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ROTATION NUMBERS FOR AUTOMORPHISMS

OF C* ALGEBRAS
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Poincare's notion of rotation number for a homeomorphism of the
circle is generalized to a large class of automorphisms of C* algebras.
This is accomplished by the introduction of a C* algebraic notion of
determinant. A formula is obtained for the range of a trace on the Ko

group of a cross product by Z in terms of the rotation number of the
automorphism involved.

Introduction 31
I Winding Numbers 35
II Determinants 40
III Invariant Determinants 45
IV Rotation Numbers 49
V Crossed Products 52
VI Commutative C* Algebras 63
VII Almost Periodic Automorphisms 69
VIII Automorphisms of Connected Groups 76
IX Translations and Affine Homeomorphisms of Connected Groups 80

Appendix A 85
Appendix B 87
Bibliography 88

Introduction. In [16] Poincare introduced the notion of rotation
number for homeomorphisms of the circle. The idea is to associate to any
orientation-preserving homeomorphism of the circle a complex number of
absolute value one which, in some sense, represents the average amount
by which each individual point in the circle is "rotated" by the given
homeomorphism. If Rθ denotes the rotation by the angle θ on the circle,
that is, the transformation z ~> ei0z9 we may compute its rotation number
which, not surprisingly, turns out to be equal to eιθ.

Suppose we replace the circle by the 2-torus T2 (viewed as the
cartesian product of two circles) and let Rηθ be the homeomorphism of
T2 which rotates the first and second circle coordinates by different
angles η and θ. It seems plausible to assert that Rηθ admits two rotation
numbers, namely et7) and eιθ.
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The reader could certainly think of other examples where rotation

numbers may be heuristically defined. The discussion above suggests that

there may be a general notion of rotation number for homeomorphisms of

spaces other than the circle.

Compact topological spaces are in one-to-one correspondence with

commutative C* algebras containing a unit by [5], so we may generalize

further and ask whether it is possible to define a suitable notion of

rotation number for automorphisms of any C* algebra. This is precisely

what is studied in this work.

As the example of the 2-torus suggests, there may be more than one

rotation number involved. To account for this, our rotation number is

defined to be a function into the circle instead of a single number, so we

shall refer to it as the rotation number map.

Before giving the precise definition of the rotation number map we

need to extend the notion of determinant to the context of C* algebras

and this turns out to be a very interesting problem in itself. The idea is to

associate to a trace τ on a unital C* algebra A a homomorphism, det,

from the group of unitary matrices over A into the circle group which

satisfies the familiar property det(VΛ) = eιτ(h) for all self adjoint matrices

h over A. We find that this is not alwlays possible unless the pair (A,τ)

satisfies a certain X-theoretical property which we call integrality. Roughly,

this is an extension of the notion of connectedness to the category of C *

algebras. In precise terms, a traced unital C* algebra (A,τ) is called

integral if the range of the trace on K0(A) is contained in Z.

Our main result, Theorem (V.I3), gives necessary and sufficient

conditions for an integral algebra to remain integral after we take its

crossed product by an action of Z. We show that this happens precisely

when the rotation number map of the automorphism involved vanishes.

We get the above result as a special case of Theorem (V.I2) which is

basically a formula for computing the range of a trace on the Ko group of

a crossed product algebra by Z in terms of the rotation number map of

the automorphism involved. As one corollary we obtain a result of Rieffel,

Pimsner and Voiculescu [15, 18] on the range of the trace on KQ of

irrational rotation algebras.

As indicated earlier, our definition of rotation number may be applied

to homeomorphisms of compact topological spaces where an invariant

measure is given. In this context we extend to compact spaces a result of

Connes (Corollary 3 of [1]) on the nonexistence of proper projections in

some crossed product algebras of the form C(V) XaZ where V is a

connected manifold for which H\V,Z) = 0. We are thankful to the
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referee who pointed out that our initial result for CW-complexes could be
extended to general compact spaces.

Another problem which we discuss (VIII.4) is the question of nonex-
istence of proper projections in the C* algebras of torsion free groups,
which are obtained as the semidirect product of free abelian groups and Z,
e.g., the discrete Heisenberg group. Although the class of groups men-
tioned above is much too small, we hope that our techniques may give
some insight on the long standing conjecture according to which the result
above holds for all torsion free groups. The next step should be, in our
opinion, to prove that if a torsion free group G is such that its reduced C*
algebra contains no proper projections, then the same is true for a
semidirect product of G by Z.

We must mention that our work relies heavily on a paper by Paschke
[11] as well as on the existence of the Pimsner-Voiculescu exact sequence
for crossed products by Z [14]. Recent papers by Pimsner [13] and Packer
[25] should also be noted as they are closely related to the present work.
In [13] some of our results are generalized to crossed products by free
groups.

Concerning our theory of determinants we should also mention a
paper by P. de la Harpe and G. Skandalis [6] where they define a
determinant which is closely related to ours, the difference being that our
determinant is defined for all unitary matrices while theirs is defined only
on a subgroup of the group of unitary matrices, namely the connected
component of the identity. The price we pay is that our determinant is not
unique. Advantages are that we can carry out a theory of determinants on
algebras where a group action is given (see Chapter III) and this turns out
to be related to the integrality of crossed product algebras (see (V.13.iv)).

The organization of the present work is as follows. In Chapter I we
lay the groundwork for our theory of determinants which is exposed in
Chapter II. Chapter III studies the behavior of determinants in the
presence of a group action. Rotation numbers are defined and studied in
Chapter IV. In Chapter V we use the ideas of the previous sections to
arrive at our main results, which are (V.12) and (V.13). In Chapter VI we
study the special case of commutative C* algebras and give an alternative
definition of rotation number. We also show how the two definitions of
rotation number are related. In Chapters VII through IX we apply our
main results to various classes of automorphisms of C* algebras: almost
periodic automorphisms, automorphisms induced by group automor-
phisms and automorphisms induced by affine transformations on topo-
logical groups.
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We would now like to introduce some notation. If X is a compact
topological space (always assumed to be Hausdorff) we denote by C( X)
the C* algebra of all continuous complex valued functions on X.

If G is a topological group, we write [G, G] for the commutator
subgroup which is defined to be the closed subgroup generated by the set
{ghg~ιh~ι:g, h e G). The connected component of the identity in G is
denoted by Go.

For any * -algebra A over the field of complex numbers, we let Asa be
the set of all self adjoint elements in A, For every natural number n we
denote by Mn(A) the • -algebra of all n X n matrices over A. If A is
unital, that is, if A has an identity, Uw(^4) stands for the group of all
unitary n X n matrices over A. The identity n X n matrix and the zero
element of Mn(A) are denoted respectively by /„ and 0n. If u is in Mn(A)
and v is in Mm{A), we denote by u θ v the (n + m) X (n + m) matrix
over A containing u as the top left hand side n X n block, v as the
bottom right hand side m X m block and zeros elsewhere.

A trace on a *-algebra A is a continuous linear map r: A -> C
satisfying τ(αb) = τ(bα) and τ(α*) = τ(α) for all α and b in A. Given a
trace r on A we automatically assume that T is extended to Mn(A) for all
« by the formula τ(α) = Σι<i<nr{αii) for all a = K, 7 )i<;,7<« e Mn(A).

A trace is called positive if τ(α*α) > 0 for all α in A. If, moreover,
τ(α*α) > 0 for α Φ 0 we say that T is faithful. A trace defined on a unital
algebra A is said to be normalized if τ(l) = 1.

We shall assume our traces to be normalized whenever working with a
unital algebra. Positiveness and faithfulness are assumed only where
explicitly mentioned.

If T is a fixed trace on A, we say that the pair (A,τ) is a traced
algebra.

The K-theory groups of a given C* algebra A are denoted by K0(A)
and Kλ(A). If p is a self adjoint projection in some matrix algebra over A,
we denote by [/?]0 its class in K0(A). Likewise, for any unitary matrix u
over A the symbol [u]λ stands for its class in KX{A).

A trace τ on A defines a group homomorphism (also denoted by τ)
T: KO(A) -> R via the formula τ([p]0 — [#]0) = τ(p) - τ(q) for all self
adjoint projections p and q in some matrix algebra over A.

An automorphism of a * -algebra A is always assumed to preserve the
* -operation. If α is such an automorphism we shall not introduce any
extra notation for the induced automorphism on Mn{A). That is, for
α = (αi,j)ι<ij<n i n Mn(A) we let α(α) = ( α ί f l ^ - ) ) ^ , - , , < „ •

Our general references for C* algebras are [3, 12, 20]. References for
^-theory are [2, 7, 9, 10, 24].
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I would like to express my deepest gratitude to Prof. Marc A. Rieffel
who supervised my Ph.D. work at Berkeley which culminated with the
present article.

I. WINDING NUMBERS

In this chapter we develop the technical tools needed for our theory of
determinants for C* algebras.

Let A be a unital C* algebra. We denote by C(T, A) the C* algebra
of all continuous functions from the circle

Γ = { z e C : | z | = l}

into A. Whenever it is convenient we will identify C(T,A) with the
algebra of periodic continuous functions from R into A with period 2π.
We use the notation C^Γ, Λ) to denote the subalgebra of C{T,A)
formed by C00 functions from T to A.

Let T be a trace on A.

1. DEFINITION. If n e N, n > 1 and u e \Jn{C°°(T,A)\ we define
the winding number of u with respect to T by

Therefore ω" is a map

ω"τ:υn(C™(T,A))-*C.

Some properties of the winding number map are collected in the next

2. LEMMA. Let n e N, n > 1 and u <= Un(C°°(Γ, A)).
(i) Ifm>nandυ = u® Im_n e Um(C°°(Γ, Λ)) tfien ω?(v) = COT"(M).

(ii) // Λ e Mtt(C°°(Γ,Λ))sa ίfen e'Λ e Un(C°°(Γ,^)) and ω"τ(u) =

Proo/. (i) Note that for all t e R

Therefore τ{υ'{t)v(t)*) = T(M'(/)M(/)*) proving (i).



36 RUY EXEL

(ii) The fact that eih e Un(C°°(Γ, A)) is a consequence of the fact that

the exponential is a C0 0 map. We have

<{ueih) _ _L_ jί2*

27ίl JQ

= ωτ"(£/) + - ^ ( τ ( λ ( 2 * ) ) - τ(Λ(0))) = ω"τ(u).

Our goal is to construct out of ω" a map

The next result will be useful in that direction.

3. LEMMA. Let n e N, n > 1. Then

(i) Uw(C°°(Γ,y4)) ώ Λ/we m Un(C(Γ,^4)) wi7Λ rβψec/ /o the norm

topology.

(ii) For any u e U r t(C(Γ? ̂ ) ) ίΛβre w i; e UΛ(C°°(Γ, A)) such that the

classes [u]λ and [v]λ in KX{C(T,A)) are the same.

(iii) // u e UW(C°°(Γ? Λ)) Π UΠ(C(Γ, ^ ) ) 0 //ẑ re are elements

hl9...,hme Mn(C°°(T, A))sasuch that u = eih- eih*.

Proof, (i) it is well known that C™(T, A) is dense in C(Γ, A) so that

also Mn(C°°(T, A)) is dense in Mn(C(T9 A)). As a consequence

GLw(C°°(Γ,yl)) is dense in GLΛ(C(Γ,^4)) since the latter is open. The

map

u e GLn(C(T,A)) -> M ( M * M ) 1 / 2 e Un(

is a continuous retraction and clearly leaves UW(C°°(Γ, ^4)) invariant. The

image of GLn(C°°(Γ, ^4)) is then UW(C°°(Γ9 A))9 which therefore is dense

inυn(C(T,A)).

(ii) Follows from (i).

(iii) Consider the subgroup S of Un(C(T, A)) defined by

s = υn(c<*(τ,A))nυn(c(τ,A))Q.
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With the norm topology S becomes a topological group. Using the fact
that in a connected group a neighborhood of the identity is always a
generating set, it is enough to prove the following statements:

(a) S is path connected.
(b) The set {eih:h e Mn(C°°(Γ,^))sa} is a neighborhood of the

identity in 5.
We prove (b) first. If u e S is such that \\u — 1|| < 1 the series

(i/O Σ (i//0(i -«) '
l<p<oo

is absolutely convergent and adds up to a self adjoint element h e
Mn(C°°(Γ, Λ)) satisfying u = e'Λ

To prove (a) let u e S and let {ut:Q < t < 1} be a continuous path
in UΠ(C(:Γ, 4̂)) with uo = u and i^ = 1. Take a partition 0 = t0 < tλ <
• < ί* = 1 with ||iι - M || < 1/3, y = 1,2,..., k and by (i) let Vj G
l ^ ί C ^ Γ , ^)) be such that |jϋ] - w, || < 1/3, y = 0,1,.. . , k where v0 = u,
vk = 1. Then | |^ - t^-JI < 1 so wΰjivj^)'1]] < 1 and by (b) υj = eihjvj_ι

for some hj e Mn(C«>(T,A))sa.
The path {eithjvj_1:0 < / < 1} connects Vj_x and Vj and stays within

\Jn(C°°(T, A)). Putting together all these paths we have connected v0 to
υk9 that is, u to 1, by a path in Un(C°°(T, A)) which certainly lies in
Un(C(T,A))0. In other words our path lies in S.

We are now ready to make the following

4. DEFINITION. Given a traced unital C* algebra (A9 T) we denote by
γ the mapping

given by γ( c) = ω"(«) where « and w are chosen so that

ueUn(C°(T,A))

and [u]λ = x.
Note that (3.ii) provides such a w, while (2) shows that the definition

of γ does not depend on the choice of u and n. Therefore γ is well
defined.

A useful result in ̂ -theory of C* algebras states that Kλ(C{T, A)) is
isomorphic to ^(^4) via an isomorphism

k:Kλ(A) Θ K0(A) -*

satisfying &([w]i, [/?]()) = [w ® l]i + Wtp\i where eitp stands for the map
t -* eitp.



38 RUY EXEL

In our next proposition we investigate the relationship between k and

5. PROPOSITION. The following diagram is commutative'.

Kλ(C(T,A)) - C

Proof. Let u e \Jn{A), and let p e Mn{A) be a self adjoint projec-

tion. Then

y(Hl«]ι, [p]o)) = γ(I« ® ih + k ' Ί i ) = γ([«*"Ίi)

= ω"(ue"'>) = ̂ - T Γ57 τί4-(ue"p)e-"J'uA dtτ 2πι Jo \dt I

= 2 ~ / " τ{uipu*)dt = τ{p).

6. COROLLARY, (i) γ is a group homomorphism into the additive group

of complex numbers.

(ii) The range of γ is τ(KQ(A)).

(iii) Ifhl9..., hm G Mn(A)sa and eihι eihm = 1 then

Proof, (i) and (ii) follow immediately from (5). To prove (iii) let

u(t) = eith^2π • • • e"h» /2\ t e [0,2w]. So M e U ^ C ^ Γ , ^)) and we have

γ(Mi) = ω;(iι)=2^jf2'τ(iι'(0«ω*).

.e-ithm/2π . , .

The result now follows from (ii).
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A last technical result to be used later will occupy our attention in the

remainder of this section.

7. LEMMA. Let (^4,τ) be a traced unital C* algebra. Given u and υ

in Un(A) there are hv..., hm G M2n(A)S2L such that (uυu*v*) Θ /„ =

Proof. It is well known [10] that v θ υ* e U2n(A)0. So let k v . . . , k r

M 2 Λ ( ,4) s a satisfying D Θ D * = ez/Cl έ?1'*'. Then

uυu*v* θ 7n = (w θ 7 j ( ι ; θ ϋ * ) ( κ * θ In)(v* θ 0)

= (wθ 7 J ^ ^ - eik'(u θ In)*e'ik e'ikι

* . . . e(ueiH)kr(uern)*e-ikr . . . e - i * l β

If we put hj = ( w θ In)kj(u θ 7n)* for 1 <j < r and hj = -klr_jJrl for

r + l < y < 2 r w e have the desired conclusion.

8. COROLLARY. Let {A, τ) be a traced unital C* algebra and u, v £

\Jn{A). Suppose we are given elements kv...ykr^Mn(A)S2ί such that

uvu*v* = eιkχ eιkι

. Let hl9...,hme M2n(A) be as in (7). We have

e<-*i©on . . . ^ifcΓθθΛ = (uvu*v*) e / n = β ί Λ l

By (ό.iii) we have

) ^ ( Σ (kjeθΛ)- Σ hj

As a consequence we obtain a result of Rieffel [18] on the range of the

trace on Ko of the irrational rotation algebras, as well as the rational ones.

Recall that for every S G R the algebra Aθ is defined to be the crossed

product of C(T) by Z where the action is by rotation by θ. For our

purposes it is enough to know that Aθ contains two unitaries u and v such

that uυ = e2ητiθvu.

9. COROLLARY. The range of the trace on K0(A0) contains Z + ΘZ.

Proof. If u and υ are as described above, then uvu*v* = elmθ. By (8)

we have θ = (1/2T7)T(2TΓ0) e τ(AΌ(Λ,)).
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Since it is obvious that Z c τ(K0(Aθ)) the result follows.
See (IX.12) for a proof that τ(JSΓ0(̂ 4 )̂) is actually equal to Z + ΘZ.

II. DETERMINANTS

In studying the algebra of complex matrices one cannot avoid the use
of traces and determinants. While the generalizations of the concept of a
trace to the context of C* algebras have proved to be extremely useful,
the theory of determinants on C* algebras is only now beginning to be
studied (see [6] as well as (11)). Concerning von Neumann algebras^we
must mention a paper by B. Fuglede and R. V. Kadison on determinant^
for finite factors [4], but as we shall see (Theorem 10), it is more natural to
study determinants in the realm of C* algebras rather than for von
Neumann algebras since the existence of too many projections in the
algebra constitutes an obstruction to the existence of determinants with
certain properties. We thus dedicate this chapter to the study of determi-
nants on C * algebras. The results we obtain here will prove to be crucial
for the forthcoming sections.

Let A be a unital C* algebra.

1. DEFINITION. We denote by U( A) or by U ^ ^ ) the unitary group of
A defined to be the inductive limit of the sequence of groups

where, for all n, in is defined by

in(u) = u Θ Iλ e Vn+l(A), Vu e Vn(A).

A concrete realization of U(A) may be obtained by taking the set of
all oo X oo matrices u over A which agree with the oo X oo identity,
loo = (^)i,;GN' except for finitely many entries and moreover satisfy
uu* = u*u = 1^.

The product as well as the * operation are defined as usual, observing
that in the definition of the product, the infinite sums involved contain
only a finite number of nonzero terms.

Let T be a trace on A.

2. DEFINITION. We say that a group homomorphism

det:U(4) -> T

is a determinant associated with the trace T if for all h e Mn(A)S3i one has

det(έ?'"Λ) = eiT(h\
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We now develop some concepts to be used in the study of determi-

nants.

3. DEFINITION. Let (A,τ) be a traced unital C* algebra. For every

integer n > 1 we let

Σ A, - 0
\<j<k i

4. PROPOSITION. For all integers n>\

(i) SU*(A) is a normal subgroup of Un(A)9

(ii) SU^(A) is connected with respect to the norm topology,

(iii) fS\J*(A) is contained in Un(A)0 and

(iv) SUL(Λ) contains [ U ^ ) , ^ ) ] Θ /„/„.

Proof, (i) It is clear that SU^(A) is a subgroup. If WG Un(A) and

υ = eihi . . . eihk e s u (yl) where τ(Σ x < y < * Λy ) = 0, we have

= eiuhλu* . . . eiuhku*^

Since τ(Σχ < 7 < yt uhjU*) = τ(Σχ <y < ^ * y ) = 0 it follows that wί w* is another

element of SU^(A), so SU*(A) is normal.

(ii)Let M G SUM

τ(i). Then there are hx - Λ̂ . e M w ( ^ ) s a with

τ(Σ L < y <^Λy) = 0 such that u = eihl - e'Λ*. The path wr = e ί 7 Λ l eithk

9

t G [0,1], is contained in SU*(A), is norm continuous and joins In to w.

So SUn

τ(^f) is connected.

(iii) Follows immediately from (ii).

(iv) Let w, v e Uπ(>4). According to Lemma (1.7) there are elements

Λi,..., hm e M 2 π (^ ί ) s a such that τ ( Σ 1 < ^ m A , ) = 0 and (wm/%*) θ /π =

e« Λi . . . e « V Thus (WTO*U*) φ /„ e SU2

T

w(^t).

The question of whether SU*(A) is closed in Un(A) arises naturally at

this point but it turns out not to be important for our purposes. A

discussion of this question may be found in Appendix B.

Observe that for all n > 1 the mapping in defined in (1) carries

SUJ(^4) into SUJ+1(i4). Therefore in passes to the quotient, giving a group

homomorphism, still denoted by in

* υn+1(A)/sυ;+1(A).

Each of these quotients are groups by (4.i).
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5. DEFINITION. We denote by K{{A) the inductive limit of the
sequence

If M G U w ( i) we use the symbol [ύ\[ to denote the class of u in

Given JC G A ^ ) , let w G N and w G UΛ(y4) be such that JC = [u]{
and put π(x) = [u]λ G A\(

6. PROPOSITION, (i) K[(A) is an abelian group.
(ii) 77 w we// defined and is a group homomorphism from Kl(A) to Kλ(A)

which moreover is surjective.
(iii) K{ is a coυariant functor from the category of traced unital C*

algebras with unital, trace preserving homomorphisms, to the category of
abelian groups, and π is a natural transformation of functors from K[ to Kv

Proof. The proof is essentially contained in (4). We simply observe
that (i) follows from (4.iv) while (ii) is a consequence of (4.iii) except for
the surjectivity which is trivial. We leave the proof of (iii) to the reader.

In our next step we consider the mapping

w h e r e w e v iew λ as a u n i t a r y l x l m a t r i x over A .

7. P R O P O S I T I O N . The sequence

0 -> exp(2πiτ(K0(A))) -> T^ K&A) ̂  Kλ(A) -> 0

is exact.

Proof. We already know that TΓ is onto. Clearly 77 j = 0. To prove
Ker(τ7) c Im(y) let u G Un(A), (n G N) be such that π([u]l) = [u]λ = 0.
So, for some m G N , w θ /m G U f l + m ( i ) 0 , and we can find elements
hl9..., hk e M n + m ( ^ ) s a such that u θ Im = eih* eιhκ Let λ =

^ λ G Γand

— pih\ . . . P

i h

eihkcxp -/(τ( Σ Λy)φOm+Λ_!
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which shows that [u Θ Im]{ = [λ Θ /m + «_1]1

T, or just that [u]{ = [λ][ =
y(λ), proving exactness at K{(A). Moving our attention now to T, let
t G 7(^0(^4)). We will prove that j(e2mt) = 0. Let n G N and let /?, # <E

be self adjoint projections with τ(p) — τ(q) = t. Note that
). But e2ϊr i* = e'2friq = In. Thus

; ( e 2 " " ) = [ e 2 v i t ] l = [e2««teo>-Λ]l = 0.

Conversely let λ G Γ be such that y(λ) = 0. We will prove that

λ G exp(27πτ(^ 0 (y4))) . Since j ( λ ) = 0, there will be an integer n>\ and

hl9..., A* G M / Z ( ^ ) s a such that τ ( Σ ! ^ y <Λ A,-) = 0 and λ θ In_ι =

eιh' eihk. Write λ - e2mθ for β e R , and note that

e2πi(θθ0n_1)e-ihk , . . e-ih1 = j

Using corollary (I.ό.iii) we have

that is, θ G τ(ίΓ0(i4)), proving that λ G exp(277/τ(i^0(^4))). This con-
cludes the proof.

As a consequence we have

8. COROLLARY. The sequence

0 -> T^Kl(A) ^Kλ(A) -> 0

is exact if and only if τ(K0(A)) c Z.

We thus arrive at an important point of our study. We will see that
the equivalent conditions of the corollary above will play a central role in
the theory of determinants. The following definition is intended to single
out the class of C* algebras to which we will direct our attention.

Unfortunately most von Neumann algebras will be ruled out. What
follows, especially Theorem 10, should explain the difficulty Fuglede and
Kadison [4] had in obtaining T valued determinants on von Neumann
algebras.

9. DEFINITION. Let (A, T) be a traced unital C* algebra. We say that
(A, T) is integral if τ(K0(A)) c Z.

See (VI.1) for a characterization of integral commutative C* algebras.
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10. THEOREM. Let {A, τ) be a traced unital C* algebra. Then A admits
a determinant associated with τ if and only if (A, τ) is integral. In this case
any determinant is continuous on Un(A) for all n G N. Moreover, given a
determinant det0 all other determinants are given by

det(iι) = deto(κ)φ([κ]i), Vw G \]{A)

where φ is a fixed group homomorphism from Kλ(A) into T.

Proof. Suppose (A9τ) admits a determinant, denoted by det. Let
p G Mn(A) be a self adjoint projection. Then e2wip = In so det(e2mp) =
det( J J = 1. Equivalently e2iΓI'τ(/?) = 1, which implies that τ(p) G Z, and
thus proves (̂ 4, T) to be integral.

Conversely assume that (A9 T) is integral. By (8) the sequence

is exact. Because T is an injective group in the category of abelian groups
[19, p. 184], the exact sequence above splits.

So let Δ: K{(A) -> T be a group homomorphism satisfying Δ y* =
idΓ. Define det: U(^4) -> Γ by the formula

det(ιι) = Δ([w]I) for we U ( ^ ) .

We claim that det is a determinant associated with T. In fact let h e

a. Set ϋ = β/A and λ = eiτ{h) e Γ. Then

(λ Θ V J I Γ 1 = e

Therefore [λ]J = [λ Θ ^ . J J = [ϋ]f. It follows that

In other words det(e'Λ) = e/τ(A). This proves that det is in fact a determi-
nant for A associated with T.

To prove that any given determinant det is continuous we must prove
that it is continuous on Un(A) for all n e N.

The formula det(e/A) = eiτW can be expressed on a neighborhood of
the identity matrix by det(w) = eτ{log{u)) as long as log is well defined. This
proves that det is continuous on a neighborhood of the identity of Un(A).
Since det is a group homomorphism this proves it to be continuous on all
oΐυn(A).

Given two determinants det0 and det let g be defined on U(^4) by
g(u) = det(w)deto(w)~1. Clearly g is a group homomorphism into T. If
u G \]{A)Q there will be some n G N and hv...,hk G Mn(A)sa such that
u G UM(v4)0 and w = e/Λl eιhk. By a simple computation one has
g(u) = 1. Thus g factors through U(^4)/U(^4)O and this is precisely
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KX(A). If φiK^A) -> T is defined by φ([u]x) = g(u) for all u
we have

det(«) = deto(W)φ([t/]1) Vw e

On the other hand if φ: J Γ ^ ) -» Γ is any group homomorphism and
det0 is a determinant, the map

is a determinant for (A, T) since for all n e N and A e M B ( i ) we have

Φ(W\) = Φ(0) = 1.

11. Note. The notion of determinant exposed in [6] is closely related
to what we did above, the main difference being that our determinant is
defined in the whole of U(A) while theirs is defined only on U(^4)o. We
shall see in what follows the consequences of having a determinant
defined on all of U(A).

III. INVARIANT DETERMINANTS

In the last section we developed a theory of determinants for C*
algebras and gave a characterization of those traced unital C* algebras
admitting a determinant. Here we shall study determinants on C* alge-
bras where a group action is given. Throughout this section (A,τ) will
denote a fixed traced unital C* algebra which we will assume to be
integral.

We shall denote by Aut(A, T) the group of trace preserving automor-
phisms of A.

Given a subgroup G of Aut(^l, r), we consider the problem of finding
a G-invariant determinant. That is, a determinant det satisfying det(α(w))
= det(w) for all u^lJ(A) and a e G.

As a preliminary result we have:

1. PROPOSITION. / / « G U ( ^ ) 0 and det is any determinant for (A9τ)
then det(α(w)) = det(w) for any trace preserving automorphism a of A.

Proof. Since u e U(^4)o we may find n e N such that u e Un(A)0.
Therefore there will be hv...,hk<= Mn(A) such that u = eihί eihk.
We then have, for any a e Aut(^t, T)

det(α(κ)) = det(^/α(Λ^ eiβ(Λ*>)

. . . eiτ(a(hk)) _ eiτ(hγ) . . . eir(hk)
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This is evidence that the problem to be studied here is related to the
possible values of a determinant outside U(A)0, and so it would be
meaningless if one defined the determinant only on U(A)0 as it is done in
[6].

Let G be a subgroup of Aut(^4, T). There is a natural action of G on
KX{A) given by

as well as on the Pontryagin dual KX(A) of KX(A) (with discrete topology).

The action on Kλ(A) is defined by

for all a G G, φ G ζ ( Λ ) and JC G

2. DEFINITION. Let det be a determinant for (A,τ) and let G be a
subgroup of Aut(^4, T). We denote by ξ the mapping

given by ξ(^)(Mι) = detία"1^*)!*) for all α G G and tι G
In case we need to make clear which group of automorphisms and

which determinant we are using in the definition of ξ, we will use the
notation f£t.

The next proposition will show that our definition carries no ambigu-
ity.

3. PROPOSITION. Given det and G as above
(i) ζ(a) indeed belongs to KX(A) for all a £ (5,

(ii) I satisfies the 1-cocyle identity ξ(aβ) = a(ξ(β)) + ξ(a) Vα, β G G
and

(iii) // det7 is another determinant for {A, T) with associated 1-cocycle ζ\
then I' — ζ is a coboundary in the sense that there is φ G Kλ(A) such that

Proof. In order to prove (i) we need to verify the following statements
for all w, υ G U(A) and a G G:

(a) If [M]X = [ϋ]υ ^ ^
(b) d e t ί α " 1 ^ ^ ) *

From (a) it will follow that ξ(a) is a well-defined map from Kλ(A) to T,
and (b) will show it to be a homomoφhism.
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Assume that u, v e Un(A) (n e N) and suppose that hv...,hk are

elements in Mn(A)S3ί satisfying u = υeιhχ eihk. Then

" 1 ^ * ) " ) = det(έΓiβ~1(Λ*> e - 1 ' " " 1 ^ - 1 ^ * ) ^ 1 " * 1 έ?'Λ*)

This proves (a).

As an immediate consequence of the fact that det is a homomorphism
taking values in a commutative group we get (b).

In order to prove (ii) let a,β G G. For all [u]τ G KX(A) we have

proving (ii).
Finally we prove (ϋi). Let φ: ^(^4) -> Γ be defined by Φ([w]χ) =

det^w) det(w*) for all u G U(^4). We claim that φ is well defined. In fact
if Ϊ E U(A) and [ϋ]1 = [w]1? then there will be some integer n and
hl9... ,hk G M r t (^) s a such that w, ϋ G U Λ ( Λ ) and w = ϋe/Al eih". So

det/(w)det(t/*) =

= det/(ϋ)det(ϋ*).

The fact that φ is multiplicative follows from the multiplicativity of
determinants. Therefore for all a G G and u ^ U(A)

- f )(«)([«]i) ί t

α-^wJJdetία-Hw*)) (det'(M)det(w*))"1

This completes the proof.

We may now give the following

4. DEFINITION. The class of ζgt in # \ G , £ ^ ( 7 ) ) is denoted by
and is called the G-invariant determinant obstruction.
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Observe that by (3.iii) ζ(G) does not depend on the determinant used
in its definition.

Before we state the main result of this section, we study how ξ(G)
changes with G.

5. PROPOSITION. // Gλ c G2 c Aut(^4,τ) then ζ(Gλ) is the image of
ζ(G2) under the restriction homomorphism:

Proof. Let det be any determinant for (A9τ). It is enough to prove
that ξfy is the restriction of f £2

t to Gλ and this is obvious.

We thus see that for any G c Aut(^4,τ) ζ(G) is the "restriction" of
f(Aut(Λl,τ)) to G. It is remarkable that for any integral algebra (A,τ)
the process above singles out in a canonical way an element in

T
The following is the main result of this chapter. It justifies the name

given to the G-invariant determinant obstruction.

6. THEOREM. Let (A, τ) be an integral unital C* algebra and let G be a
group of trace preserving automorphisms of A. The following are equivalent:

(i) (A9 T) admits a G-invariant determinant.

Proof. Assume (i) and thus let det be a G-invariant determinant. It is
clear that f£ t = 0 and thus ζ(G) = 0. Conversely let det be any determi-
nant for (A9 T). If ξ(G) = (Πhen f£ t, which we denote simply by ζ, is a
coboundary. Pick φ e KX(A) such that f(α) = a(φ) - φ for all a e G
and define d e t ' r U ^ ) -* T by det'O) = άQi{u)φ{[u]x). It is clear that
det' is a determinant for (A9 T). Moreover, for any a e G and u e \J(A)

det{a-\u*)u) = ξ(a)([uW - φ{«ϊ1(l''
Equivalently

which proves that det' is G-invariant.

7. PROPOSITION. // det0 is a G-invariant determinant for (A9τ) then
any other G-invariant determinant det is of the form

det(w) = deto(w)φ([w]1), Vw

where φ ^ Kλ{A) is G-invariant.
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Proof. By (11.10) we know that any (not necessarily G-invariant)
determinant det is of the form

det(n) = det o ( W )φ(Mi), Vw e υ(A)

where φ e KX{A). For α e G w e have

φ(« (Mi)) = det(α(w))deto(ι/)'1

from what we see that det is G-invariant if and only if φ is G-invariant.

IV. ROTATION NUMBERS

If a is any orientation preserving homeomorphism of the circle it is
possible to define as in [8, 16] its rotation number. In this chapter we
generalize this notion to automorphisms of integral C* algebras. Special-
izing this concept for commutative algebras we obtain a notion of rotation
numbers for homeomorphisms of any compact connected topological
space with an invariant probability measure (see Chapter VI).

We should note that what we do here is somewhat related to the mass
flow homomorphism introduced by Schwartzman in [22].

The concept of rotation number applies only to integral algebras.
With this in mind we let (A, τ) be a unital integral C* algebra, considered
fixed throughout this chapter. We also fix a trace-preserving automor-
phism of A, denoted by a.

1. DEFINITION. The rotation number map of a with respect to the
trace τ is the group homomorphism

defined as follows. Its domain Kx(A)a is the subgroup of fixed points for
the action of a on KX(A), i.e.

For each x e Kx(A)a we put

where u e \J(A) is such that [u\x = x and det is a determinant for A.
The next proposition shows there is no ambiguity in our definition.

2. PROPOSITION. The rotation number map

(i) i5 well defined,

(ii) i5 a group homomorphism and

(iii) does not depend on the determinant used in its definition.
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Proof, (i) and (ii) follow from (a) and (b) in the proof of (III.3) by
simply replacing a by a~ι. In order to verify (iii) let det' be another
determinant and u G U(A) be such that [u]λ G KY{A)a. By (11.10)

det'(α(tι*)κ) =

for some φ G ̂ (^4) but since [a(u*)u]λ = 0 the result follows.
We should note that although the rotation number map has some

similarities with the map ξ defined in the previous section, it will play a
very different role in what follows.

A natural question to ask is how the rotation number map of the
composition of two automoφhisms behaves with respect to each of the
factors. The answer to this question is proved in the next

3. PROPOSITION. Let a and β be trace-preserving automorphisms of the
unital integral C* algebra (A, τ) and let γ = aβ. Denote by K1(A)a^ the
intersection ofK^A)" andKx(Aγ. Then Kx(A)a^ c Kλ(Ay and

The multiplication above is to be understoodpointwise.

Proof. It is clear that Kλ{A)a>β c Kx{Ay. If x e K^A)^ let u
U(A) be such that [u}λ = x. If det is a determinant for (A9 T) we have

pT

Ύ(x) = det(γ(M*)u) = det(a(β(u*))a(u)a(u*)u)

= det(a(β(u*)u)) det(a(u*)u).

Now note that β(u*)u = eihι eihk for some Λ l9..., ΛΛ G Mn{A)S

and some n G N. It follows that

det(α(j8(κ*)κ)) = deX(eia™ e

Thus

P ;(x) = det(i8(iι*)i/)det(α(iι )iι) = pτ

a(x)pτ

β(x).

As a consequence we get

4. COROLLARY. // a is a trace-preserving automorphism of (A,r) and
n > 1 is an integral number, we have

= (p«)n
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Concluding this section we give a few examples in which one can
effectively compute rotation numbers. This should show that the compu-
tations involved are quite easy once we have a good description of the
algebra, its trace and the given automorphism.

5. EXAMPLE. (Rotations on the circle.) Let A = C(Γ), the algebra of
continuous complex valued functions on the circle. The normalized Haar
measure on T defines via integration a trace on A:

r(f)= ί f(z)dz, feA.
JT

Let θ be a real number and define the "rotation by θ " automorphism
of A by a(f)(z)=f{e-iθz) for all / e C(Γ), z e T.

It is easy to show that (A,τ) is integral (see (VI.l)) and that a is
trace-preserving. We compute the rotation number map of a with respect
to T. First of all observe that α* = id on Kλ{A) because a is homotopic
to the identity on A so that

where z is the unitary in A representing the inclusion map of T into C.
We have a(z*)z = eiθ

9 so that pKlz]^ = άet(eiθ) = eiθ. Conse-
quently pr

a{[zn\) = einθ V/i e Z.

6. EXAMPLE. (Translations on the 2-torus.) Let A = C(T2)y let r be
the trace associated to the Haar measure on T2 and let

a(f)(z,w)=f(e-iΦz,e-i+w)9 V / G C ( Γ 2 ) , (Z,W) e Γ

where ^ and φ are fixed real numbers. Again it is easy to prove that (A9τ)
is integral and a is trace-preserving. As before a* = id on KX(A) so that

Kτ(A)a = Kλ{A) = {\znwm\x\n,m G Z } = Z 2

where z and w represent the two canonical coordinate functions on the
2-torus.

We have α(z*)z = e/β while α(w*)w = e iφ. Therefore PKU]^ = eiθ

and p fliv]!) = eiφ. It follows that ρτ

a is the map

7. EXAMPLE (Twist of the annulus.) Let X be the annulus,

X = { Z G C : 1 < | z | < 2 }

and A = C( AT). The Lebesgue measure of X is 3π so that

V/e ^
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is a normalized trace on A which makes (A, τ) integral. Let θ: [1,2] -» R
be any continuous function and define the 0-twist to be the automorphism
of A given by

Integration with polar coordinates shows that α leaves τ-invariant.
Since « is homotopic to the identity we have, as in the examples above,
α* = id and

1() 1 ( ) { [ ] 1 }

where u is the unitary in A given by u{z) = z|z| - 1. We have

(o(u )«)(z) = eiβ^\
So

To make it more concrete assume θ(r) = 2πr. Then

Jχ

f Θ(r)rdrdθ = 2π [2 2πr2dr = 4π2^

Thus pldu]^ = e / > ( 2 8 / 9 ). Whence p^tw^i) = e

i7τ(2*H/9\

V. CROSSED PRODUCTS

We devote this chapter to the study of the range of the trace on Ko

groups of crossed product algebras by Z.
As we shall see, this problem is deeply related to the theory of

rotation numbers described in Chapter IV. In fact it was our interest in
crossed product algebras and their traces which led us to the definition of
rotation numbers.

We begin by briefly defining crossed product algebras. We refer the
reader to [12] for an extensive treatment on that subject.

Given a unital C* algebra A and an action a of Z on A, the crossed
product algebra is a C* algebra denoted by A Xa Z, or simply by A X Z
if the action is understood, which is generated by a copy of A and a
unitary L satisfying the following conditions

(a) For all a^A and « E Z w e have LnaL~n e A and LnaL~n =
an(a).

(b) It is universal with this propery, i.e. given any C* algebra B
containing A and a unitary L' satisfying (a) there is a unique * -homo-
morphism φ: A X Z -> B such that φ(a) = a for any a ^ A and φ(L)
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It follows that the subset of A X Z given by

nL":an^AMn&Z, £ | | β J < 00
«eZ

is a dense *-subalgebra.
If T is a trace on A which is invariant under the action α, the formula

τ(ΣnGZ

an^n) = τ(ao) defines a trace on the dense subalgebra mentioned
above. One can prove that f is bounded so it extends to the whole of
A X Z giving a trace which we shall denote also by r as no confusion will
arise. This extended trace is sometimes called the dual trace.

An important tool which we shall use is the Pimsner-Voiculescu exact
sequence for X-theory of crossed product algebras by Z [14]. Given a C*
algebra A and an action a of Z on A as above, it asserts that there is an
exact sequence

1.

exp f

KX(A XaZ) ±

Among all the maps involved, the most important one for our
purposes is the right hand side vertical map indicated by θ.

When doing computations involving 3 we will make use of a result of
Paschke [11] proving that the K-theory of a crossed product algebra by Z
is isomorphic to the i^-theory of the mapping torus with a shift in the
grading index. Paschke's result will turn out to be our main tool, so we
briefly describe it.

Let A be a unital C* algebra and a be an automorphism of A. We
thus get an action of Z on A by taking powers of a. Note that all actions
of Z on A are of this form.

2. DEFINITION. The mapping torus of the pair (A, a) is the C*
algebra Ta(A) consisting of all A valued continuous functions / on the
interval [0,1] satisfying /(I) = α(/(0)).

3. THEOREM {W. Paschke [11], A, Connes [1].) There are isomorphisms
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It is kx which will be most useful in our study. Unfortunately the

formula for kλ in [11] is too cumbersome. Our technique will be to make

use of a sort of "suspension" argument which will enable us to use k0

instead of kv A description of k0 is in order (see [11]).

4. Description of k0. Let n e N, n > 1, and let p e Mn(Ta(A)) be

a self adjoint projection. We may view p as a continuous function

p:[0,1] -» Mn(A) such that p(t) is a self adjoint projection for all

t e [0,1] and p(l) = a(p(0)). According to [11] there is a continuous

path of unitaries, {w(t):0 < t < l}9 such that w(0) = 1, p(t) =

H > ( / ) / ? ( 0 ) W ( 0 * for all / in [0,1], (L Θ In)*w(ΐ) commutes with p(0) and

we have

ko{[p]o) =

In the following we explain how our "suspension" argument works.

Consider the pair (A ® C(T), a ® 1) and recall that

) and

Γ α β l ( ^ ® C(T)) = Γ u (^) ® C ( Γ ) .

Using the identifications above we arrive at a description of kλ in

terms of A:o. Consider the diagram

5.

c{τ)) ^ K.dA ® z)

ind "f J, 7τ

î x z)

where 77 is the projection corresponding to the natural decomposition

KX((A X Z) 0 C(T)) ^ K0(A X Z) Θ KX{A X Z)

and ind is the inclusion corresponding to the natural decomposition.

K0(Ta(A) ® C(T)) = ^ (

This diagram is commutative because it actually defines kx in [11].

Although an explicit formula for kx is provided in [11] we shall avoid

it and use (5) together with the formula for k0 described in (4) whenever

we need to compute kv We believe that this procedure will make things

clearer than a direct use of the formula for kx as given in [11].
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Let us pause for a moment to give a concrete formula for ind.

6. Description of ind. (See [1].) For any unital C* algebra B the map

ind K^B)-* K0(B® C(T))

may be defined as follows: for u e Un(B)

indQwlxH [p]o-[Po]o

where /?, p0 e M2n(B <S> C(Γ)) are self adjoint projections given by

f,W-[J and

Vs

where

Γcos(*/4)/n -sin(,/4)/J f

^ V * ) = - / ,Λ\T ί /Λ\τ \ V ^ G

or any other path of unitaries joining [£ J ] to [J ~QΛ ].
The following result, which is implicitly in [11], relates kx to 3 and

will be helpful when computations involving θ are performed.
Let val: Ta(A) -*Abe defined by val(/) = /(0) for all / e Ta(A).

7. THEOREM. (Paschke.) The following diagram is commutative.

val* ^ I 8

Kλ(A)

This concludes our preparations. We may now start the main argu-
ment.

Our first major step will be the computation of T kv Putting
together (1.5) and (5) we get the following commuting diagram

C(T)) % Kλ((A X Z) ® C(T)) Λ R

indt Iff / T

^ A : 0 ( ^ x z)
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so that T kλ = γ k0 ind. We use the right hand side to perform our
computations. This will be accomplished step by step in two lemmas.

8. Note. The algebra Ta(A) <8> C(T) will be identified with the subal-
gebra of C([0,1] X [0, 2<π\ A) formed by those elements x satisfying

x(ί,0) = x(t,2ir) Mt G [0,1]

x(l,s) = a(x(0,s)) VίG [0,2τr].

9. LEMMA. Letp = p(t, s) be a self adjoint projection in Ta(A) Θ C(Γ).

4̂/50 let w:[0,1] -> 4̂ Θ C(7") Z)β α continuous path of unitaries satisfy-

ing w(0) = 1 and p(t, •) = w(t)p(0, -)w(t)*. With the notation

w(t, s) := w(t)(s) the conditions above are equivalent to

w(0,s) = l, 0 < s < 2π

p(ΐ9s) = w(t,s)p(09s)w(t,s)*, 0 <s <2π,0 <t <1.

Assume that s -> w(l, 5) and 5 -> p(0, s) are C0 0 maps. Then

Proof. Let v e (v4 x Z) ® C(Γ) be given by

U(J) = L*w(l, 5)77(0, j) + l -

By definition (see (4)) [v^ = ko([p]o) and we have

Therefore

(0tS)(lp{0,s))
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Applying T, we have

+ τ(LMl,*)|f(0,ί)(l-/>(0,5)))

Note that the second and last terms above vanish because τ(L*α) =
τ(aL) = 0 for all a e A. Also observe that differentiating the expression
/?(0, s)2 = p(0, s) with respect to s we obtain

| f (0,5)1,(0,5) |f (0,5) = |f (0,5).

It follows that

from which we see that the third and fourth terms above cancel each
other, and we are left with

If we now use the definition of γ as in (1.4) we get the conclusion.

10. LEMMA. Let u e Ta(A). For all (ί, J ) e [0,1] X [0,2ττ] put

0
U

where R(s) is as in (6).
Let p(t, s) = Q(t, s)[l g]Ω(ί, s)* and

w(t,s) = Q(t,s)
u(st/2π)*u(0)

0

0

u(st/2π)u(0Y
0(0,5)'

for all (/, J ) e [0,1] X [0,2ττ].

( ) ( , ) 2 M
(ii) w(0, •) = [\ ?],

(iii) [0,1] X [0,2ττ].
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Proof. We verify (i) by proving that w(t, 0) = w(t, 2π) for all t e [0,1].

We have

u(0) 0

0 1

u{t)*u(0) 0
0 1.

While

w(t,2π) = Ω(r,

1 0

0 u(tY

)*w(0) 0

0 u(t)u(0)*

u{t)*u(0) 0

0 u(t)u(0Y

1 0

0 M(0)

u(t)*u(0) 0

0 1.

To prove (ii) we simply compute:

Another computation gives (iii):

0
Ω(0,J)*Ω(0,J)

1 0
0 0

•Ω(0,s)*Ω(0,s)
u(0)*u(st/2ir)

0

The following completes our computation of T kx.

11. THEOREM. Let n e N, n > 1 and let u e UΛ(ΓΛ(^)). Viewing u as

a function u: [0,1] -> \Jn(A), assume that u is C0 0.
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Proof. We already know that

τ(*i(Mi)) = ϊ (*oM([«] i)))

By replacing A by Mn{A) we may assume that n = 1. Let p, p0 s
M2(Ta(A) ® C(Γ)) be given by

p(t9s) ~ and

where Ω,(t, s) is defined in terms of u as in (10). By (6)

[/>o]o τ h u s

= [p]0 —

We use Lemma (9) to compute the right hand side. With respect to p0

note that if wo(ί, 5) = ft ?] for all (ί? 5) e [0,1] X [0,2τr] then w0 satisfies
the hypothesis of (9). We then conclude that y(ko([po]o)) = 0. As for p,
let w = w(t, s) be as in (10). It satisfies the hypothesis of (9) with respect
to p so we have

The integrand equals

Let us first compute /?(0, s) w(l, 5)*. We have

- 0(0,5) J
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= τ{
3Ω u(s/2iτ)*u(0) 0

0 u(s/2π)u(0)*

u'(s/2π)*u(0)

o u'(s/:

u(s/2π)*u(0)

0

0

,sY

0
ol/

We now observe that since u e Γα(^) we have M(1) = α(w(0)). There-

fore

0 1

Thus
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So

= (l/2ττ)τ u'(s/2π)*u(s/2π) θ

0 O

= (l/2»)τ(u'(,/2») u(ί/2ir)) + f τ([ J

= (l/2π)r(u'(s/ϊir)*u(s/2π)).

The computation above gives us

and, after the change of variables s = 2mt we have

The proof is now complete.

In our next result we make full use of the technical facts developed in
this chapter, condensing everything into a simple commuting square.

12. THEOREM. Let (A, τ) be an integral unital C* algebra and a be a
trace-preserving automorphism of A. The following diagram is commutative

K0(A XaZ) Λ R

KΛAY -> T

where π denotes the map ί E R - > elmt £ T.

Proof. First observe that by exactness of the diagram in (1) the range
of 3 is precisely Kx(A)a. Next note that for x e K0(A X Z) we have
τr(τ(x)) = 1 whenever 3(JC) = 0. In fact, if 3(JC) = 0 then x is in the
image of the map

KQ(A) -> K0(A X Z)
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(see (1)), and it follows that τ(x) e τ(K0(A)) = Z, so π(τ(») = 1.

Therefore the formula

p'(9(x)) = e2mτ(Λ>

defines a map p': K^A)" -> Γ making the diagram below commutative.

K0(A XZ) ^ R

3i I*

Kx(A)a - Γ
p'

Our proof will be complete once we prove that p' = pτ

a.

Let Λ: G ̂ ( Λ ) " and pick « G N and w G Un(A) such that x = [u]v

From α^(x) = x it follows that there is m > n and elements hl9...,hk G

M m (^4) s a such that

(ua(u)*) θ / m _ n = eihl ••• ^/Λ*.

Replacing 4̂ by Mm(A), we may assume that m = n = 1 and

ua(u)* = e fAl e''Λ*.

Define ίi(/) = e~r//" e~tkχu, and notice that ύ(0) = w and ύ(l) = α(w).

Thus w represents a unitary element in Ta(A) whose image under 'vaΓ is

u.

At this moment we need to recall (7) in order to write the following

commuting diagram

Kx{Ta{A)) ^ KO(AXZ) Λ R

val* Ni 9 I I π

Kλ(A)a £ T

We have p'(x) = p'ίvaljflδh)) = ^{k^u]^)) and if we use the
formula for r kλ given in (11) we get
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If we now fix a determinant det for (A, T) we get

p'(x) = explirί Σ Λ y) | = det(έ?/Λι eihk)

= det(wα(tt*)) = det(α(tt*)w) = p£(x).

Recall that by (IV.2.iii) the rotation number map is independent of

the choice of a determinant. This completes the proof.

We close this chapter with a result that summarizes most of our work

from this and the previous chapters.

13. THEOREM. Let (A9τ) be an integral unital C* algebra and let a be

a trace-preserving automorphism of A. The following are equivalent:

(i) ρT

a is the trivial homomorphism.

(ii) A XaZ is integral with respect to the dual trace.

(iii) // (a) denotes the subgroup of Aut(A, r) generated by a then the

(a)-invariant determinant obstruction vanishes, i.e. ζ{(a)) = 0.

(iv) A admits an a-invariant determinant.

Proof, (i) -> (ii) By (12) we have TΓ τ = ρT

a 9 = 1 so for any x G

K0(A X Z) we have e2πiτ(x) = 1. Thus τ(x) e Z.

(ii) -> (iv) Let det be a determinant for A X Z. By restriction we get a

determinant for A and if u e Un(A) for some « G N w e have

= det(L β /Jdet(w)det(L ® / J " 1 = det(w).

(iv) -> (i) Let det be an α-invariant determinant for A. Given x =

whence (i).

(iii) <-> (iv) This is precisely Theorem (III.6).

VI. COMMUTATIVE C * ALGEBRAS

In this chapter we specialize the theory developed so far to commuta-

tive algebras. We have tried to make it as self contained as possible since

all concepts involved are fairly elementary and do not require much of

what was done up to now. We give an alternative definition of rotation
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number and exploit its relationship with the previously defined one. This
will also be used in our applications, namely the ones involving commuta-
tive algebras.

Let X be a compact Hausdorff space and consider the algebra C( X).
Given a (not necessarily positive) regular Borel measure μ on X with
μ( X) = 1, the formula

defines a trace on C(X). It is well known that any traced unital commuta-
tive C* algebra is of the form (C( X), τμ) for some X and μ as above. In
our next proposition we characterize the integral ones.

1. PROPOSITION. Given X and μ as above a necessary and sufficient
condition for (C( X), T ) to be integral is that for any subset C c X which is
both open and closed, one must have μ{C) e Z.

Proof. (Sufficiency) Suppose p = (pu) e Mn(C(X)) is a self adjoint
projection. Then

rμ(p) = Σ τμ{Pii) = Σ / Pu(x) dμ(x)

= / tτ(p(x))dμ(x).Jx

Let for every k = 0,1,..., n

Clearly {Ck: 0 < k < n) is a partition of X in open-closed sets. It follows
that

φ)= Σ / kdμ(x)= Σ MQ)eZ
0<k<n Q 0<k<n

thus proving (C(X), τμ) to be integral.

(Necessity) Given that (C(X), τμ) is integral, let C c X be an open-
closed subset. Let p: X -> C be the characteristic function of C. Then /?
is a self adjoint projection in C( X) and by our hypothesis

Of course it follows that for any compact connected space X and for
every probability measure μ on X, the pair (C(X)9τμ) is an integral
algebra. In what follows we will assume this is the case. We therefore fix a
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compact connected space X and a probability measure μ on X for the rest
of this chapter.

2. DEFINITION. We will denote by [X, T] the group of homotopy
classes of continuous mappings from X to T with the group operation
given by pointwise multiplication.

Any homeomorphism a: X -* X induces a group automorphism
α # : [X, T] -> [X, T] by the formula α#[w] = [u a~ι] where [u] indicates
the homotopy class of u in [X, T] for any continuous u: X -> T.

It is routine to verify that [X, T] is an abelian group and that α # is an
automorphism.

Let a: X -> X be a homeomorphism which moreover fixes μ, i.e.
μ(a(E)) = μ(E) for all Borel subsets E of X Denote by [X,T]a the
subgroup of [X, T] formed by the fixed points of α # i.e.

Let u: X -» Γ be continuous and assume [w] e [X, Γ]α. That is to
say that

It follows that the mapping x -> u{a~ι{x))~λu{x) is homotopic to a
constant, and thus liftable to the universal cover of T. Equivalently there
is a continuous function h: X -» R such that

uia^ix^uix) = eih(x) Vx e X

3. DEFINITION. We will denote by R^(u) or simply by Ra(u) the
number

4. LEMMA. Given u and v in [X, T]a

(i) Ra( u) does not depend on the lifting h,
(ii) Ra(uv) = Ra(u)Ra(v)

Proof, (i) Assume hλ and h2 are continuous functions from X to R
and

u(a-ι(x))~1u(x) = e/Ai(jc) = e / Λ 2 ( x ) Vx
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Then for all x in X hλ(x) - h2(x) G 2ττZ. Since X is assumed to be

connected and hλ(x) — h2(x) is a continuous function of x, there will be

an integer n such that hλ(x) — h2(x) = 2πn for all x in X Therefore

exp i I hλ(x) dμ(x)\ = exp i f (h2{x) 4- 2πn) dμ(x)
\ Jx I \ Jx

= exp [if h2{x) dμ(x)\

proving (i).

(ii) Let h and k be continuous functions from X to R satisfying

u{a-ι(x))~ιu(x) = eίΛ<Λ> and

So

Therefore we have

( φ ) + k(x)) dμ(x)

= exp i / h(x) dμ(x) exp / / k(x) dμ(x)
\ J Y J \ J Y
\ Λ ] \ Λ

= Ra(u)Ra(υ).

(iii) Let w = uυ'1. Then u = wυ so Ra(u) = Ra(w)Ra(υ) and it is

enough to prove that Ra(w) = 1. Since [u] = [v] by hypothesis, it follows

that [w] = 0. So w is homotopic to a constant which implies that

w\x) — e vx tz A

for some continuous function /: X -> R. We then have

a Hx)) w(x) = e i / ( α (χ»e"W = β'(/w /(« w»

thus

because μ is invariant under α. The proof is now complete.
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In view of this last result we may give the following

5. DEFINITION. The (commutative) rotation number map of a with
respect to μ is the group homomorphism

Ra:[X,T]a^T

defined by Ra([u]) = Ra(u) for all [u] in [X, T]a. If we need to make the
measure μ explicit we will use the notation i?£.

In order to set the technical tools to relate Ra to our previous
definition of rotation number, we introduce some extra notation.

6. DEFINITION. Given a commutative unital C * algebra A we denote
by Tn and Detw the maps from Mn(A) to A defined for every n X n
matrix a = (aiJ)ι<iJ<n by

Tn(a)= Σ au and

DetΛ(έi) = Σ sgn(σ) Π *, ,σ<«)
σ l<i<n

where the sum is over all permutations σ of n elements.

7. LEMMA. For all h in Mn(A) we have

Detn(eΛ) = eτ^h\

Proof. Represent A as C(Y) for some space Y. Then

Όetn(eh)(y) = det(eA('>) = e*hW = e (Γ« (Λ)(^ = eτ^\y) Vjμ

8. DEFINITION. We denote by Det* the mapping

defined by ΌtlJiu]^ = [DetΛ(w)] for all u in Vn(C(X)).

9. PROPOSITION. Det* is well defined and is a group homomorphism.

Proof. If u is in Un(C(X)) and m > n it is clear that Detw(w) =
Det jw Θ Im_n).

If { wf: 0 < t < 1} is a continuous path in Un(C( AT)) then Det^O,) is
a homotopy between Detπ(w0) and O^Xn{u^) so [Detn(w0)] = [Detn(Mx)]
proving that Det* is well defined. The formula Όεtn(uυ) =
Όetn(u)Όctn(v) is easily verified for all u and v in Un(C(X)) and proves
that Det* is a group homomorphism.
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10. PROPOSITION. // a is any homeomorphism of Xandz e Kλ(C{X))

then

Όet*(a*(z)) = α#(Det*(z)).

In other words Det* is coυariant under the action of homeomorphisms of X.

Proof. If u is a unitary n X n matrix over C(X) and z = [u]λ then

Det*( α^z)) = [Detn(a(tt))] = [ a ( D e t » ) ] = a#(Det*(z)).

We are now ready to state the main result of this chapter relating the

notion of commutative rotation number to the one defined in Chapter IV.

11. THEOREM. Let X be a compact connected topological space, let a be

a homeomorphism of X and let μ be an invariant probability measure. The

following diagram is commutative.

Det, 4 /"

[x,τ]a

Proof. First note that Det* is indeed a map between the indicated

groups by (10). Let [u\ e Kλ{C{X))a where u e \Jn(C(X)). Replacing n

by a suitable m > n and u by u Θ Im_n we may assume that there are

h l 9 . . . 9 h r i n M m ( C ( X ) ) s u c h t h a t a ( u * ) u = eιh* ••• e l 7 \ W e s i m p l y

compute pj([wli) a n ( i ^«(Det^([ι/]1)) to check they agree. Before comput-

ing the latter we must write α(Detm(w))"1Detm(w) as an exponential. We

have

(W) = Όetm(a(u*)u)

- eιh') = eiT»™ elT-<Λ-> = exp(/Tm( Σ hk

\ ^l<k<r

Thus according to (5) we have

u],)) = Λ£([Detw(«)]) = R^Όst m(u))

= exp(// Tm( Σ hk)(x)dμ(x)\.
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To compute ρ£([wli) let detτ be a determinant associated with τμ as
in (II). So

P H M I ) = dctΎμ(a(u*)u) = detTμ(e^ - eih-)

*'} = exp ίιτμ | £ h

Σ hk)(x)dμ(x)

completing the proof.

= exp(z/ Tm[

One of the interesting features of our last result is the fact that pj
factors through [X, T]a. Based on this we obtain the following generaliza-
tion of Corollary (3) of [1].

12. COROLLARY. Let X, a and μ be as above and assume that the first
Cech cohomology group Hι{ X, Z) is zero. Then

(i) pj is the trivial homomorphism,
(ii) the crossed product algebra C(X) XaZ is integral with respect to

its natural trace and
(iii) (C( X), τμ) admits an a-invariant determinant.

Proof. Following [23, pp. 323 ff.] one may prove that [X, Γ] =
H\ X, Z) = 0. The result then follows from (11) and (V.13).

VII. ALMOST PERIODIC AUTOMORPHISMS

With this chapter we start a sequence of applications of the theory
developed above, especially Theorems (V.12) and (V.13) which in a way
summarize the main ideas exposed up to now. Our goal will be to give
examples for which (V.12) or (V.13) can be applied giving new informa-
tion in a more or less concrete setting.

For our first application we consider almost periodic automorphisms
of integral algebras. In one of our results we shall give sufficient condi-
tions for the crossed product by Z to be integral.

In order to fix the objects to be studied here we let A be a unital C*
algebra and a be a *-automorphism of A.

1. DEFINITION. We say that a is almost periodic if for every a in A its
orbit is relatively compact in the norm topology. In other words the set
{an(a): « e Z ) must have compact closure for all a in A.
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2. LEMMA. // a is an almost periodic automorphism of A then
(i) id ® a is an almost periodic automorphism of Mn(A) for all n G N

and
(ii) for every a in A, n G N and ε > 0 //zere is m > n such that

\\am(a) — a\\ < ε. Roughly speaking, the orbit of any a in A comes close to
a infinitely often.

Proof. The first statement is obvious. As for (ii) let B be the open ball
centered at a with radius ε. We clearly have

[an{a)\ « G Z } C U an(B)

and if we observe that the distance between the set {an(a): n G Z} and
the complement oί{Jn<=za

n(B)is greater than ε we see that

{an(a): n G Z} c | J an(B).
«eZ

By compactness there is a finite set F of integers such that

[an(a): n G Z} c | J α

For some /: G F we must therefore have ||α"(tf) - α*(fl)|| < ε for in-
finitely many integers n. The conclusion now follows by taking m = n — k
or m = k — n, whichever is positive, for a suitable n.

Let us now introduce the notion of fixed point for an automorphism
of a C* algebra.

3. DEFINITION. Let φ be a *-homomorphism of A into the complex
numbers. We say that φ is a fixed point for a if φ a = φ.

We should observe that the expression "fixed point"refers to the action
of a on the set of complex homomorphisms of A rather than the action on
A itself.

Note also that since many C* algebras have no complex homomor-
phisms at all, our definition has a limited range of applications. But if A is
commutative, say A = C(X) for some compact space X, and if a is
induced by a homeomorphism β of X, then the notion above corresponds
to the standard notion of fixed point for the action of β on X.

Suppose φ is a complex homomorphism of A which is a fixed point
for a in the sense of (2). There are two relatively canonical ways to extend
φ to the crossed product algebra A XaZ. On the one hand we can view φ
as an invariant trace on A and extend it as one usually extends invariant
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traces. This procedure yields a trace

φ0: A X Z -> C

satisfying φo(Σn #„!/*) = Φ(tf0) where L is again the unitary in A XT
implementing the action. As a trace, φ0 extends as usual to Mn(A X Z)
for all « and we keep the same notation as we have been doing so far.
Adopting a different point of view, we may consider φ as being part of the
covariant 1-dimensional representation of the C*-dynamical system
(A9a,Z) given by (φ, /) where φ is the 1-dimensional representation of
the algebra A and t is the trivial representation of the group Z. By the
universal property of the crossed product it follows that there is a unique
1-dimensional representation of A X Z, here denoted by φ1? satisfying

It should be stressed that φ0 and φλ are never the same since
Φ0(L) = Oand φx(L) = 1.

Another map obtained from φ which we will use is the extension of φ
to any matrix algebra over A when φ is viewed as a trace. Precisely, we let
for all n > 1 φ: Mn(A) - > C b e defined by φ(a) = Σ ^ ^ Φ O ^ ) for
every n X n matrix a = (fl;j)i<z,7<n in Mw(^4). As a trace, φ induces a
map (also denoted by φ) on

φ: tfo(Λ) -> R

in the usual way. Observe that this map is equal to the map
φ*: K0(A) -> J^0(Q once K0(C) is identified with Z as usual. It follows
that the range of φ on K0(A) is equal to Z.

Observe that φ0, φx and φ when restricted to yί (or MX(A)) are all
equal to the original φ. Whenever we are required to choose one of the
above notations for φ on A we should pick the notation that seems most
appropriate in each special case. For instance, when we use (as we shall
do) a convex combination of a given trace τ on A and φ considered as a
trace we will use the notation (1 — t)τ + tφ instead of (1 — t)τ 4- tφ
even if it makes no difference.

4. THEOREM. Let (A9τ) be a traced unital C* algebra and let a be a
trace-preserving automorphism of A. Assume that a is almost periodic and
has a fixed point φ satisfying φ = τ on K0(A). Then the equivalent
conditions of (V.13) are satisfied and φx = τ on K0(A Xa Z). Here φλ is
defined as φ when A is replaced by A X Z and φ is replaced by φv
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Proof. We first notice that the hypothesis that φ = T on K0(A)

implies that (A, τ) is integral. Next we prove (V.13.i).

Let u G Un(A) be such that [u]λ e K^A)*. We must show that

Pa([u]ι) = l Replacing w by a larger integer, we may assume that there

are elements A 1 ? . . ., A, in Mn(A)sa such that

In order to simplify our notation we define the following symbols:

Λ : = ( A i , . . . , * / ) ,

α ( A ) ( α ( A 1 ) , . . . , α ( A / ) ) .

Given ε > 0 with ε < 1, choose m > 1 according to (2.ii) such that

| | α - ( W ) - W | | < ε ;

thus

\\am(u*)u- l | | < ε .

We may therefore pick k in Λ/n(^4)sa such that αm(w*)w = ez* with
11 A: 11 < v(ε) where v = v(ε) is some positive valued function such that
lim ε_> 0^(ε) = 0. This is simply because the exponential map is a local
homeomorphism. Writing

am(u*)u = am-ι(a(u*)u) α(α(w*)w)α(w*)w

we get

α w ( w * ) w = eiaml(<h^ eiCί(<h^eιh = eik.

By (I.ό.iii) we have that for any trace T on A with respect to which A

is integral

How many traces with this property are at hand? Certainly T and φ are
among them but because τ and φ agree on JSΓ0(̂ 4), any convex combina-
tion of these is just as good. So for every / e [0,1] let τt be the trace on A

defined by

τt=(l-t)r + tφ.
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It follows that

must be constant, or

Since both T and φ are α-invariant, the expression above becomes

(t) mτ(Σ h) - r(k) = mφ(Σ h) - φ(k).

Before we continue, we need to prove that φ(ΣΛ) e 2ττZ. To do this
apply id ® φ to both sides of the expression

a ( u * ) u = eihl ••• eihl

to get

In = ^/(id ΦXAo . . . ^/(id ΦXΛ,) i n Λ

Applying the standard determinant it follows that

where tr is the standard, non normalized trace on Mn(C). We then have

1 = e/ti((id®φ)(ΣΛ)) = e/Φ

so that φ(Σh) e 2τrZas claimed.
The expression (f) above gives

The left hand side does not depend on ε while the right hand side has
limit zero for ε -> 0, so we conclude that

Now pick any determinant det for A associated with r. Then

P«([w]i) = det(α(tι*)κ) = e z τ ( Σ Λ ) = 1.

This proves condition (i) of (V.I3) and therefore also (ii) through (iv).



74 RUY EXEL

Next we must prove that φτ = T on K0(A X Z). To do this we use
once more the traces τt defined earlier. Observe that all the hypotheses
assumed for T are satisfied by τ r Thus by what we have just proved we
conclude that A X Z is integral with respect to (the natural extension to
A X Z of) τr It is easily seen that

τt=(l-t)τ + tφ0

on A X Z, by direct computation on the set of elements of the form aLk

for flGi and λ e Z .
Let p e Mn(A X Z) be a self adjoint projection. Then by the ob-

servation above τt(p) e Z for all t e [0,1]. More explicitly

from which we deduce that τ(p) = φo(p). It is now enough to show that

Φo(P) = Φi(P)-
Recall that the circle group T acts on A X Z by the dual action ά.

For all a e A9 n e Z we have

Consider the mapping £: ̂ 4 X Z -> yl defined by

£ ( ^) = ί &x(x) dλ> V i E ^ X Z .
JT

A simple computation shows that for all a ̂  A and n G Z with π =£ 0
one has E(a) = a and E(aLn) = 0. One can also prove that £ is a
conditional expectation, as defined in [17], from yl X Z onto yί. Note that
Φo = Φi £• It follows that

Φo\Pu) = Σ

= Σ Φι(ί &x(Pι,i)d
l<i<n \ T

= / Σ Φl(&x(pi,i))d\
T l<i<n

^M,®(Φi &x))(p))dλ.

The argument of 'tf above is a projection in Mn(C) varying continuously
with the parameter λ, so its trace must be constant. We conclude that
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with λ = 1

= tr((idMn ® φjip)) = Σ Φi(/>,,,) = Φi(/>)
\<i<n

The proof is now complete.

5. COROLLARY. Let (A9τ) be a traced unital C* algebra and a be a

trace-preserving automorphism of A. Assume that a is almost periodic and

that for some integer «, an has a fixed point φ (i.e. a periodic point for a)

satisfying φ = τ on K0(A). Then the range of (the natural extension to

A XaZ of) τon K0(A Xa Z) is contained in (l/n)Z.

Proof. The conclusions of (4) hold for an. In particular pT

an = 1. By

(IV.4) we have (ρr

a)
n = 1 so the range of ρτ

a is contained in the set of nth

roots of unity. By (V.12) the conclusion follows.

In the special case of commutative algebras we obtain the following

6. COROLLARY. Let X be a connected compact topological space with a

probability measure μ. Also let a be a homeomorphism of X which leave μ

invariant, and assume that the set of all powers of α, {an: / i ^ Z ) , is

equicontinuous (with respect to the unique uniform structure that a compact

space X admits). If a has a periodic point (in the standard sense) with

period n and if r is the extension to C( X) X α Z of the trace on C( X) given

by integration against μ, we have

Proof. We should note that we are also denoting by a the induced

automorphism on C(X). The proof will of course consist of checking the

hypothesis of (5).

From the Arzela-Ascoli theorem it follows that a is almost periodic as

an automorphism of C( X).

Let ή f G l b e such that an(q) = q and let φ be the complex homo-

morphism of C( X) given by evaluation at q. We will prove that φ = r on

K0(C(X)). Adopting the vector bundle point of view, note that for any

complex vector bundle F over X the map φ gives the dimension of the

fiber Fq while T gives the common dimension of all fibers since X is

connected. It is then clear that φ = r. This concludes the proof.
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7. Note. In order to show the necessity of the equicontinuity hypothe-
sis assumed in (6) or the almost periodicity assumed in (4) and (5) we
recall the example of the twist of the annulus (IV.7) in which there are
fixed points but where the conclusions of (4), (5) or (6) are not satisfied.

VIII. AUTOMORPHISMS OF CONNECTED GROUPS

In our second application of (V.I3) we consider a topological group G
which is supposed to be compact and connected and we fix an automor-
phism a of G. If we let A = C(G), the group automorphism a induces a
•-automorphism on A (which we still denote by a) according to

Let μ be the normalized Haar measure on G and let T be the trace on
A given by integration against μ.

It is well known that a compact group has a unique normalized Haar
measure, from which it follows that μ is invariant under the group
automorphism α. Consequently T is invariant under the algebra automor-
phism α.

Recalling Proposition (VI.l) and also the fact that G is assumed
connected, one sees that A is integral with respect to T. We are then in a
position to ask whether the triple (A,τ, a) satisfies the equivalent condi-
tions of (V.I3). It is our goal in this section to give an affirmative answer
to this question.

We begin by introducing three maps from C(G) to C(G X G) (equiv-
alently from A to A ® A) which will prove to be of great importance.

1. DEFINITION. For every / e C(G) define Δ(/), ix(f) and i2(f) in
C(GX G)by

h(f)(x,y)=f(x) and

i2(f)(χ,y)=f(y) v(χ,y)^GxG.

The reader should have no difficulty in checking that Δ, iλ and i2 define
*-homomorphisms from C(G) to C(G X G).

2. LEMMA. Letu e U^CiG)). Then

Δ«([n]i) = ί1*([iι]i) + /2 ([«]i)

inKx{C{GX G)).
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Proof. Let v(x, y) = u(xy)u(x)u(y) for all (x, y) in G X G so that y
is a map v: G X G -> T. We claim that ϋ induces the trivial map at the
level of fundamental groups. In fact, let γ e Π1(G X G) and suppose it is
represented by a continuous loop (*(O>.y(O)o<f<i Recall that for any
two loops in a topological group the pointwise product has a homotopy
class equal to the sum (in Π ^ of the individual classes. It follows that the
class of the loop v(x(t), y(t)) is the sum of the classes of u(x(t)y(ί)),
u(x(t)) and u(y(ή) in U^T).

Consider the maps

p: G X G -> G,

qx:GXG->G and

q2' G X G -» G

given by /?(*, >>) = xy, ^(x, y) = x and #2(x, j ) = y for all (x, j;) in
GXG.

With this notation the statement above becomes

in ΠX(Γ).
The same observation on pointwise product of loops we made earlier

gives us

P*(Ύ) = 9iM

in Π^G). Therefore

q2*(y)) ~ «*

proving our claim. We conclude that v lifts to the universal cover of the
circle, which is equivalent to saying that there is a continuous real valued
function h on G X G such that

Ό(X, y) = eih^y) V(JC, y) e G X G.

We then have

So Δ^Iii]!) = ^([iilO + /^([t/10 in Kλ{C{G X G)).

We should say a few words about the hypothesis made above that
u G t/1(C(G)). It looks plausible to expect (2) to hold also for u e
Un(C(G X G)) for all n, but contrary to our intuition this is not so. We
have found a counter example already for n = 2 and G = Γ3. A brief
discussion of this example is included in appendix B. Nevertheless we will
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be able to use (2) in a very efficient way. What will cover our apparent
deficiency will be the existence of the algebra valued determinant defined
in (VI.6).

We now present the main result of this section.

3. THEOREM. Let G be a compact connected topological group. Let a
denote a given automorphism of G, as well as the induced automorphism of
C(G). Denote by τ the trace on C(G) given by integration against the
normalized Haar measure on G. Then the triple (C(G),τ, a) satisfies the
equivalent conditions of (V.13). In particular C(G) X α Z is integral with
respect to its natural trace and (C(G), T) admits an a-invariant determi-
nant.

Proof. It is enough to prove (V.13.iv). Using (VI.l) together with
(11.10) for the algebra C(G X G) with the trace τ2 given by normalized
Haar measure on G X G, we conclude that (C(G X G),τ2) admits a
determinant, say det.

For all u e Un(C(G)), n e N let

δ(u) =

where Detrt is defined in (VI.6). We shall prove that 8 is an α-invariant
determinant for C(G). It is certainly a group homomorphism into T.

Let h e Mn(C(G))SΆ. We have

8(eih) = d

= άet{eκp(i{ix(TΛ(h))

= exp(/τ2(/1(ΓίI(A)) + i2(Tn(h)) -

We leave for the reader to verify that il9 i2 and Δ are trace-preserv-
ing. So

«(*'*) = βp(/(τ(Γ,(A)) + r(Tn(h)) - τ(Tn(h))))

= «p(/τ(ΓB(Λ))) = e'^h\

In order to complete our proof we must verify that 8 is left invariant
by a. Let n e N and u G U M ( C ( G ) ) . Put v = Detw(M) and use (2) to
write

for some h e C{G X G) s a. We have

8(u) = dct(i1(v)i2{v)^(v)~1) = det(eiA) =
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We now compute δ(a(u)). Since a(v) = Detn(α(w)) we have

δ(a(u)) = deiiMv^iocivVHaiv))-1).

Denote by a ® a the automorphism of C(G X G) given by

(a)

(b)

(c)

It is routine to verify

<

that

a <S) a ix

) a ' Δ

= /\ α,

ι2 oί and

= Δ α.

That is /l9 /2 and Δ are α-equivariant. One should note that multiplicativ-
ity of a as a group automorphism is used in (c) and nowhere else. It is
nevertheless crucial for our argument.

We then have

8(a(u)) = det(α ® a(i1(v)i2(

= det(α Θ a(eih)) =

since τ2 is certainly a ® α-invariant. By comparison we see that δ(u) =
δ(α(w)) so that (V.13.iv) is verified. This concludes the proof.

4. COROLLARY. Let H be the group obtained as the semidirect product of
a free abelian group by Z. Then C*(H) with its canonical trace r is
integral. Moreover C*(H) contains no non-trivial idempotents.

Proof. Assume that H = Zn Xa Z where n is an integer or equals
+ oo, and a is an automorphism of Zn. It is well known that

)̂ X α Z.
α

It then follows from (3) that C*(H) is integral.
If p G C*(H) is an idempotent, we have on the one hand τ(p) e Z,

and on the other r(p) e [0,1]. Thus τ(p) = 0 or τ(/?) = 1.
Since H is an amenable group, C*(H) coincides with Cr*(H), the

reduced C* algebra of H [12]. A simple computation shows that the
canonical trace is faithful on Cr*(Γ) for any discrete group Γ so that T is
faithful on C*(H).

It follows that if τ(p) = 0 we must have p = 0. In case τ(/?) = 1 we
have τ(l - p) = 0 which implies that /> = 1.
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We should note that (4) applies to the discrete Heisenberg group, the
group of 3 X 3 upper triangular integer matrices with ones in the diago-
nal. The reason being that it can be described as the semidirect product
Z 2 X a Z where a is the automorphism of Z 2 represented as an element of
GL2(Z)by[_} ?].

We may also use (4) to obtain a collection of torsion free groups
whose C* algebra have no non-trivial idempotents.

IX. TRANSLATIONS AND AFFINE HOMEOMORPHISMS

OF CONNECTED GROUPS

We again consider a fixed connected compact topological group G as
in (VIII), but now we concentrate our attention on a different class of
automorphisms of C(G). We first study the automorphisms of this
algebra induced by translations on G, and then, adding the results of
(VIII), we study affine homeomorphisms (see (8) ff.).

1. DEFINITION. For every g in G we denote by λg the map
λg: t e G -> gt G G. We also denote by λg the induced automorphism of
C(G) i.e. λ g ( / ) ( 0 = f(g'lt) for all t in G and / in C(G).

In what follows we adopt the topologists' convention according to
which K^CiG)) is denoted by Kι(G).

Since G is connected, for any g in G the group homeomorphism λg is
homotopic to the identity map. The same clearly applies to the ^automor-
phism λ g of C(G). This said, we see that at the level of Kλ groups λgHc is
the identity map, so that K\G)X* (see (IV.l)) is equal to the whole of
Kλ(G) and the rotation number map has Kλ(G) as its domain of defini-
tion. We may thus give the following

2. DEFINITION. We denote by b the map

b: K τ ( G ) X G ^ T

defined by b(x9g) = p\(x), where τ is, as usual, the trace on C(G)
associated with normalized Haar measure on G.

3. PROPOSITION, (i) For all g in G the map x e K\G) -» b(x, g) G T

is a group homomorphism.
(ϋ) For all x in K\G) the map g e G -> b(x, g) e T is a continuous

group homomorphism, i.e. a character of G.

Proof, (i) Follows from the fact that ρ\ is a group homomorphism
(see (IV.2)).
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(ii) Fix JC e K\G) and let u e UΠ(C(G)), (n e N) be such that
x = [u]v Also let det be a determinant for C(G) associated with r. We
then have for all g in G

b(x,g) = det(λg(u*)u).

Continuity of b(x, g) with respect to the second variable is a consequence
of (11.10).

If h is another element in G we have

b(x, gh) = det(λgh(u*)u) = det(λg{λh(u*)u)λg(u*)u)

= dεt{λh(u*)u)dεt(λg(u*)u)

by (III.l) since λh(u*)u e UΛ(C(G))0. It follows that b(x, gh) =
b(x, g)b(x, h) completing the proof.

The outcome of our last proposition is that b is a bi-character on
Kι(G) X G. We should note that the process above gives characters of G
for each element of Kι(G). Of course not all groups G have non-trivial
characters, so b may well be the trivial bi-character. In this case we have
the following result.

4. PROPOSITION. Let G be as above and assume that G is perfect\ i.e.
G = [ G , ( J ] . Let T be the trace on C(G) associated with normalized Haar
measure. Then for every g in G the triple (C(G),τ,λg) satisfies the
equivalent conditions of (V.13).

Proof. From the fact that G is perfect it follows that G admits no
non-trivial characters. Thus b = 1, or equivalently p\ (JC) = 1 for all g in
G and x in K\G). It follows that (V.13.i) holds/This completes the
proof.

We now introduce two new mappings.

5. DEFINITION. Let

P: Kλ(G) -> Hom(G, T) and / : Hom(G, T) -> Kι(G)

be defined as follows. For x in Kι{G) we let

P(x)(g) = P\(x) Vg e G.
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For χ in Hom(G, T) we view χ as a unitary element in C(G) and put

J(X) = [Xli
It is an easy exercise to verify that P and / are group homomor-

phisms.

6. PROPOSITION. Given J and P as above we have P * / = idH o m ( G Γ ) .

Proof. Let χ e Hom(G, T). Then for every g in G we have

P • J(x)(g) = Pτ

λg([χli) = det(λ g (χ*)χ) .

Now observe that for all / e G

(λg(x*)x)ω = x{λg4t)Yιχ(t) = xίg^Γ'xίO = x(ί)
Therefore P - /(χ)(g) = χ(g) so that P - /(χ) = χ.

An immediate but relevant consequence is:

7. COROLLARY. / embeds Hom(G, T) as a complemented subgroup of

Kι{G) for which P is a left inverse.

We omit the proof, which is elementary.

Yet another consequence of (6) is that any character of G is of the

form b(x, •) for some x in Kι(G).

We now start our study of affine homeomorphisms. Some of the

results to be obtained shortly, specifically (11), hold for translations as

well, so that we are not leaving aside our interest in translations.

8. DEFINITION. Let η be a homeomorphism of G. We say that η is an

affine homeomorphism if there are g & G and a e Aut(G) such that

η = λg - a. In this case we also denote by η the automorphism of C(G)

given by r,(f)(t)=f(η-\t))\ft e G, / G C(G).

9. LEMMA. Given η = λ g a as above

(i) η* = a* as automorphisms of Kι(G),

(ii) the fixed point subgroups K1^)1 and K1(G)a are the same and

(iii) the rotation number map p!J is the restriction of p\ to K1

Proof. As noted earlier λgJ|ί — id^i ( G ) because G is connected, whence

η* = α*. This proves (i) and also (ii). In order to prove (iii) we use (VIII.3)

and fix an α-invariant determinant det for (C(G), T).
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Let x e K\GY with x = [w]j for some w e Un(C(G)), « e N. We
have

P;(x) = det(η(« )«) = dct(λg(a(u*))u)

= det(λg(α(«*)M))det(λg(M*)M)

= dQt(λg{ct(u*)u))p\g(x).

It is now enough to check that det(λg(α(w*)w)) = 1. To do this first
recall that since [u]λ e Kι(G)a we have that (perhaps for a larger n)
a(u*)u e UΛ(C(G))0. We may thus apply (IILl) to conclude that

det(λg(α(w*)w)) = det(α(κ*)w)

and since det is α-invariant

det(α(κ*)w) = d e t ί α ί t t ) ) " ^ ! / ) = 1.

Given a e Aut(G), we have seen how α acts on C(G) as well as on
Kλ(G). We shall also use the natural action of a on Hom(G, T). For
X e Hom(G, Γ) we let a(χ)(t) = χ(oc~ι(t)) for all t in G. It is clear that
this becomes an automorphism of Hom(G, T) (which we still denote by
a).

10. LEMMA. P andJ are equiυariant with respect to the action of Aut(G)
on Kι{G) and Hom(G, T). In other words given a e Aut(G) we have
P - a* — a P and J - a = a* - J.

Proof. Let a e Aut(G) and χ e Hom(G, T). Then

Thus J a = a* J.
Next observe that for a e Aut(G) and t, g ^ G

(λg • «)(/) = gα(/) = αία-^g)/) = (« λa,(g))(t),

i.e. λ g a = α λα-i(g). Thus for [w]x G ̂ X (G) we have for all g e G

= Pλs(«*(["]i)) = det(λ,(α(« ))α(iι))

= det(α(λβ-1(β)(« )«)).
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By (III.l) and the fact that λa-ι{g)(u*)u e Un(C(G))0 for some /iGNwe
have

= det(λβ.1(g)(iι*)iι) = P ^ J M

Therefore P a* = a P.

The following is the main result of this section. Since translations are
a special case of affine homeomorphisms, it applies to the former type of
homeomorphisms as well.

11. THEOREM. Let G be a compact connected topological group and
η = λ g a where g e G and a e Aut(G). Also let τ be the trace on C(G)
given by Haar measure on G.

(i) The following diagram commutes

(s)

where Hom(G, T)a denotes the subgroup of fixed points with respect to the
action of a and *(g) denotes evaluation of characters on g.

(ii) The range of pτ

v is equal to (χ(g): χ e Hom(G, T)"}.
(iii) The range of the natural trace on K0(C(G) Xη Z) is equal to

[t e R: e2mιt = χ(g) for some χ e Hom(G,Γ)α}.

Proof, (i) First note that the equivariance of P and / as proved in
(10) ensures that the maps in our diagram go into the indicated groups.
Now (6) yields the commutativity of the left hand side triangle. To prove
commutativity of the upper right hand side triangle let χ e Hom(G, T)a.
Then using any determinant for (C(G), r) we have

= det(τ,(x*)x) = det(λ g (α(χ*))χ).
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Note that for all t e G

Thus

Finally, if [u^ e K^G)" then

P([u)i)(g) = Pτ

λg(["li) = p;([«]i) by (9.iii).

To prove (ii) note that since P is surjective

Range(p ) = ( i>(^(G) Λ ))(g) = (Hom(G,Γ)β)(g)

proving (ii).
In view of (V.12) we see that (iii) follows from (ii), completing the

proof.

As a direct consequence of our last theorem we prove a result of
Rieffel, Pimsner and Voiculescu [18, 15] on the range of the trace on Ko

of the irrational (as well as rational) rotation C* algebra.

12. EXAMPLE. Let θ e R and denote by Aθ the algebra C(T) xλgZ
where g = e27Tiθ e T. Let T be the trace on C(T) given by Haar measure
on T. We may then apply (11) with G = Γ, g = e2'"* and α = idG. The
conclusion is then that

τ(K0(Aθ)) = { / G R : e2πit = ( β 2 ^ ) " for some « G Z } = Z + « Z .

Appendix A. For any traced C* algebra (-4,τ) and w e Z we have
defined SUJ(^l) in (Π.3) to be a subgroup of t/M(^4). A natural question to
ask is whether it is closed in Un(A). Using K-theory methods we can give
a satisfactory answer for n = oo.

Let Sυ^(A) be defined by

SU;(Λ)= u su ( )̂.

In this way SIJ^(A) becomes a subgroup of JJ

THEOREM SU^(A) is closed in U^A) if and only if τ(K0(A)) is closed
in R.
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Proof. Suppose τ(K0(A)) is not closed in R. Then we may find two
sequences of self adjoint projections in \Jm^ιMm(A), say (pn)n>ι and
(<?J«>i> s u c h t h a t τ(Pn) ~ τ(?«) converges to some t G R - τ(K0(A)).
Let un = e2m{T(Pn)"r{qn)) and view un as an element of Uλ(A). We claim
that un e SL£(Λ) for all «. In fact

(we should note that since we are working in the inductive limit group we
are allowed to take the product of unitary matrices of different sizes) and

τ{2ττ(τ(pn) - τ(qn)) ~ 2<πpn + 2<πqn) = 0.

It is clear that un converges to e2tπit. But e2vit £ SU^(^). Otherwise there
would be m G N and hv..., hk G Mm(A)sa such that

and τ(h1 + +hk) = 0. By (I.6.i) we would have t G τ(K0(A)) which
is a contradiction.

Conversely assume that τ(K0(A)) is closed in R. In order to prove
that SU^(yl) is closed in JJ^A) it is enough to show it is closed in
Uo0(A)0 since XJoo(A)0 is closed in Uoo(^4).

Recalling how is the inductive limit topology defined we see that we
just have to show that SU^(^4) Π Un(A)0 is closed in \Jn(A)0 for all
n > 1. Let u G U Λ (^4) 0 - SU^(^4). Write u = e//?1 e'7** where
hv . . ., hk G Mn(^4)sa. We claim that Q/2iti)i(hx + +ΛΛ) ί

). In fact if

for some self adjoint projections p and 9 in some matrix algebra over A
we would have

U = e

i h ι . . . e

lhke-
2<7rlPe

2>7TiiI

which would imply that u
Let d be the distance from (l/2ττ)τ(/21 + +hk) to τ(K0(A)).

We claim that the set {ueih: h^Mn(A)S3L, \τ(h)\<2πd} (which is
clearly a neighborhood of u in\Jn(A)0) has no intersection with SU^(A).
Otherwise there would be h e MM(v4)sa with |τ(A)| < 2πd and lv ..., lr

G Mw(^ί) s a, for some m > n, with τ(/x 4- • +/Γ) = 0 and

We would have by (I.6.1)

Kri^ + - +hk) + τ(h))
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hence

dist((l/2ττ)τ(/*1+ ... + hk),τ{K0(A)))<ί(l/2π)\r(h)\<d

which is a contradiction.

Appendix B. Let G be a compact connected topological group. In
(VIII.2) we proved that the formula

(f) M [ « ] i ) - i i ([«]i) + i2 ([«]i)

holds for any u in
We shall now give an example for G = T3 to show that (f) does not

hold in general for u in U2(C(Γ3)). While we skip most of the computa-
tions, we shall describe more or less precisely the element u e U2(C(Γ3))
for which (f) fails, as well as the outcome of both sides of (f) when
applied to our u.

Recall that K0(C(T3)) = K^CiT3)) = Z4. A set of generators for
J^0(C(Γ3)) is given by the elements 1, p£9 pz

y and p* where 1 denotes the
element of KQ(C(T3)) corresponding to the free 1-dimensional module. In
order to define the three remaining elements we consider the mapping

ind: KMT)) - K0(C(T) ® C(T)) = K0(C(T X Γ))

defined in (V.6). If [w]λ denotes the standard generator of K^CiT)) we
let b = indfl̂ w]!). One may call b the Bott element.

Let w1 and w2 denote the coordinate functions of T2 and let x9 y and
z denote the coordinate functions of T3.

Consider the * -monomorphisms

ix,y> iy.*> '"*,*: C(T2) -> C(T3)

given by

We define pξ = ix y^(b), pz

y = iy,zj(b) and p* = iz xJ^b). One can prove
that 1, /?/, pz

y and p* form a basis for K0(C(T3)). We now describe a
basis for K^CiT3)). Three of its four elements are just [x]v [y]v and
[z]v In order to define the fourth we observe that there is a canonical
isomorphism
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The fourth generator of K^CiT3)) is just the image of the Bott element
under the isomorphism above. We denote it by [u]v It is possible to show
that [u]λ may be represented by a unitary element M G U2(C(Γ3)) but it
has no representative in U^C^Γ3)).

Since we will be working with the map Δ* on JRΓ̂  C(!Γ3)) we must
also consider the group K^CiT6)) which turns out to be isomorphic to
the 32nd power of Z. In order to avoid dealing with thirty two coordinates
we use the isomorphism

/ : ^ ( C ( Γ 3 ) ) 0 K0(C(T3)) Θ K0{C(T3)) 0 KX(C{T3) -> ^ ( C ( Γ 6 ) ) )

constructed in [21].
If we let D be defined by J~ι Δ* we arrive at the commuting

diagram

* κo(c(τη) e κQ(c(τ>)) * κτ(c(τ>))

u

We also let Iλ= J~ι ilm and I2 = J~ι /2^ so similar diagrams may be
drawn for Iλ and J2.

Therefore, in order to compare Δ* and /ll|t + ι2#, we may compare Z)
and Ix 4- 72. The following table gives the values of the maps Z> and
7X + I2 on the generators of Kλ{C(T3)).

L + I, D

M i

[y\x

[z]x

[«ll

([x]! β 1,1 β [x],)

(lyh ® 1,1 ® [JΊJ)

([«]! β 1, 1 ® [M]χ)

([X]! ® 1, 1 ® [X]O

([y], β 1,1 ® [ J I O

([ZJΪ ® 1,1 ® [zJO

([«]! ® 1, 1 ® [I/K)

+([χ] 1 ®/>;, j P ;®[χ] 1 )

+dy]ι®Pϊ,p?®[y]i)
+ (U\®Py

x,p
y

x®[z]1)

We thus see that D{[u]λ) Φ (Iλ + and therefore
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