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SCHRODINGER OPERATORS WITH A
NONSPHERICAL RADIATION CONDITION

YOSHIMI SAITO

The Schrodinger operators with potentials p(x) which do not
necessarily converge to a constant at infinity will be discussed. The
potential p(x) = *i/|*|, x = (x\, x2,--, xn)

 G I^> *s a n example. The
radiation condition associated with such Schrόdinger operators is shown
to have the form Vw — iyfk(vR)u = small at infinity, where R =
R(x, λ) is a solution of the eikonal equation \VR\2 = 1 - p(x)/λ. This
radiation condition is "nonspherical" in the sense that v ^ is not
proportional to the vector 3c = x/\x\ in general. The limiting absorption
principle will be obtained using a priori estimates for the radiation
condition.

Introduction. Let us consider the inhomogeneous Schrodinger equa-
tion

TV

(0.1) (T- λ)u= - ££> 2 M+ V(x)u-λu=f inR^,

where Dj = d/dxj + ibj(x) with the "magnetic potentials" bj(x), λ is a
positive number, the "potential" V(x) is a real-valued function on R^ and
f(x) is a given function. In this paper we are going to consider a class of
potentials V(x) which contains potentials V(x) such that V(x) = 0(1)
and dV/dXj = O(\x\~λ) at x = oo. One example of such a function is
V(x) = ^i/lxl where xλ is the first coordinate of x = (x1? x2,..., xN) G
R^. We shall study the limiting absorption principle and the unique
existence of the solution u = u(λ, f) of the equation (0.1) introducing a
"nonspherical" radiation condition

(0.2) (Dj-i}/λβj)u(x) is small at x = oo (j = 1,2,..., N).

Condition (0.2) is nonspherical in the sense that β = (βl9 β2,..., βN) is
the outward normal of a surface which is not a sphere in general, whereas
it seems that the outward normal x = x/\x\ of a sphere always appeared
in the radiation conditions which were used up to now for various types of
Schrodinger operators.

Let us first assume that V(x) becomes small at x = oo. Then the
unique existence of the solution u = u(λ, f) of the equation (0,1) with
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the appropriate boundary conditions at infinity x = oo has been studied
in many papers, some of which will be mentioned later. The conditions at
infinity have been various kinds of generalizations of the Sommerfeld
radiation conditions

(0.3)

as |JC| -> oo.
In 1962 Eidus [6] showed that the unique existence of the solution

w(λ, /) of the equation (0.1) in R3 with

2

(0.4) Urn ί
d\x\

dS = 0,

where Sp = [x <Ξ R3/|x| = p}. Here bj(x) is assumed to be 0 in a
neighborhood of x = oo, V(x) is assumed to satisfy

(0.5) V(x) = θ(\x\-2-a) ( | x | - o o )

with a > \ and / satisfies f(x) = O(\x\~3 β) with β > 0. The solution
w(λ,/) was constructed by the limiting absorption method, that is,
w(λ, /) is obtained as the limit

(0.6) w(λ, /) = limw(λ + iε, / ) ,

where u(λ + /ε, /) is the solution of (0,1) with λ replaced by λ + iε
(ε > 0).

Ikebe-Saito [8] also used the limiting absorption method to show the
unique existence of w(λ, /) of the equation (0.1) in R^ with the radiation
condition

(0.7) ί {l+\x\)li8~l)\{D-iJ\x)u\2dx< oo,
JRN

(0.8) f (l+\x\Y2*\u(x)\2dx< oo,

where δ is a fixed constant with δ > §,

|(Z) - ΪI/^JC)M| = Σ |^/ w (^) - i}/λxu(x)\ and jc = JC/|X|.
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Here V(x) is assumed to be decomposed into the sum of the long-range
potential Fx(x) and the short-range potential V2(x), i.e., we have

V(x) = VM + V2(x),

= 0(\xΓ),(0.9)

with ε > 0 at infinity. Let us note that x is the outward unit normal of the
sphere SN~ι = {x^ RN/\x\ = 1}. When bj(x) are assumed to be identi-
cally 0, the operator -Δ + V(x) can be transformed into the ordinary
differential operator

(0.10) L = -d2/dr2 4- B(r) + C(r) (r e (0, oo))

with the operator valued coefficients B(r), C(r). For fixed r > 0 B(r)
and C(r) are operators in L2(SN~1) of the forms

(0.11)

\ω

with the Laplace-Beltrami operator &N on SN ι. In this case the Hmiting
absorption method can be applied to the operator L (Saitδ [21], [22]). The
radiation condition for L has the form

(0.12)
Γ (1 + < °°'

v(r)\\L2(SN-i)dr< oo,

where υ(r) = r ("-1 ) / 2w(rω), ω G 5fΛΓ~1, is regarded as an L^S^'^-val-
ued function on (0, oo).

There exists another type of radiation condition. Let V{x) be the sum
of a long-range potential Vλ(x) and the short-range potential V2(x) and
let bj(x) = 0. Saitδ [21], [22] and Isozaki [9] proved that the estimate

(0.13)

cί

is valid for the solution (0.1), where C = C(λ) is a positive constant
depending only on λ (and the operator T) and

(0.14) - ' l d ϋ dv
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Here K = K(x, λ) is an exact or approximate solution of the eikonal
equation

TV
| 2

(0.15) | V * T + ?ί(*) = λ

and the essential part of (vK)(x, λ) has the form

(0.16) vK{x, λ) = Φ(JC, λ)ic (ic = x/\x\)

The transformation of the operator T to the ordinary differential operator
(0.10) works in the proof of (0.13), too. On the other hand, Mochizuki-
Uchiyama [15] constructed a similar type of radiation condition

(0.17) ί (l+\x\)2(δ~l)\(v -ik(x,λ)x)u\2dx<oo,
JRN

to get the limiting absorption principle for the Schrodinger operator T
with the "oscillating" long-range potential V(x). Here V(x) satisfies

V(x) = 0(1),

(0.18) dv/d\χ\=o(\x\-1),

d2V/d\x\2 + aV{x) =

as |JC| -» oo with constants a > 0 and ε > 0. In addition V(x) is assumed
to behave uniformly as |x| -> oo (cf. Mochizuku-Uchiyama [16], §8,
(V2-4)).

In all these works the outward normal x of the unit sphere appears in
the radiation condition and the limiting absorption principle holds for the
operator (0.10) as well as the Schrodinger operator T. Therefore all these
radiation conditions may be classified as "spherical" radiation conditions.

The potential that we are going to consider is "wilder" than a
longe-range potential or an oscillating long-range potential in the sense
that our potential V(x) essentially satisfies only the first two conditions of
(0.18). The Schrodinger operator with such a potential has been studied
from various viewpoints. There are many papers discussing the essential
selfadjointness of Schrodinger operators (see e.g., Kato [13], Eastham-
Evans-McLeod [4], Read [19]). As for the nonexistence of the eigenvalues,
the works by Mochizuki [15] and Eastham-Kalf [5] should be noted. We
are now going to study the absolute continuous spectrum. Ben-Artzi [3]
and Jager-Rejto [11] proved the limiting absorption principle for a
Schrodinger operator with an exploding potential V(x) which is assumed
to go to +oo at x = oo, though our potential does not satisfy their
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conditions. On the other hand, the commutator method developed by
Mourre [18] and Jensen-Mourre-Perry [12] can be applied to our potential
to show the existence of the limit

(0.19) (T - (λ ± IO)) ' 1 = lim(Γ - (λ ± "OΓ*

for large enough λ. In this sense the limiting absorption principle has
been already established. What we are going to do in this paper is to
introduce a radiation condition of "nonspherical" type

(0.20) + [
JRN

to show that u±(x) = (T - (λ ± IΌ))" 1 / satisfy (0.20) ±, and that the
equation (0.1) with (0.20) + (or (0.20)_) and (0.8) has a unique solution
u±= u±(λ,f). Here β = β(x, λ) = (βl9 β 2 , . . . , βN) is expressed as

(0.21) β = vR (orβj(x9λ) = dR(x,λ)/dxj, y = l ,2 , . . . ,JV) ,

where R(x, λ) is a solution of the eikonal equation

(0.22) |vΛ| 2 = l - V(x)/λ.

Though β is the outward normal of the surface R(x, λ) = r, this surface
is not necessarily a sphere. In fact, when V(x) = Xx/|x|, the surface
R(x, λ) = r is an ellipsoid. We can also see that the usage of the operator
(0.10) instead of the Schrδdinger operator T is inadequate. It seems that
the radial variable r = |JC| should be replaced by R(x, λ) in our situation.
At the same time another proof for the limiting absoφtion principle for
our potential along the line of Eidus [6], Jager [10], Agmon [1], Ikebe-Saito
[8] will be obtained.

In the studies of the Schrδdinger operator with a long-range or an
oscillating long-range potential, after establishing the existence and
uniqueness of the solution of the inhomogeneous Schrδdinger equation,
we could derive an asymptotic formula for the solution which turned out
to be a starting point for spectral and scattering theory for the Schrδ-
dinger operator (see, e.g., Saitδ [21], [22], Mochizuki-Uchiyama [17]).
It is also expected that we could develop spectral and scattering theory for
our potential. This will be discussed elsewhere.

We shall give the rigorous definition on the potentials V(x) and bj(x)
and state our main theorem in §1. In the following two sections (§2 and
§3) we shall show two a priori estimates for a solution of the Schrδdinger
equation (0.1). These estimates will be used in §4 to show the limiting
absorption principle for large enough λ, whence follows the uniform
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existence of the solution w = w(λ,/) of the equation (0.1) with the

radiation condition (0.20) and (0.8). In §5 we shall give two concluding

remarks, one of which is related to a stronger estimate for the radiation

condition (0.20) similar to (0.17).

1. Main result. Let us consider the differential operator

(i.i) r = - £ * > / + />(*) +G00
7 = 1

in RN, where

(1.2) Dj^dj + ibjix)

and N is a positive integer with N > 2. The given functions p(x), Q(x)

and bj(x) are presumed to satisfy the following two assumptions:

Assumption 1.1.

(p) P(x) i s a bounded, real-valued function on R^ such that p e
C2(RN - {0}) with estimates

\d«p(x)\<c\x\~]a] ( N < 2 , x E r - { 0 } ) ,

where α = (α1? α 2 , . . . , aN) is an arbitrary multi-index with non-

negative integers αy (1 < j < N). \a\ = aλ + a2 4- +aN and c

is a positive constant. We set 3" = d?ιd%2 3^ .

(Q) β ( * ) i s a real-valued, measurable function on R^ and there exists

v > 0 such that

(1-3) MQ(x)=J
c-y|<i \χ — y\

is locally bounded on R^. Further, there exist positive constants ε,

rQ such that

(1.4) \ Q ( x ) \ < C ( l + \ s \ y 1 - ε { \ x \ > r 0 ) ,

c being as in (p).

(B) bj(x), j = 1,2,..., N, are real-valued C1 functions on R^ satisfy-

ing

(Ί 5) \B (X) I < cil + I x\Yl~ε (\x\> r )

where

(1.6) B i = 3 Z>y — 3̂ 6

and c, ε, r0 are as above.
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(UC) The unique continuation property holds for the differential oper-
ator T = -Δ + p + ρ.

As for the potential p(x) we need another assumption.

Assumption 1.2.
(R) There exists λ 0 (> supxeRΛr p(x)) such that for any λ > λ 0 the

differential equation

(1.7) |Vtf|2 = i - £ W (|vΛ|2-Σ(3yΛ)j

has a solution R = R(x, λ) for \x\ > r0 which satisfies the follow-
ing (i)-(iii):

(i) For each λ > λ0 R(x, λ) is a real-valued, C3 function for
|x| > r0, r0 being as above,

(ii) Setting

(1.8) g(x,λ)=\x\~1R(x9λ)

we have

(1-9) C o ^ g ί ^ λ ) ^

for all |x| > r0 and λ > λ 0 with positive constants c0 and cv

(in) We have

i O-o),

uniformly for x G [X G R^/I^l > r0}. Here djg denotes an arbitrary 7 th
derivative of g.

REMARK 1.3.

(i) Let p(x) = ̂ /Ixl, where x = (x1? x 2 ? . . ., xN). Then p(x) satis-
fies (p) in Assumption 1.1. Set λ 0 = 1 and define R(x, λ) for λ > λ 0 by

(1.11) R{x, λ) = έi(λ)|jc| - b(λ)x1

with

Then it is easy to see that R(x, λ) satisfies (R) in Assumption 1.2 with
/?(JC) = Xx/Î l, λ0 > 1 and an arbitrary λ 0 > 0.



338 YOSHIMI SAITO

(ϋ) Suppose that p(x) satisfy (p) in Assumption 1.1. Then it follows
from Lions ([13], Chapters 2 and 5) that there exists a solution R(x, λ) of
(1.7) which satisfies (1.9) and (1.10) with j = 0. It seems to be open
whether R(x, λ) satisfies (1.10) with j = 1,2,3 in general. (See Added in
Proof.)

(iii) In the trivial case of p(x) = 0, we can take R(x, λ) = |x|.

In order to state the main results we need some definitions and
notations including the extension of R(x, λ) to the complex plane.

DEFINITION 1.4. Let z = λ + iμ e C with λ > λ0, where λ 0 is as in
Assumption 1.2. Let R(x, λ) be as in Assumption 1.2. Then R(x, z) is
defined by

(1.13) R(x, z) = R(x, \z\2/λ) (r > r0).

We set

h

Notation 1.5.
R: real numbers,
C: complex numbers,
Dj = dj + ibj(x) (j = 1,2,..., N, 3, =
Du = (Dιu,D2u,...,DNu),
Vu = (d1u,d2u9...,dNu),
Re z: the real part of z,
Im z: the imaginary part of z.
L2y(G) (γ e R) denotes the Hubert space of all functions f on G

such that (1 + \x\)Ύf is square integrable over G. The norm
and inner product of L2y(G) are denoted by || | | γ G and
( , ) γ t C , respectively. We set L 2 ) γ(R") = L2>γ, || H ^ = || | |γ

and ( , )γRiv = ( , ) γ . When γ = 0, we shall omit the sub-
script 0 as in L2(G), || ||G etc.

Hm is all L2 functions with L2 distribution derivatives up to the
mth order, inclusive.

Cm is the class of m-times continuously differentiable functions.
CQ° is the class of infinitely continuously differentiable functions

with compact support in R^.
M l o c is the class of all locally M functions.
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Let us consider the inhomogeneous Schrodinger equation

(1.15) < ( ' - ' > - - ! > / -

where δ is a fixed constant such that

(1.16) ^ < δ

with ε given in Assumption 1.1, (Q), and f(x) is a given function. The

following is our main result.

THEOREM 1.6. Assume Assumptions 1.1 and 1.2.

(i) Then there exists a unique solution u = w(z, /) of (1.15) with

f ^ L2 for any z = λ + iμ with μ Φ 0.

(ϋ) There exists Λo > 0 such that Λo > λ 0 and there exist limits

(1.17) Urn u(λ±iμj) = u + (λj) in L2r8 n
μ>0,μ->0

λ > Λo and any / G L 2 δ . Γλe functions w+(λ,/) are unique

solutions of the equation (1.5) with the generalized radiation conditions

(1.18)

respectively, where λ0 is as1 m Assumption 1.2,

(1.19) ||(i> + ή L

7 - 1

andErQ= {x e R^ | |JC| > r0}.

(iii) Le/ M = {z = λ 4- iμ/\λ < λ < λ2 ? 0 < |μ| < μ0} w/YΛ Λo < λx

< λ 2 and μ0 > 0. Γλe/2 /Λer̂  exists a positive constant C = C(M) depend-

ing only on M (and the potentials p, Q, bj) such that the estimates

(i 2o) M

(1.22) \\u(z,f)\UEr < O-^-^ll/ll, (r > r0),

/or any pair (z, f) e M X L 2 S . Therefore the estimates (1.20)-(1.22)
fa valid for u ±(λ, /) HΊΪA λ! < λ < λ2 andf e L2 s .
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(iv) Set

(1.23) M ± = {z = λ ± iμ/\ < λ < λ2, 0 < μ < μ0}

with λ 0 < λx < λ 2 and μ0 > 0. Let u(z, f) (z = λ + zμ, μ Φ 0) 6e as
above. Set u(λ, f) = w+(λ, /) when λ e [λ1? λ2] is contained in M+ and
set w(λ, /) = w_(λ, /) when λ e [λ l5 λ2] is contained in M_. Then u(z, f)
is an L2_δ-valued continuous function for (z, f) G M+X L18 and (z, /) e
M_X L 2 δ , respectively.

In the following two sections we shall give a priori estimates for the
solution of the equation (1.15). They will be used in §4 to show the proof
of Theorem 1.6. Some concluding remarks will be given also in §5.

2. A priori estimate for (D — i{z β)u. Let us start with the defini-
tion of several functions and differential expressions which will be used
when we get an a priori estimate for (D — iyfz β)u.

DEFINITION 2.1.

(i) Let z = λ + iψ e C with λ > λ 0 and let β(x, z) = vR(x, z) be
as in Definition 1.4. Then the functions h(x, z) and η(x, z) are defined
by

(2.1) h(x,z)= ^(divβ) (\x\>r0),

(2.2) l ^ f
where rQ is as in Assumption 1.1 and the square root {z of z is taken in
such a way as Im -{z > 0.

(ii) We set

(2.3) Qju = Dju + {h + η - iVί")j8,κ (y = 1,2,..., N),

(2.4)

(2.5) ^« = £ (^«)^
7 = 1

REMARK 2.2. If p(x) = 0 and R(x, λ) = \x\ (cf. (iϋ) of Remark 1.3),
then we have

(2.6) 2jU = Dju + ^ j 7 p ; « " i&Xj« ( ^ =

which is the same as 3>-u given in Ikebe-Saitδ [5].
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By direct computation we have the following lemma.

LEMMA 2.3. Let u e H2loc. Then for \x\ > r0 and z = λ + iμ with

λ0 we have

(2.7) p(x) -z + zβ2 + 2i^ηβ2 = 0,

N

(2.8) (T - z)u = - Σ DJ@JU + (h + η - ik)(®βu)

+ Q(x)u-q(x)u

with

ί2 9ϊ lQ(χ) = Q(χ) + {div(hβ)-hψ},
1 • } \a(x) = (η

2 + 2hη)β2,

and

(2.10) Dj9,u - D,@jU = (h + η - ik)(β,3>jU - ββμ)

+ Mj,u + iBJlu (j,1=1,2,--.,N)

with

( 2 n ) IMJI = dji(h + v)βι) ~ 3/{(A + iϊ)^ ),

Let Rλ = Ci^ with c1? r0 given in Assumption 1.2. Take p G C°°(R)

such that 0 < p < 1, dp/dr > 0 and

We define φ(r) by

(2.13) φ(r) = p(r)(l + r)28'1

with a fixed constant δ satisfying (1.16).

PROPOSITION 2.4. Let u e iϊ2 1 o c and set f = (T - z)u with z = λ + iμ

e C. Lei φ be given in (2.13) and set

(2.14) B = *(λ, Λ1( /?„) = {x/Rλ < R(x, z) < R*},
\ = φ(R(x,z)),
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where R(x, z) is as in Definition 1.4 and R* (> Rλ = cxr0) is a constant.
Then there exists a constant Ax (> λ 0) such that for z = λ 4- iμ with
λ > Λx we have

+ Re/ φ(Λ)
B y

+ Re/
B y,/

+ Refφ(R)(Q

«)(^ϋ) dx

t) dx

= Re/

Λ̂  second term in the right-hand side is the surface integral on the
surface { x e R* | R(x, z) = R*}.

Proof. First we have to consider the surface Στ= Στz = {x e
R V ^ ( ^ z ) = ^} ( ^ ^ Λ i ) a n d ώe surface integral on it. Expressing
R(x, z) as R(x, z) = |x|g(x, z), we have

ZΌ N N

(2.17) -ξgr = Σ (3/Λ) *y - Σ (5> + 3E>l(3y«))

= g(x,z)+\x\dg/d\x\.

Using (1.9) and (1.10) with j = 1, we can see that there exists Aλ > λ 0

such that for z = λ + iμ with λ > Aλ

(2.18) dR(x,z)/d\x\>$co>0 (|x| > ro).
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Therefore R(rω, z) is an increasing function of r for fixed ω ^ SN~1 and
z = λ 4- iμ with λ > Av Since R(roω, z) < Rλ < T, there exists a unique
r = ψ(Γ,ω) = ψz(Γ, ω) for each (ω, Γ) e S*" 1 X [Rl9 oo) such that
R(ψz(T, ω)ω, z) = Γ. Thus we have

(2.19) Σ Γ = { χ E R V * ( * , ^) = T) = {μz(Γ, ω)ω/ω € S""1}

and the surface Στ is shown to be smooth by the use of the implicit
function theorem. Thus Στ is diffeomorphic to the unit sphere. Let us
denote by a the angle between the outward normal vi?/|Vi?| = β/\β\ of
Στ and x = x/\x\9 the outward normal of the unit sphere SN~ι in R .̂ Let
dS and dω be the surface elements on Στ and S1^'1, respectively. Then,
since

we have the formula for the integral surface on Στ:

(2.21) / fdS

Let us integrate the surface integral on (7\, Γ2) with respect to T. Then,
chaging the variable T to r = ψ(Γ, ω), we get

(2.22) fT2h(T)f fdSdT

where we should note that

(2-23) { JΓΓ dR , . ,

If h(R{x, z))f(x) is a nonnegative function, then by making use of the
inequalities c0T) < i?(7}ω, z) < c{Γj (j = 1,2), the integral in (2.22) may
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be estimated as

(2.24) / h(R(x,z))f(x)\β\dx
JC1Tι<\x\<C0T2

<jT2h(T)f fdSdT<[ h(R(x,z))f(x)\β\dx.

Thus it follows that if g(x) is integrable on {x \ \x\ > r} with r > 0, then

(2.25) lim [τ( \g\ds)=0.
T-*oo

Let us show (2.15). Multiply / = (T - z)u by φ(R)@βu and take the

real part after integrating it on B. Then, using (2.8), we have

(2.26)

Since

(2.27)

it follows

Re /
JB

that

φ(R)f(9βu) dx

N

-Re Σ

+ R e /

+ ReJ

JBΦ(R)(

Φ(Λ)(Λ^

Φ(R)(Q-

eη ^

" η - Λ ) | ^

f q)u(2)βu)

σ2rp{x)
J2( σ 2 + T 2^

ί/jCΞ^ + I2

2 '

βu\2 dx.

By partial integration we have

(2.29) 7 1 = - R e ( φ{R)^-\%u\2 dS + ( φ'(R)\$>βu\2 dx
JR(xλ) = R |V-ί<| JB

+ Re f φ(R) Σ {3>βu)Dj{3>βu)dx=Iu + I12 + 713,
B 7 = 1

where we should note that the outward normal of the surface R(x, λ) = R*

is β/\β\ = i8/|vΛ| and that djφ(R) = Φ'(R)βj with φr = dφ/dr. By the
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use of (2.10) the term J13 is expressed as

t N

(2.30) Iu = Re / φ(R) Σ (fyu^dA^u) dx
J β j,ι-i

4

i13w

+ Re/ φ(R)

f t χ _ _ 4

-hRe / φ(i?) Σ βι{@jU)Dι(@Ju)dx= Σ Λ:

Using partial integration again, we get

1 r 2

(2.31) J1 3 4 = τ / φ(i?)|vi?| |^w| dS
"R(x \} = R

- i /" φ'(i?))82|^M|2^x- i f φ(i?)(divi8)|^M|2ί/x.
B B

The relation (2.15) is obtained from (2.26), (2.28), (2.29), (2.30) and
(2.31). D

The third term in the left-hand side of (2.15) may be simplified by
using the next lemma.

LEMMA 2.5. The functions 3 ^ (1 <j\ I < N) are expressed as

(2.32) djβ, = ^ Γ ~ ψ + TLFJ,(X, Z) (1*1 > r0),

where β, = β,(x, z), βj = β/x, z), R = R(x, z) with z = λ + />, λ > λ0,
and Fj,(x, z) is a bounded function of x for |JC| > r0 such that

( 2 . 3 3 ) Urn s u p | f ; . / ( j c , z ) | = 0 (j,l = l,2,...,N).

Here r0 and λ0 are given in Assumptions 1.1 and 1.2, and

0-0.

Proof. Setting R(x, z) = |x|g(jc, z), we have

(2.35) β, = d,R = x / g + |x|(a,g) (x, = x/|x |)
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and

(2.36)

with

(2.37) Gβ{x,z

On the other hand it follows from (2.35) that

which, together with (2.36), gives (2.32) with

(2.39) FJt= GJ§- {δβ(2\x\x

The relation (2.33) follows from (1.10) in Assumption 1.2. D

By the use of (2.32) we get a corollary of Proposition 2.4.

COROLLARY 2.6. Let w, / = (T - z)u, Φ(R) and B be as in Proposi-
tion 2.4. Then we have

(2.40) JB | j ^ ^ \

(^f )^u\2-\9βu\2} dx

+ Re f ^P- Σ FJ9JU)(¥$ dx
JB j l l

+ Re f φ(R) Σ
B 7/-

+ Re ί φ(R)(Q + q)uψϊpu)dx

= Re ( φ(R)f{^ΰ) dx

where Σ Λ # = {JC e R^/ftί*, z ) = i?^}.
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In order to estimate Sίu from Corollary 2.6, we need several lemmas.
Let V(x) be a real-valued, measurable function such that

(2.41) My(x) = / | F ( * ] Γ 4 + , dy
J\x-y\<\ \X — y\

is locally bounded on R^ with v > 0 and

(2.42) \V(x)\<Cλ (Ixl^r,)

with constants Cv rx > 0. We set

(2.43) 7\ = - Δ + V(x).

LEMMA 2.7. Lei F(x) and Tλ be as above and let u e L2 γ Π i/2 1 o c wz
γ G R ,
(i) Let u be a solution of the equation (7\ — z)u = f with z e C

L 2 γ. ΓΛ̂ w we have Du e L2 γ, /.̂ ., 2^« e L2 γ for each j = 1,2,..., JV.
(ii) Lei u be a solution of the equation (Tλ — z) = / WJYΛ Z G C,

The proof is essentially the same as the proof of Lemma 2.4 in
Ikebe-Saitδ [7], so we omit it.

Let

(2.44) K= {z = λ + /w/λ1<λ<λ2,0<|μ| <μ 0}

with λQ<λ1 <λ2 and μ0 > 0, λ 0 being in Assumption 1.2.

LEMMA 2.8. Let T = -Δ 4- p(x) + Q(x) and let K be as above. Let
a e R and let u e L2a Π H2ίιoc be a solution of the equation (T — z)u = /
with z G K and f e L2a. Then for any θ < a and r > r0 there exist
constants C; = Cj(K, r, θ) (j = 1,2), depending only on K, r, 0, such that
the estimate

(2.45) |μ| \\u\\θ<\2θ\(l + r ) 9 -1<MU,s, 0 + Q M U +

r0 being as in Assumption 1.1 and Er<) = { x / | x | > / 0 } .

Proo/. Let pr(x) = p(ί - r), where p e C°°(R), 0 < p ̂  1 and

(2M) M'\* (ίSo).
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Set φ(x) = φ(\x\) = (1 + \x\)2θPR(\x\) Multiplying both sides of (T - z)u
= / by φ(x)u, integrating on R^ and using partial integration, we get

(2.47) ί φ\Du\2dx+ [ ^(Dru)ΰdx

[
RN

- z)\u\2dx= [ φfΰdx,

where Dru = Σ^= 1 DjU Xj and it should be noted that Du e L2a by (i)
of Lemma 2.7 so that the surface integral at infinity will vanish. Since
2jU = DjU + (ft + η - i{z)βjU by (2.3), we get by taking the imaginary
part of both sides of (2.47)

(2.48) μί φ\u\2dx
JRN

= Im ί -^rjί^u - xu - (ft 4- η)βx\u\2 - ifz'βx\u\2) dx
JRχ o\x\ ^ *

— Im/ φβdx,
JRN

whence it follows that

(2.49) \μ\f φ\u\2dx<f
RN 3|JC|

\9>u\ \u\dx

with a constant C3 = C3(K) depending only on K. The first term Jλ is
estimated as

(2.50) Jλ = j N \lθφ{\ + | x | ) " 1 + p;( |x |)( l +\x\)2θ\\3)u\\u\dx

<\2Θ\( {l+\x\fθ~l\2)u\\u\dx
J\x\>r

(1 + r)2θ\@u\\u\dx

= Ju 4- J 1 2 .
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Here we have

(2.51) Ju <\2θ\\f (1 +\x\)2β-2\2>u\2dx\2\\ul

where we should note that r > r0. By the use of the interior estimate (see,
e.g., [4], Lemma 2.1) and the Schwarz inequality, it is easy to see that there
exists a constant C4 = C4(K, r, θ) such that

(2.52) Λ 2 ^

In a similar manner J2 and J3 are estimated as

(2.53) Λ + ^ Q d M U + I / U M I *

with c5 = c5(K, r, θ). Thus, we get from (2.49)-(2.53) that

(2.54) \μ\f^φ\u\2dx

< {\2Θ\(1 + r)β-a\\Θu\\a^Ero

It follows from (2.54) that

(2.55) \μ\\\u\\2

θ

(1 - #v)(l + r)2θ\u\2dx,
\x\<r+\

= {\2Θ\{\ - r)θ-«\\®u\\a-uErQ

+ (C4 + C5 + Q)| |u | | # _ 1 + ( Q

with the constant Q = Cβ(K, r, θ). The inequality (2.45) directly follows
from (2.55) by dividing both sides by ||w||̂ . D

Lemma 2.8 will be used in the following forms.

COROLLARY 2.9. Let K be as above and let u e L2_δ Π if21oc be a
solution of the equation (T — z)u = / with z = λ + iμ e K and f G L2δ.
Let r> r0. Then there exist constants CΊ = CΊ(K, r) and C8 = CS(K)
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such that

(2.56) |μ| I H I , ^ < 2(1 - S^-^Su^-i.^ + CΊ{\\u\\_

and

(2.57) |μ| | |M | |β < 2δ | |^« | | s _ 1 > £ r o + Cs{\\u\\,-i

are valid.

Proof. In order to show (2.56) we have only to set θ = δ — 1, a = 8

in (2.45) and notice that ||w||δ_2 ^ IM|_δ and H/Hs^ < ||/IU As for
(2.57) we set r = r0, θ = a = 8 in (2.45). D

Now we are in a position to obtain a priori estimate for (D — i{z β)u.

PROPOSITION 2.10. Suppose that Assumptions 1.1 and 1.2 hold. Let 8

be a fixed constant which satisfies (1.16). Then there exists λ 2 ( > λ 0 ) such

that for M of the form

(2.58) M = [z = λ + iμ/λτ < λ < λ 2 , 0 < | μ | < μ0)

with A2 < λλ < λ 2 and μ0 > 0 there exists a positive conjstant C = C(M)

such that

(2.59) \{D-i&β)u\t_χzC{\u\U+\n*}

is valid for a solution u £ L2r8 Π H2JLOC of the equation (T — z)u = / with

z = λ 4- /μ e M andf e L 2 δ.

. It follows from Lemma 2.7 with V(x) = j^( c) 4- β(jc) that M,

e L2 δ . Let us estimate each term of (2.40). In the following JLj (JRj)

means the 7 th term of the left (right)-hand side of (2.40).

(1) Take a constant Λ^ ( > Λx) so that

(2 6o) i + ^ τ ! ψ £ 0 (^R"»
for all λ > λ^; here Aτ is given in Proposition 2.4. Since

(2.61) φ'(R) = p'(R){l + R)28'1 + (28 - l ) p ( Λ ) ( l + R)2S~2

> (2δ - l ) p ( Λ ) ( l + R)

we have

(2.62) Jn > (δ - \
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(2) We have β2\@u\2 > \Sdβu\2 and

(2.63) —^— -

351

= 2(1 - δ)p(R)(l + R)2S~2

Therefore we obtain

(2.64) JL2 > - jf p' R)2S-\β2\2u\2 -\2βu\2) dx

R)2S~ιβ2\2lu\2 dx.

(3) It follows from Lemma 2.5 that

(2.65)
N

^ \x\>ro,l<j,l<N

as λ -> oo. Therefore we have

(2.66)

sup \Fj,(x)\)\9u\2 = o(l)\9uf

(λ - oo).

(4) It follows from Assumptions 1.1 and 1.2 (and the definitions of
Mjh Bjl9 Q and q (Lemma 2.3)) that we have the estimate

(2.67) {l+\x\)2S~2-e\β\\®u\\u\dx

\μ\f

\μ\2(

where c0 = co(M) is a constant depending only on M and we should note
that Ero = {x e R V | Λ | > r0} z> B = {JC e RN/Rλ < R(χ, z) < R*},
and R(x, z) can be replaced by |x| by the assumption (1.9). Since
2 δ - 2 - ε ^ δ - l + (-δ) by (1.16), the first term /x is evaluated as

(2.68) / i ^ » c C ^
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for K > 0. Using (2.53) in Corollary 2.9, we have

(2.69) hA

+ C 7 ( | |«IU+ 11/11,)}

{2(l - δΓV-1 + l

for r > r0, K > 0 with the constants c2 = l/inϊXtλ\β(x9 λ) | and CJ =
Cη(M> r, K). Using (2.53) and (2.54) in Corollary 2.9 and proceeding as in
the estimate for /2, we obtain

(2.70) J3 < {(2c2δ + C8)|μ| + 2C8(1 - δ)r" x + C,κ

for r > r0, K > 0 with c2 given in (2.69), C8 = C8(Af) as in (2.57) and

(5) Let i?* -> oo in (2.40) along a suitable sequence so that the
surface integral JR2 goes to zero (cf. (2.25)). Then we have from (l)-(4)

(2.71) [c3(8 - \) - c 4( |μ| + r-1 + K) -

where c3 is a constant which comes from the replacement of R(x, λ) by
1*1, <?4 = cΛM)> ^(λ) -> 0 as λ -> oo, C9 = C9(M, r, /c), and we have
used the interior estimate to estimate the integrals containing \£ϊu\2 on a
bounded region. Take Λ2 (> Λ\) so large that ξ(λ) < ic3(δ — \) for
λ > λ0. Then take r"1, /c, μx > 0 so small that c4(|μ| + r"1 + K) <
}c3(δ — ̂ ) for μ such that |μ| < μx. Note again that \β\ is bounded below
from a positive constant. Thus we get

(2.72) c5\\®u\\U,Erΰ+1 < Cw(\\u\\ls + H/C)

for z = λ + iμ e M with 0 < |μ| < μl9 where C10 = C10(M, r, /c, μx) and
c5 = c5(Af).

(6) Since \(D - i{zβ)u\ < \2u\ + (|Λ| + |η|)|w|? we have only to
estimate ||Λw||δ^i and |||η|w||β_i by using Corollary 2.9 to get (2.59) from
(2.72) for z = λ + iμ with 0 < |μ| < μv
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(7) The case that z = λ + iμ e M with μλ < \μ\ < μ0 is easy. Take

the imaginary part of the relation ((Γ — z)w, u)0 = (/, u)0. Then we have

(2.73) Wo^ll/llo^ll/llo

Take the real part and use (2.73) and the interior estimate. Then we have

(2.74) \\Du\\0<C10\\f\\0

with a constant C10, whence, together with (2.73), (2.59) follows. D

3. A priori estimate for \\u\\_δ E; In this section we shall show that

for a solution u of the equation (1.15) the norm ||w||_δtE is decreasing

with some positive exponent when r -> oo.

PROPOSITION 3.1. Assume Assumptions 1.1 and 1.2. Let δ be a fixed

constant which satisfies (1.16). Let Λ2 be as in Proposition 2.10 and let M

be defined by (2.58) with Λ2 < λx < λ 2 and μ0 > 0. Then there exists a

positive constant C = C(M) such that

(3.i) ||«|LΛ < cr-«-w[hU + 11/11.} (r < c Λ )

is valid for a solution u e L2_5 Π iί25ioc o/ ίΛ̂  equation (T — z)u = / vwϊλ

z = λ + iμ e M andf e L 2 δ. ^ r ^ cx α«J r0 αre α̂  i/i Assumption 1.2

Proof. Set VT = σ + IT (T > 0) and let Bτ be the inside of the closed

surface {x \ R(x, z) = T) (T > rθ9 λ > Λ2). Integrating (Γ - z)u ϊ/ =

^/ on 5 Γ and taking the imaginary part, we have

(3.2) - I m f 1 ^ τ (Z)κ jβ)Sέ/ιS-2στ/' |w| 2Jx = ImΓ y5Λc,

where Σ Γ = {x G ^ / ^ ( X , Z) = T) and we have used the fact that

μ = 2στ. Thus it follows that

(3.3) 2σlmf ^(Du β)ύds <-2σlm ( fidx.
JR(x,z) = T IP I ^ Γ

On the other hand, since

(3.4) IDjU - iyfzβjU f = |DjU + rβjU - iσβjU\2

= \Djtι + τβju\2 + σ%2\u\2 - 2σlm{{Dju)βjϊi}9

we get

(3.5) o2\β\ \u\2 < | i | \(D - ifzβ)u\2 + 2σ Im{^(Z>«) βή.
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Integrate (3.5) on the surface Στ and use (3.3). Then we have

(3.6) a2f \β\\u\2dS< ( Λτ\{D - ifzβ)vtf dS - 2σ Im [ fudx
Bτ

. \β\

Multiply both sides of (3.6) by (1 4- T)~28 and integrate on (r/cl9 oo)
with respect to T. It follows from (2.24) and the estimate

(3.7) dλ(l + \x\)~28 < (1 + R{x, z))~28 < d2(l + \x\)~28

(dx = {maxOU,)}-28, d2 = {min(l,co)}-2δ)

with c0 and cx in (1.9) that

(3.8) Γ (l + T)-2δ[ \β\\u\2dSdT
r/Cγ Zτ

\x\>r

> σ 2 r f 1 έ ί 3 | | M | | _ β > ^ ^ 3 = ^inf^ \ β ( x , z ) \ 2 \ ,

(3.9) J 0 0 (1 + T)'2Sf Ai\{D- iJz~β)u\2dsdT

+ 2\o\\\f\\s\\u\lsf

<d2f (l+\x\y2S\(D-i^β)u\2dx

Γ
r/Cl

The estimate (3.1) is obtained from (3,8), (3.9) and (2.59) in Proposi-
tion 2.10. D



NONSPHERICAL RADIATION CONDITION 355

4. Proof of the main theorem. The a priori estimates obtained in
the preceding sections will be used to show Theorem 1.6. The proof of
Theorem 1.6 will be divided into several steps.

(I) Let us consider the equation (1.15) with z =* λ + iμ9 μ Φ 0. Let us
first show the uniqueness of the solution. Let u e L2_δ Π H2loc be a
solution of the equation (T — z)u = 0 with z = λ 4- iμ, μ Φ 0. Then it
follows from Lemma 2.7 that we have w, Du e L2. Therefore, multiplying
(T - z)u = 0 by u and integrating by parts and taking the imaginary
part, we get μ||t<||0 = 0, i.e., u = 0.

It is known that, under Assumption 1.1, the differential operator T
restricted on CQ(JBiN) is essentially self-adjoint (Ikebe-Kato [7]). Let us
denote its unique self-adjoint extension by H. Let / e L2 and then
w(z, f) = (H - z)"1/ (z = λ + i>, μ Φ 0) belongs to # 2 1 o c Π L2 (see
Ikebe-Kato [6]). Thus we have proved the unique existence of the solution
of the equation (1.15) for / e L2 and z = λ + iμ, μ Φ 0.

(II) Let us next assume that u e L 2 δ Π i/2 1 o c is a solution of the
equation (T — λ)u = 0 with λ > λ 0 and that u satisfies

/σiβ)ι/||δ_1^o< oo

with σ = \/λ or — \/λ. Here λ 0 is as in Assumption 1.2. Then it follows
from (3.2) with T = 0 and / = 0 that we have

(4.1) Im/ γχ-Λdu β)ϋdS = Q (T> r0)
JΣT \β\

(4.1) and (3.4) with T = 0, Vz = vX and σ2 = λ give

(4.2) Jf {\Du\2 + (λ-p(x))\u\2}dS= f^ \(D-iσβ)u\2dS,

where we have used the relation β2 = 1 — p(x)/λ. Multiply both sides of
(4.2) by (1 + T)2(δ~l) and integrate it on (Γo, oo) with To large enough.
Then, using (2.24), (3.7) and the condition \\(D — iσβ)u\\8_1 E < oo, we
get

(4.3)

with T large enough, whence directly follows that

(4.4) lim ru~l( (\Du\2 + (λ - p(x))\u\2} dx = 0,
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where Sr is the sphere in R^ with radius r. Now we can apply Theorem
1.1 in Mochizuki [15] to conclude that the support of u is compact in RN

if

(4.5) λ >

(and λ > Λo). Thus, by using the unique continuation property (UC) in
Assumption 1.1, we have u = 0.

(Ill) Set Λo = max(Λ2, Λ3). Now that we have established the
uniqueness of the solution of the equation (1.15)-(1.18) and the estimates
in Propositions 2.10 and 3.1, the rest of the proof of Theorem 1.6 can be
done in the same way as in many works on the limiting absorption
principle (see, e.g., Ikebe-Saitδ [8], Saitδ [20, 21, 22], etc.) First the
estimate (1.20) will be shown. In fact if we assume that there exists a
sequence {un}n^ι c L2rδ Π H2loc such that | |wj|.δ = 1 and \\un\\_δ >
n\\fn\\s (n = 1,2,...) with /„ = ( Γ - zn)un, then we can obtain a con-
tradiction. Thus (1.20) will be established. Propositions 2.10 and 3.1,
together with (1.20) will give (1.21) and (1.22). Using (1.20)-(1.22), we can
show that u(z,f) (z = λ + iμ, μ Φ 0) has its limit on the real axis
λ > Λo. We can also easily prove the continuity of u(z, /) on the upper
or lower half plane.

5. Concluding remarks.

1°. Let us define the operator {T - z)~ι by

(5.1) ( Γ - * ) - 1 / - « ( * , / )

where z = λ + iμ with λ > Λo, μ Φ 0 and / e L2 δ. Then it follows from
Theorem 1.6 that (T - z)"1 e B(L2 δ, L2_δ), where B(X, Y) denotes all
bounded linear transforms from X into Y. Also (T - z)" 1 is a compact
operator from L 2 δ to L2_δ. (T - z)'1 is of course the restriction of
(H — z)" 1 into L2f8 where (H — z)" 1 is the resolvent of the self-adjoint
operator H defined in §4. Further, if we define (T — (λ ± IΌ))" 1 by

(5.2) ( Γ - ( λ ± i O ) Γ 7 = M ± ( λ , / )

for λ > Λo, then it follows from Theorem 1.6 that

(5.3) Km(Γ - (λ ± iμ))"1 = (r - (λ ± /O))"1

|0

in B(L 2 δ , L2_δ) (cf. Mourre [18], Jensen-Mourre-Perry [12]).
(T — (λ ± zΌ))"1 are also compact operators from L28 into L2_δ.
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2°. Under even stronger conditions on the potential Q(x) and βj(x)

we can show a stronger estimate for (D - i{zβ)u) (cf. Saitδ [21], [22],
Isozaki [9]).

PROPOSITION 5.1. Let us assume Assumption 1.1 with (1.4) and (1.5)

replaced by

(5.4) ( ) 2 ( )
and

(5.5)

respectively. Let us assume Assumption 1.2. Let M± and u(z, f) be as in

(iv) of Theorem 1.6. Then there exists a positive constant C which depends

only on M ± such that

(5.6) \{D-i^β)u\1_^C\\f\\1^

is valid for u = u(z, f) with (z, /) e M+ or (z, /) e M_.

For the proof of this proposition we have only to show the a priori

estimates

(5.7) \\(D - / V ^ H U * C{\\u\lδ + ||/||2_δ}

with C = C(M), because (5.7) is combined with (1.20) to give (5.6).

(5.7) will be shown starting with (2.40) in Corollary 2.6, with φ(R) =

ρ(i?)(l + R)3~28 where we should notice that the first tow terms of the

left-hand side of (2.40) are expressed as

(5.8) the first two terms of the left-hand side of (2.40)

β2{σ
+ 1

We shall have to use Lemma 2.8 as in the proof of Proposition 2.10. Thus

the proof will be quite similar to that of Proposition 2.10.

Added in proof (March 1,1986). Recently G. Barles [2] has shown that

Assumption 1.2 follows from Assumption 1.1, (p), namely, that the

eikonal equation
2 = l + p(χ)/λ
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has a solution R(x, λ) for all sufficiently large λ, and R(x, λ) satisfies all
requirements given in Assumption 1.2 if p(x) satisfies Assumption 1.1,
(p). Along the line of Lions [14], Barles defined R(x, λ) by

- 0, £(1) =

and proved that R(x, λ) is a solution of the eikonal equation and also
that R(x, λ) has the smoothness required in Assumption 1.2. Thus only
Assumption 1.1 is needed to guarantee that all the results given in this
work hold.
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