-
ing only on M (and the potentials p, Q, b;) such that the estimates

(1.20) Ju(z. 7)o = €U D
(1.21) [(D = iz B)ully .z, < Clrs
122wz Dl < YLl (r2n),

for any pair (z, f) € M X L, 5. Therefore the estimates (1.20)—(1.22) are
also valid for u (X, f) with Ay <A <A, andf € L, ;.
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(iv) Set
(1.23) M,={z=Xxip/A, <A<A,,0<p<pg)
with Ag <X, <\, and py> 0. Let u(z,f) (z=A+ip, p# 0) be as
above. Set u(X\, f) = u,(\, f) when X € [\, A, ] is contained in M, and
setu(\, f) = u_(\, f) when X € [Ay, \,] is contained in M _. Then u(z, f)
is an L, _svalued continuous function for (z, f) € M, X L,sand (z,f) €
M_X L, ,, respectively.

In the following two sections we shall give a priori estimates for the
solution of the equation (1.15). They will be used in §4 to show the proof
of Theorem 1.6. Some concluding remarks will be given also in §5.

2. A priori estimate for (D — iVz B)u. Let us start with the defini-
tion of several functions and differential expressions which will be used
when we get an a priori estimate for (D — iVz 8)u.

DEFINITION 2.1.

(i) Let z = XA + iy € C with A > A, and let B(x, z) = VR(x, z) be
as in Definition 1.4. Then the functions A(x, z) and 7n(x, z) are defined
by

(2.1) h(x,z) = ﬁ(divm (Ix| = r,),
22) n(x, 2) = %—’ (Ix] > ).

where 7, is as in Assumption 1.1 and the square root vz of z is taken in
such a way as Im vz > 0.
(i1) We set

(23) Qu=Du+ (h+n-iwz)Bu (j=12,...,N),
(2.4) Du = (D, Dyu,..., Dyu),

N

(25)  Deu= Y (2u)8B,.

Jj=1

ReEMARK 2.2. If p(x) = 0 and R(x, A) = |x| (cf. (iii) of Remark 1.3),
then we have

J

N-1,_ e - X
(2.6) Du=Du+ -3|—XT-xju— iVz % u (x.= m),

which is the same as Z;u given in Ikebe-Saito [S].
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By direct computation we have the following lemma.

LEMMA 2.3. Let u € H,,,.. Then for |x|>ry and z = A + ip with
A > A, we have

(2.7) p(x) —z + zB* + 2iYznB% = 0,
(2.8) (T-z)u=— ;lpjgju + (h + 0 — ik)(Dpu)
+Q(x)u — q(x)u
with
0(x) = Q(x) + {div(hB) — h’B?},
29 {q(x) = (v’ + 2hn)B?,
and

(2.10) D,Du— D,Du= (h+n— ik)(BDu— B,Du)
+Mu + iB,u (j,1=1,2,...,N)
with

(2.11)

M, =3,{(h+n)B,} —8,{(h+n)B},
le = (ajbl) - (albj)'

Let R, = ¢;r, with ¢;, r, given in Assumption 1.2. Take p € C*(R)
such that0 < p <1, dp/dr > 0 and

1, r>R, +1,
(2.12) p(r) = {0’ r <R,
We define ¢(r) by
(2.13) ¢(r)=p(r)@ +r)*"

with a fixed constant § satisfying (1.16).

PROPOSITION 2.4. Let u € H, ), and setf = (T — z)uwithz =\ + ip
€ C. Let ¢ be given in (2.13) and set
Vz =o+it  (p=0),
(2.14) B = B(\, Ry, Ry) = {x/R, < R(x, z) < Ry},
¢(R) = ¢(R(x, z)),
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where R(x, z) is as in Definition 1.4 and R, (> R, = ¢,r,) is a constant.
Then there exists a constant A, (= \,) such that for z = N + ip. with
A > A, we have

2
1 P S| ot a

(2.15) j; {¢(R)

2
+/;¢’(R)|@Bu| dx

N

+RC/B ¢(R) Z (ajBI)(‘@ju)(@_Iu) dx

=1

(R ( 2 B? z)
+ 219l — 5-|9ul’) ds,
eenr—r, 18] (2l = 12wl
where
2 N 2
(2.16) |Du(x)|” = Z,l@ju(x){,
j=1

and the second term in the right-hand side is the surface integral on the
surface {x € RV | R(x, z) = R,}.

Proof. First we have to consider the surface 2, =2,,={x €
RY/R(x,z) =T} (T = R,) and the surface integral on it. Expressing
R(x, z) as R(x, z) = |x|g(x, z), we have

IR N N
@17) gy = L@R)-%= X (Fs+ 5Ix[(3,8))

j=1 j=1

= g(x, z) +[x[dg/d]x|.

Using (1.9) and (1.10) with j = 1, we can see that there exists A; > A,
such that for z = A + ip with A > A,

(2.18) dR(x,z)/d|x| = 3co>0 (x| =7).
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Therefore R(rw, z) is an increasing function of r for fixed w € S¥~! and
z = A+ ip with A > A,. Since R(7yw, z) < R, < T, there exists a unique
r=y(T,w)=y,(T,w) for each (w,T)e SV ! X[R,, ) such that
R(y (T, w)w, z) = T. Thus we have

(2.19) 2, ={x€RY/R(x,2)=T} = {p.(T, 0)w/w e S" 1}

and the surface 2, is shown to be smooth by the use of the implicit
function theorem. Thus 2, is diffeomorphic to the unit sphere. Let us
denote by a the angle between the outward normal VR /|VR| = B/|B| of
=, and X = x/|x|, the outward normal of the unit sphere S¥ ! in R". Let
dS and dw be the surface elements on 2, and SV~ respectively. Then,
since

OR /9| x|

1{/(T,w)N*1dw B
Bl

(2.20) 7S =cosa =

CR =

we have the formula for the integral surface on 2.

(2.21) fz fds

_ |B(x, 2) | P
_fsM[aR/amL/(T’w)wf(tP(T, )&)¥(T, )" de.

Let us integrate the surface integral on (7, 7,) with respect to 7. Then,
chaging the variable T to r = Y(7T, w), we get

(2.22) szh(T)fE Fdsdr

= [ [T MR, ) (o) B, 2) [ drdo

R(Tyw,z)

where we should note that

R(rw,z) =T,
(2.23) _ OR
dT = x| (rw, z)dr.

If A(R(x, z))f(x) is a nonnegative function, then by making use of the
inequalities ¢,T, < R(Tjw, z) < ¢/T; (j = 1,2), the integral in (2.22) may



344 YOSHIMI SAITO

be estimated as

(224) | h(R(x, 2))f(x)] B] dx

OhL<|x|<GT

s[TTz h(T)fz dedefC h(R(x, 2))/(x)| B| dx.

o1 <|x|<q T

Thus it follows that if g(x) is integrable on { x | |x| > r} with r > 0, then

(2.25) T_)OO{Tf IgldS} = 0.

Let us show (2.15). Multiply f = (T — z)u by ¢(R)Zu and take the
real part after integrating it on B. Then, using (2.8), we have

(2.26) Re f $(R)f(Dpu) dx
= _Re Z / D,u)(Dyu) dx
+RefB $(R)(h + n — ik)| Dpu|’ dx

+Re/;B (R)(D + q)u(%) ax=1,+ 1, + I,.
Since
2
(2.27) Ren = _"_@_(L
it follows that
_ a’p(x)

By partial integration we have

7}|93u|2dx.

1 2 , 2
(229) I, = —Re]%(LM:R*MR)WR—ll@Bu{ ds + qu)(R)(@,,u| dx

N
+Re fB $(R) Y. (25u)D,(Dpu) dx=1I,; + I, + I,
j=1

where we should note that the outward normal of the surface R(x, A) = R
is B/|B| = B/|VR| and that 0,¢(R) = ¢'(R)B; with ¢’ = d¢p/dr. By the



NONSPHERICAL RADIATION CONDITION 345

use of (2.10) the term I}, is expressed as

(2.30) 1, =Re [ ¢(R) T (9,4)(38)(@) ds

Jl=1

o’p(x)
B*(o* + 72)

+RefB o(R) f: (2,u)(M, - iB,)udx

+fB¢.(R){h+

Using partial integration again, we get

1
(2.31) L= 5[ $(R)|VR||2ul’ ds
R(x.,\M)=R,

—%_/B¢'(R),32|9u|2 dx — %qu(R)(divB)l.@ufdx,

The relation (2.15) is obtained from (2.26), (2.28), (2.29), (2.30) and
(2.31). O

The third term in the left-hand side of (2.15) may be simplified by
using the next lemma.

LEMMA 2.5. The functions 3,8, (1 < j, I < N)) are expressed as

2
@3 ap="R B IE (0 (xl2n),

where B, = B/(x, z), B; = B;(x, 2), R = R(x, z) withz = X + ip, A > X,
and F,(x, z) isa bounded functzon of x for |x| = ry such that

(2.33) hm sup | W(x,z)| =0  (j,I=1,2,...,N).

R |x|=r

Here ry and X\ are given in Assumptions 1.1 and 1.2, and

_Jr (=10,
(2.34) %= 0 (j=+1).

Proof. Setting R(x, z) = |x|g(x, z), we have
(2.35) B;=9R = %g+|x|(3,8) (3?1 = x,/lx|)
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and

L) XX,
(236) 08~ (% - “R)e + &Gu(x.2)
with

(237)  Gu(x, 2) = g{%Ix|(3,8) + %/xI(3,8) +|x["(3,3,2)}.
On the other hand it follows from (2.35) that
%8 = B —1x|(3,8),
{.32 = g2+ 2|x|% - vg +|x["|vel,
which, together with (2.36), gives (2.32) with
(239) E,= G, — {8,(21xI% - (ve) +|x["Ivel’) - |xI(3,5)8,

—|x |(ajg)Bl +]x |2(aj3)(813)}-
The relation (2.33) follows from (1.10) in Assumption 1.2. O

(2.38)

By the use of (2.32) we get a corollary of Proposition 2.4.

COROLLARY 2.6. Let u, f = (T — z)u, $(R) and B be as in Proposi-
tion 2.4. Then we have

o’p(x)
B*(0? + 72)°

+/;3 (9—(1%) - qko’(R)){,BzL@ul2 —|@Bu|2> dx

+Re [ 2(R) ﬁ E,(9,u)(@u) dx

(2.40) fB{qs(R) 1+

¥ %—qs’(R)}BzI@ulz dx

+ReL¢(R)j§l(l\_4ﬂ ~ iB,)B,(Du)wdx
+RejB¢(R)(Q + q)u(Dpu) dx
= Re/ $(R) f(Dpu) dx
L, S8~ Yot s
where 35 = {x € R"/R(x, z) = R,}.
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In order to estimate Yu from Corollary 2.6, we need several lemmas.
Let V(x) be a real-valued, measurable function such that

V(x) [’

N—-4+v

(2.41) My(x)= [

x—-yi<1 |x — y|
is locally bounded on R with » > 0 and
(2.42) vx)l<a  (xlzn)

with constants C;, r; > 0. We set

(2.43) T, = -A + V(x).

LeMMA 2.7. Let V(x) and T, be as above and let u € L, , N H, . with
some y € R.
(1) Let u be a solution of the equation (T, — z)u = f with z € C and
fe L, .. Then we have Du € L,,ie,Due€lL, foreachj=12,...,N.
(1) Let u be a solution of the equation (T, — z) = f with z € C,
Imz+#0andfel, ., Thenucl,, ),

The proof is essentially the same as the proof of Lemma 2.4 in
Ikebe-Saito [7], so we omit it.
Let

(2.44) K={z=A+iu/A; <A <X,,0<|p| <po}
with A; < A; <A, and p, > 0, A, being in Assumption 1.2.

LEMMA 2.8. Let T = -A + p(x) + Q(x) and let K be as above. Let
a €Randletu € L,, N H,,, be asolution of the equation (T — z)u = f
with z €K and f€ L,,. Then for any 8 < a and r > r, there exist
constants C; = C(K, r, 0) (j = 1,2), depending only on K, r, 8, such that
the estimate

0—a
(2.45) bl llully <1261 + 7)" | Dulla-1,, + Cillully_, + call fllo,
ro being as in Assumption1.1 and E, = {x/|x| = r,}.
Proof. Let p,(x) = p(s — r), where p € C*(R),0 < p < 1 and

1 (s=1),

(2.46) p(s) = {o (s <0).
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Set ¢(x) = ¢(|x]) = (1 + |x])2%x(|x]). Multiplying both sides of (T — z)u
= f by ¢(x)u, integrating on R" and using partial integration, we get

a _
(2.47) —/RN o|Dul” dx + '/l.t"' %(Du)udx

+/RN¢(p+ Q—z)|u|2dx= fRNq)fﬁdx,

where D,u = X_, D;u - X; and it should be noted that Du € L, , by (i)
of Lemma 2.7 so that the surface integral at infinity will vanish. Since
Du=Du+(h+n- i\G)Bju by (2.3), we get by taking the imaginary
part of both sides of (2.47)

(248) uf  olul ax
= IrnfRN %{@u -5 — (b + n)Bx|ul’ — iVz Bx|ul’} dx

—Im | ¢fudx,
RN

whence it follows that

2 dp
(2.49) lpnlj;N¢|u| dx < LN’TIH"QMHqu

o Ol [ uldx

=5, +L+J, (z€K)

with a constant C; = C;(K) depending only on K. The first term J; is
estimated as

(250) = [ [260(1+[x])" + p(Ix)(1 +1x])"| |l |u] dx

<|26| (1 +1x)* " Du| |u| dx
|x|=r

+HswloG)) [ ()" 9u]juldx

r<x|<r+1

=J,; +J5.
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Here we have
2
(2.51) T s|20|[ fl N (1 +1x)* "% u) dx] ully

<2011 + )" Dulla-v5, |l ully,

where we should note that » > r,. By the use of the interior estimate (see,
e.g., [4], Lemma 2.1) and the Schwarz inequality, it is easy to see that there
exists a constant C, = C,(K, r, ) such that

(2:52) T2 < Coflully-y +117loHluly
In a similar manner J, and J; are estimated as
(2.53) B+ Jy < Cs{llullg_y +11£1lg Hlully

with ¢ = ¢5(K, r, 8). Thus, we get from (2.49)—(2.53) that
(2.59) |ul [, olul*ax
< {12611 + )" 1 Dula-1.5,
+Cylllllg—y +171s) + Cs(llullg—r +11£ls)}-
It follows from (2.54) that
(255)  ulluly =< {12011 + )"~ Dulla-r,,
+(Cy+ Collullg—y + (Co+ CI£ o}
[ @ p) ) ul e,
= {12611 = )" Dut)la1,1;,
+(Co+ Cs+ C)llullg—y + (Co + I Nl lluly

with the constant C; = C((K, r, ). The inequality (2.45) directly follows
from (2.55) by dividing both sides by ||u]|,. O

Lemma 2.8 will be used in the following forms.

COROLLARY 2.9. Let K be as above and let u € L,_s N H,,,. be a
solution of the equation (T — z)u=fwithz=A+ip€ Kand fE€ L,,.
Let r > ry. Then there exist constants C, = C,(K,r) and Cy = C4(K)
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such that

(2.56) |l llully_y <200 = 8)r M Dulls-r.5, + Co{llull_y + 1715}
and

(2.57) |l llulls < 281 Dulls 1.5, + Colllulls_y +11f15)

are valid.

Proof. In order to show (2.56) we have only toset § =86 — 1, a = §
in (2.45) and notice that |lu||;_, <|lull_s and ||flls—; < |[flls- As for
(2.5T)weset r =r,, 8§ = a =6 in (2.45). O

Now we are in a position to obtain a priori estimate for (D — iz B)u.

PrOPOSITION 2.10. Suppose that Assumptions 1.1 and 1.2 hold. Let §
be a fixed constant which satisfies (1.16). Then there exists A, (= \,) such
that for M of the form

(2.58) M={z=X+ip/A <A<, 0<|p] <py)

with A, < A} < X, and p, > O there exists a positive conjstant C = C(M)
such that

(2.59) (D = iVzB)ul,_, < C{lluls+1 11}

is valid for a solution u € L,_5 N H,,,. of the equation (T — z)u = f with
z=A+ipE Mandfe€ L,;.

Proof. 1t follows from Lemma 2.7 with V(x) = p(x) + Q(x) that u,
Du € L, ;. Let us estimate each term of (2.40). In the following J; ; (J ;)
means the jth term of the left (right)-hand side of (2.40).

(1) Take a constant A} (= A,) so that

_‘Z_Z_BLX_)___E >0 (xERN)
B (o + 1)

for all A > X}; here A, is given in Proposition 2.4. Since

(2.61) ¢(R)=p(R)(1+ R)* "+ (26 — 1)p(R)(1 + R)*?

(2.60) 1+

> (28 - )p(R)(1 + R)™,

we have

(2.62) J = (8 — %)L e(R)(1 + R)28_2,82|9u|2 dx.
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(2) We have 8%|9u|* > |Z,u|* and

263 HB _y(r)s 2B _ y(r)

=2(1 - 8)p(R)(1 + R)

> p(R)1 + R)® 7.
Therefore we obtain

28-2 28-1
- )

P(R)1 + R

Q.64) J,> —f o (R)(1 + R (B 2ul’ ~ | Bpul’) dx
B

> - [ o(R)(1 + R)* % 9ul ax.
B

(3) It follows from Lemma 2.5 that

S F(9,4)(@)

ji=1

(2.65)

sN( sup |13,(x)|)|@u|2=o(1)|@u|2

|x|=ry,1<j,I<N

as A — oo. Therefore we have
(2.66) |J.5] < o(1) / p(R)(1 + R)* ) 9ul’dx (A - ).
B

(4) It follows from Assumptions 1.1 and 1.2 (and the definitions of

M, B, 0 and g (Lemma 2.3)) that we have the estimate

i

)28—2—5

@67) Vit sl < cof [, (1130771811 2ul lul ax

o

Hlul [ @) 718112l [uldx

el [ (L +1x) 7811 9u]ul )

=c{, +1,+ 1}
where ¢, = c,(M) is a constant depending only on M and we should note
that E, = {x €RY/|x| 2 r)} D B={x € R'/R, < R(x, z) < Ry},
and R(x, z) can be replaced by |x| by the assumption (1.9). Since
286 — 2 — € <98 -1+ (-0) by (1.16), the first term I, is evaluated as

1
(2.68) L <« |B1@uls_y 5, + 7=l
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for k > 0. Using (2.53) in Corollary 2.9, we have
(2.69) I, < ” IBlguHB—l,E,O(IH’I ““"3—1)

<|| 18191515, {201 = 8) ' r Y Duls 1.z,
+Cy(llull_s +1£1)}
< {20 - 8)"r + k)| |Bl2uls-1 s,

+C3{llull5 +1 715}

for r > ry, k> 0 with the constants ¢, = 1/inf_,|B(x, A)| and C; =
C5(M, r, k). Using (2.53) and (2.54) in Corollary 2.9 and proceeding as in
the estimate for I,, we obtain

(270) I < {ed + )|l + 2G(1 = 8)r™ + Cx}| | B1Dulls-y 5,

+Cg{lluls +1115)

for r > ry, k > 0 with ¢, given in (2.69), Cy = C¢(M) as in (2.57) and
C¢ = C{(M,r, k).

(5) Let R, — oo in (2.40) along a suitable sequence so that the
surface integral J,, goes to zero (cf. (2.25)). Then we have from (1)—(4)

(2.11) {‘33(6 - %) - 04(“" +rt+ ") - 5()\)}“ lmgulls—l,go“

= Cy(llullZs +1£15) <1715l 1B1Dulls-r.,

where ¢, is a constant which comes from the replacement of R(x, A) by
|x|, ¢4 =ca(M), §(A) >0 as A = o0, Cy = Cy(M, r, k), and we have
used the interior estimate to estimate the integrals containing |2u|? on a
bounded region. Take A, (= A}) so large that £(A) < 3¢;(8 — 3) for
A = A,. Then take r7%, k, p; >0 so small that c,(|u| + 7+ k) <
1¢4(8 — 3) for p such that |u| < p,. Note again that || is bounded below
from a positive constant. Thus we get

(2.72) el Duls-r k., < Colull’s +1£13)

for z = A + ip € M with 0 < |p| < p,, where Cy = C,o(M, 7, k, p;) and
cs = cs(M).

(6) Since (D — iVzB)u| <|Du| + (|h| + |q))|ul, we have only to
estimate ||hul|s_, and |||nju|ls_, by using Corollary 2.9 to get (2.59) from
(2.72) forz = A + ip with 0 < |p| < p,.
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(7) The case that z = A + ip € M with p, < |pu| < p, is easy. Take
the imaginary part of the relation (T — z)u u), = (f, u),- Then we have

(2.73) llully < mllf lo < ”—lllf lo-

Take the real part and use (2.73) and the interior estimate. Then we have
(2.74) || Du "o < Cyll f "0
with a constant C,,, whence, together with (2.73), (2.59) follows. O

3. A priori estimate for ||u||_; ;. In this section we shall show that
for a solution u of the equation (1.15) the norm ||u||_; ; is decreasing
with some positive exponent when r — oo.

PROPOSITION 3.1. Assume Assumptions 1.1 and 1.2. Let § be a fixed
constant which satisfies (1.16). Let A, be as in Proposition 2.10 and let M
be defined by (2.58) with A, <X, <X, and po > 0. Then there exists a
positive constant C = C(M) such that

(3.1) lull 5.6, < Cr=C 2 {Jlulls + 11115} (r < i)

is valid for a solution u € L, 5 N\ H,,,. of the equation (T — z)u = f with
z=A+ip € Mandf€ L,;. Herec, and r, are as in Assumption 1.2 and
E = {xeR"/|x|>r}.

Proof. Set Vz = o + i (7 > 0) and let B, be the inside of the closed
surface {x|R(x,z) =T} (T > ry, A > A,). Integrating (T — z)u - u =
fu on B, and taking the imaginary part, we have

(3.2) Imf IBI

where 2, = {x € R¥/R(x,z) =T} and we have used the fact that
p = 207. Thus it follows that

(Du - B)udS — 207/ u Idx—Im/ fadx,

(3.3) 20 Im I(Du Bluds < 2¢Im| fudx.

R(x,z)=T IB Br
On the other hand, since

(3.4) |Dju - i\/z_Bju,2 =|Du + 1Bu — io,Bju|2

=|Du + TBju|2 + oz,szluI2 — 20 Im{(D;u)B;u},
we get

2 ul? 1 - iz g o u u
(335) o8Il < Trl(D - vz p)ul +2 Im{IBI(D) B}
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Integrate (3.5) on the surface =, and use (3.3). Then we have

(3.6) °2fz, 18] |ul?ds < fz I—;—II(D — iz B)u|’ dS - 2olmeTﬁ¢dx

< /z, T;—‘I(D—i\/?B)ulzdS+2|0|||f||s||u||_.s-

Multiply both sides of (3.6) by (1 + T)~?° and integrate on (r/c;, )
with respect to 7. It follows from (2.24) and the estimate

(3.7) 4,1 +|x)* < (1 +R(x,2)> <dy(1 +]x])7*°
(4, = {max(1, ¢,)} ™, d, = {min(1, ¢,)}*’)
with ¢, and ¢; in (1.9) that

(3.8) f°° a1+ T)‘”/;: 8| |u|* dSaT

r/

> ozdlfl N (1 +|x)°| 8P |ul” dx

> odydull s (dy = int |B(x2)F),

[x|zen

(3.9) f; 1+ T)‘z"j;rllﬂup — iz B)u|’ dsdT
+2lel Wlluls [ (14 7)ar

<d, (1 +1x])>|(D - Wz B)ul" dx
x|z er/c
1 r\-@8-D
rpr(1 €] 2ol llul

~48-2)
< d2(1 + C_o) ”(D - i‘/Z—:B)“II?s—l,E,

lo| r\~@8-D) or
soper(lr ) () (=)

The estimate (3.1) is obtained from (3,8), (3.9) and (2.59) in Proposi-
tion 2.10. a
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4. Proof of the main theorem. The a priori estimates obtained in
the preceding sections will be used to show Theorem 1.6. The proof of
Theorem 1.6 will be divided into several steps.

(I) Let us consider the equation (1.15) with z = A + ip, p # 0. Let us
first show the uniqueness of the solution. Let u € L, ;N H,,,. be a
solution of the equation (T — z)u = 0 with z = A + ip, p # 0. Then it
follows from Lemma 2.7 that we have u, Du € L,. Therefore, multiplying
(T — z)u = 0 by u and integrating by parts and taking the imaginary
part, we get pllull, = 0, ie., u =0.

It is known that, under Assumption 1.1, the differential operator T
restricted on Cy(RY) is essentially self-adjoint (Ikebe-Kato [7]). Let us
denote its unique self-adjoint extension by H. Let f&€ L, and then
u(z, f)=(H—=2)""f (z=X+ip, p# 0) belongs to H,,, N L, (see
Ikebe-Kato [6]). Thus we have proved the unique existence of the solution
of the equation (1.15) for f€ L, and z = A + ip, p # 0.

(II) Let us next assume that u € L, ;N H,,,. is a solution of the
equation (7 — A)u = 0 with A > A, and that u satisfies

(D —ioB)ulls-1,5, < oo

with ¢ = VA or — VA. Here ), is as in Assumption 1.2. Then it follows
from (3.2) with 7 = 0 and f = 0 that we have

(4.1) Im[ hr(du-B)adS=0 (T>r)
s, |B]
(4.1) and (3.4) with 7 = 0, Vz = VA and 6% = A give
@2) [ {IDul’+ (A= p()|ul}ds = [ |(D - ioB)ul* s,
S =
where we have used the relation 8% =1 — p(x)/A. Multiply both sides of
(4.2) by (1 + T)*®~D and integrate it on (T, c0) with T, large enough.

Then, using (2.24), (3.7) and the condition |(D — i) ul|5_,, E, < 00, We
get

@3) [ (@) CToul + (A = p(x))ul} dx < o0
|x|>T
with T large enough, whence directly follows that

(4.4) r]:i*n:‘J r28°1/S {|Du|2 + (A - p(x))|u|2} dx =0,
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where S, is the sphere in RY with radius . Now we can apply Theorem
1.1 in Mochizuki [15] to conclude that the support of u is compact in R
if

T 1 ap | _
(4.5) A> |xl(1—1:noo{p(X)+ 2(28—1)I'x|8|x|}=A3
(and A > A,). Thus, by using the unique continuation property (UC) in
Assumption 1.1, we have u = 0.

(III) Set A, = max(A,, A;). Now that we have established the
uniqueness of the solution of the equation (1.15)—(1.18) and the estimates
in Propositions 2.10 and 3.1, the rest of the proof of Theorem 1.6 can be
done in the same way as in many works on the limiting absorption
principle (see, e.g., Ikebe-Saito [8], Saito [20, 21, 22], etc.) First the
estimate (1.20) will be shown. In fact if we assume that there exists a
sequence {u,},_; C L, s N H,,,. such that |lu,||_s=1 and |ju,|_;>
n||flls (n=1,2,...) with f, =(T — z,)u,, then we can obtain a con-
tradiction. Thus (1.20) will be established. Propositions 2.10 and 3.1,
together with (1.20) will give (1.21) and (1.22). Using (1.20)—(1.22), we can
show that u(z, f) (z=A +ip, p # 0) has its limit on the real axis
A > A,. We can also easily prove the continuity of u(z, f) on the upper
or lower half plane.

5. Concluding remarks.

1°. Let us define the operator (T — z)~! by

(5.1) (T=2)"f=u(z,f)

where z = A + ip with A > Ay, p # 0 and f € L, ;. Then it follows from
Theorem 1.6 that (T — z)™' € B(L, 4, L,_;), where B(X, Y) denotes all
bounded linear transforms from X into Y. Also (T — z)~! is a compact
operator from L,; to L, 5. (T —z)™' is of course the restriction of
(H — z)™ into L, 5 where (H — z)™! is the resolvent of the self-adjoint
operator H defined in §4. Further, if we define (T — (A £ i0))~! by

(5.2) (T-(A+i0)"f=p,(Af)
for A > A, then it follows from Theorem 1.6 that

(5.3) %(T —Axip)t=(-(xi0)"

in B(L,; L, ;) (cf. Mourre [18], Jensen-Mourre-Perry [12)).
(T = (A £ i0))~* are also compact operators from L, , into L, _;.
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2°. Under even stronger conditions on the potential Q(x) and B,(x)
we can show a stronger estimate for (D — iVz B)u) (cf. Saito [21], [22]
Isozaki [9]).

PROPOSITION 5.1. Let us assume Assumption 1.1 with (1.4) and (1.5)
replaced by

(5.4) 10(x)| <c(t +]x)7 (x| =)
and
(5.5) |B,(x)]| < (1 +]x])”

respectively. Let us assume Assumption 1.2. Let M . and u(z, f) be as in
(iv) of Theorem 1.6. Then there exists a positive constant C which depends
only on M | such that

(5.6) [(D = iVzB)u “1 5 < Cllf s
is valid for u = u(z, f) with (z, f) € MJr or(z,f)e M_.

For the proof of this proposition we have only to show the a priori
estimates

(5.7) I(D = iVzrb)ul,_y < C{llulls +1£1,-5)

with C = C(M), because (5.7) is combined with (1.20) to give (5.6).
(5.7) will be shown starting with (2.40) in Corollary 2.6, with ¢(R) =
p(R)(1 + R)372°% where we should notice that the first tow terms of the
left-hand side of (2.40) are expressed as

(5.8) the first two terms of the left-hand side of (2.40)

=/B {¢(R)(Bzr(i€(jz_z) +1

T

+ 2B %¢’(R)}Bz|@u|2dx

+[ (o R g .

We shall have to use Lemma 2.8 as in the proof of Proposition 2.10. Thus
the proof will be quite similar to that of Proposition 2.10.

Added in proof (March 1, 1986). Recently G. Barles [2] has shown that
Assumption 1.2 follows from Assumption 1.1, (p), namely, that the
eikonal equation

|VR|2 =1+p(x)/A
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has a solution R(x, A) for all sufficiently large A, and R(x, A) satisfies all
requirements given in Assumption 1.2 if p(x) satisfies Assumption 1.1,
(p)- Along the line of Lions [14], Barles defined R(x, A) by

R(x,\)* = inf{fol (1 _ p(é)fs)) )Id%d(sS)

and proved that R(x, A) is a solution of the eikonal equation and also
that R(x, A) has the smoothness required in Assumption 1.2. Thus only
Assumption 1.1 is needed to guarantee that all the results given in this
work hold.

2

ds/£(0) = 0, £(1) = x
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