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HOLOMORPHIC CONTINUATION IN SEVERAL
COMPLEX VARIABLES

GUIDO LUPACCIOLU

This paper is mainly devoted to the question about the holomorphic
extendability on a domain D c c Cn of the CR-functions defined on a
relatively open connected subset dD \ K of dD. Pursuing the investiga-
tion of our earlier paper proving that the $(£>>convexity of K suffices,
when n > 2, for the desired extendability, here we obtain some further
results on this and similar matters, and a Hartogs' type theorem for
certain domains in a Levi-flat hypersurface. All the results of this paper
concern the case n > 3 and fail to be true in general for n = 2.

Introduction. Throughout this paper D and K will denote respec-
tively a bounded open domain in Cπ, n > 2, and a compact subset of 3D,
such that dD \ K is a connected real hypersurface of class C1 in C" \ K.
Moreover, CR(dD\K) will denote the continuous CR-functions on
dD \ K, i.e. the complex-valued continuous functions on dD\K which
are solutions of the weak tangential Cauchy-Riemann equation.

We shall be concerned in the main with the following problem: under
what conditions on D and K does every / e CR(dD\K) extend to a
function F e Θ(D) Π C°(D\K)Ί

This problem is not a completely new one. A parallel problem in the
setting of holomorphic functions was considered, for D pseudoconvex, by
Stout [7], and some results relating to the problem itself have already been
obtained by Tomassini and myself ([5], [8] and [6]).

In particular, a condition on D and K which turns out to be
sufficient for the desired extendability property is that K is 0(Z>)-convex,
i.e. that Kτ = K, where Kτ denotes the 0(5)-hull of K ([6], Theorem 1.
Cf. also [7], Theorem I.l(A)).

A noteworthy case in which the above condition holds is when there
is a plurisubharmonic function p on some pseudoconvex open neighbor-
hood of 5 , so that K c {p = 0} and 3 \ K c {p > 0} or, slightly more
generally, when there is a family {Uι} of open neighborhoods of K which
are Runge in some pseudoconvex open neighborhood of D, so that
{ Uι, Γ) D} is a neighborhood basis for K in D.
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On the other hand, the 0(D)-convexity of K need not hold when p is
plurisubharmonic only on a pseudoconvex neighborhood of K, or, even
more, when the Lζ.'s are required only to be pseudoconvex. For example,
the latter occurs in case K is contained in the boundary of a pseudocon-
vex domain Ω, such that Ω Π(D\K) = 0 and Ω has a neighborhood
basis of pseudoconvex open sets.

Hence, it seems natural to ask if the extendability property under
consideration is still valid in the above situations and in similar other
situations which the results on this problem obtained so far do not suffice
to deal with.

In the present paper we wish to show that some partial positive
answers to such question are possible for n > 3 complex variables.

In the first section of the paper we discuss an improvement, for
n > 3, of the theorem of [6] quoted above; in the second section we obtain
consequently some further results of a more geometrical character, includ-
ing an improvement of Theorem I.I (B) of [7] and a Hartogs' type
theorem for certain domains in a Levi-flat hypersurface.

We point out that all the results of this paper relate to the case n > 3
and fail to be true in general for n = 2, in spite of the fact that our
previous result of [6]—concerned with the 0(Z))-convexity of K—is true
for n > 2. Indeed, the dichotomy, in this kind of problems, between the
cases n > 3 and n = 2 appears already in [7], and also in a part of the
proof of the theorem of [6] itself.

1. If N is any subset of Cn with K c N9 let us write

κN= n φ-i(<p(κ))= n n φ

where U ranges over the open neighborhoods of N. Thus KN is the
complement in N of the set of all points z e N such that there is a
φ e Θ(N) with φ(z) = 0 and φ zero free on K. Plainly, KN c KN (the
Θ(N)-Ym\\ of K), and KN c KN, whenever N c N'.

The object of this section is to prove the following theorem:

THEOREM 1.1. Suppose n > 3. Every / e CR(dD\K) has a unique
extension F G &(D) Π C°(D\K) provided either of the following two
conditions hold:

(a) There exists an open neighborhood N of K in D such that KN = K
and every component of the hypersurface Σ = (dD \K) Π N contains some
peak points for &(D);1

1 We recall that a point z° e dD is said to be a peak point for Θ(D) in case there is a
<p e Θ(D) with |φ(z°)| > |φ(z)|, for all z e Ί>\z°.
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(b) There exists an open neighborhood N of K in D such that KN = K;
moreover K^ Π 3D = K.

REMARKS, (i) This theorem is not true for n = 2, as the following
simple example shows. Let D = {(z,w) e C2; \z\2 + \w\2 < 2, |w| < 1}
and K= {(z,w) e C2; |z|2 + \w\2 < 2, \w\ = 1}. Then dD\K = {(z,w)
e C 2 ; |z | 2 + |w|2 = 2, |w| < 1} is a connected real hypersurface of class
Cω in C" \ K. Given any open neighborhood N of K in D, let φ denote
the restriction to N of the canonical projection (z,w) -» w. Since
φ~\φ(K)) = K, it follows that KN = K; moreover, since D c B4(]/ϊ)
(the ball with center the origin and radius \/2) and dD \ K c 3B4(\/2), it
follows that every point of dD \ K is a peak point for 0(D) and also, as a
consequence, that Kp Π 3D = K. Hence D and J^ verify both the condi-
tions (a) and (b) of Theorem 1.1. On the other hand, the function
f(z, w) = z"1, which is holomorphic on a neighborhood of 3D \ K, has no
holomorphic extension to D.

(ii) Since the condition (b) of Theorem 1.1 includes in particular the
case when K is 0(Z>)-convex, it follows that Theorem 1.1 improves the
result of [6] for n > 3.

(iii) The condition "Kτ = K" is equivalent to the "^(D)-convexity"
of K considered in [7].

Proof of Theorem 1.1. We use the same technique and follow the same
lines as in [6]. Therefore, though all steps of the proof are discussed, many
technical details are waived.

Let us first list some of the notations to be used in the following.
ω(ξ) <Ξ Zfn~\Cn\ξ) is the Martinelli kernel-form relative to a

ς is the level-set through ξ of a function φ e Θ(U) (U open set
containing ξ);

Φφ(U X U) is the set of all holomorphic maps h = (hv...,hn):
U X U -> Cn corresponding to a given φ e (J(ί/) in such a way that
φ(z) - φ(f) = Σn

a=1ha(z9ξ)(za - U for every (_z,n e U X U;
Φh(ξ) e An'n~2(U\Lζ{ψ)) is the canonical 3-primitive of ω(ξ) asso-

ciated to a given h e Θ£(U X U) (cf. [6], §1).
Now, let {Ds}famlbe an increasing sequence of subdomains of D with

the following properties: for each s, D\DS c N and dDs = Γ̂  U Ks,
where Ts and Ks are compact hypersurfaces with boundary, of class C1,
such that TSΠKS = dTs = dKs, Ts c dD\K and # Λ 9 ^ ^ N Π D;
moreover D = {J?=ιDs and dD\K = {Jf=1Ts. Such a sequence {D5},



120 GUIDO LUPACCIOLU

which clearly exists, in particular allows one to express the assumption
"KN = K" as follows:

(1.2) N\KC U U
φ€ΞΦ(U) 5 = 1

where U ranges over the open neighborhoods of N.
Next, corresponding to any given / e CR(9D \ K), we introduce the

following family βr= {/£} of complex-valued functions: for every open
neighborhood U of N, φ e Θ(U)9 h <= &£(U X U) and positive integer s9

fs

h is defined on [U\ φ-\φ(D\Ds))]\ dD by

It is then possible to prove the following facts.

1.3. A necessary condition in order that / be the boundary values of a
function F e 0(D) Π C°(£ \ϋΓ) is that F = /Λ

s on [t/\ φ'HφΦXA))]
nΰ.

1.4. The family 3? is coherent, i.e. any two functions /Λ

5 and f% of J^
coincide on the intersection of their sets of definition.

1.5. Every f£ e & is holomoφhic.

The proofs of these facts proceed as in [6] (cf. Propositions 2.4 and
2.5): 1.3 derives from the Martinelli integral representation applied to Ds\
1.4 and 1.5 from the general properties of the 3-primitives of ω(ζ) which
enter (cf. the remark at the end of this section).

Now, let us denote by / the union of the coherent family J*\ Then
/ is a holomoφhic function on the open set E \ dD—where E =
Uυ,N^φ^(υ)^i[U\ψΛψ(D\DM-^ich by (1.2), includes
N Π D = N. Moreover, in view of 1.3, if an extension F e &(D) Π
C°(7)\K) of / actually exists, it has to coincide with / on N, which
implies in particular the uniqueness of such an extension.

Therefore, it follows that what is to be proved now is that / | # has
boundary values / on Σ = (dD \ K) Π N9 i.e. that, for each point Z ° G Σ ,

we have:

(1.6) lim
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Consequently, it is plain that the extension F of / will be given by

where s is any positive integer, and so the proof of the theorem will be
concluded.

For the proof of (1.6) the assumption "KN = K" alone is no longer
sufficient, and hence we have to distinguish between the two conditions
(a) and (b).

In the first place let us prove the following:

1.7. Assume that the condition (a) holds. Let Σ' be a connected
component of Σ and V an open neighborhood of Σ' such that V\ Σ' =
V+U V_, where V+, V_ are connected separated open sets and F + c N,~
F_c E \ Ί>. Then it follows that / = 0 on V_.

Let Z ° G Σ ' be a peak point for Θ{D). Then there exist an open
neighborhood U° of Ί> and a function φ° e Θ(U°) such that |φ°(z°)| >
|φ°(z)| for all z G ΰ \ z ° . Let h° e Θ$(U° X U°) and consider the
function /J>. As in [6] (Proposition 2.6), one shows that /jjo = 0 on
^ = { ί 6 ί / ° ; |φ°(f)| > \φ°(z°)\ = max^|φ°|}. Since $ belongs to the
family J^, it follows that / = 0 on W. Finally, since—by the maximum
principle—WC\ V_Φ 0, and V_ is connected, we conclude that / = 0
on V_ as well.

Now, on account of 1.7, the proof of (1.6) proceeds as in [6]
(Proposition 2.7), with some minor changes, using a known potential-theo-
retic property of the Martinelli kernel-form.

It remains to prove the validity of (1.6) under the condition (b).
Actually 1.7 is still true in this case, but a direct proof would be more
involved, and we can dispense with it. Indeed we can prove the following,
from which (1.6) follows at once (as well as 1.7):

1.8. Assume that the condition (b) holds. Then / has a unique
extension / ' e Θ(D \ Kτ) Π C°(D \ Kτ) and / ' = /on (D \ K3) Π N.

The existence and uniqueness of / ' follows from Theorem 2 of [6];
moreover / ' can be obtained as the union of a coherent family J^ r of
holomorphic functions of the same kind as those of & (but defined by
means of the holomorphic functions on the open neighborhoods of

). Now, by the same argument which proves 1.4, it is possible to
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show that also the family F U . f ' is coherent, and hence / ' and /
coincide on the intersection of their sets of definition. D

REMARK. Let us point out that 1.4, which is a crucial point in the
above proof, derives from the fact that, for n > 3, the difference Φh(ζ) —
Φ'h,(ξ) of two 8-primitives Φ_Λ(f) €Ξ An'n'2(U\L^(φ)) and Φ'h,(ξ) e
yΓ'"~ 2(t/'\L ?(φ')) of <o(f) is 9-cohomologous to zero in (U\Lζ(φ)) Π
(£/'\£f(<P')). This implies that, for / e CR(8Z)\iί:), /(ΦΛ(f) - Φ^(f))
is exact in (6\D\ # ) Π (ί/\L^(φ)) Π (Uf\Lζ(φf)) (in the sense of con-
tinuous regular forms), and hence, if dTs c (U\Lξ(φ)) Π ( ί/ '\L f (φ')) ,
it follows that:

On the contrary, for n = 2 ΦΛ(f) — Φ^(f) is a holomorphic 2-form
and f{Φh{ζ) — Φ^(0) i n general is only closed, so that (1.9) need not be
true.

Nevertheless (1.9) turns out to be true also for n = 2 in case U and
£/' contain the whole of dD\K and |<p(f)| > maxarjφ|, \φβ(ξ)\>
maxΘΓJφ'|; which is the reason why Theorem 1 of [6] holds for n = 2 too.

2. Let us say that K has a pseudoconυex neighborhood basis relative to

D in case there exists a family { Uι,} of pseudoconvex open neighborhoods
of K such that the family { ^ Π D } is a neighborhood basis for K in D.
In particular this is the case if K has a neighborhood basis in C" of
pseudoconvex open sets, and, less trivially, if there exist finitely many
pseudoconvex open domains Ωy c c C", j = 1,..., m, with pairwise dis-
joint closures, so that K c Uy=ιdQp (D\K)Π UJLi Ωy = 0 and each
Ωy has a neighborhood basis of pseudoconvex open sets.2

Now we prove:

THEOREM 2.1. Suppose n > 3. Every f e CR(dD\K) has a unique
extension F E Θ{D) Π C°(D\K) provided the following two conditions
hold:

(i) There exists a C1-bounded strictly pseudoconvex open domain
Ω c c C " such that ΰ c β and, for a sufficiently small neighborhood V of
K,(dD\K)n Vo 8Ω;

2 For example, as is well known, the latter occurs when 3Ωy is C2-smooth and strictly
Levi-convex; and also when 3Ωy is real-analytic and weakly Levi-convex (cf.
Diederich-Fornaess [1]).
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(ii) There exists an open neighborhood N of K in D such that KN = K,

or else K has a pseudoconvex neighborhood basis relative to D.

Proof. It is well known that every point of 9Ω is a peak point for
0(Ω) (cf. Gunning-Rossi [2], Corollary IX.C.7) and hence the condition (i)
implies that every point of (dD\K) Π V is a peak point for &(D). In
view of Theorem 1.1, this already suffices to conclude the proof under the
former case of (ii), for we may assume that N c V, so that the condition
(a) of Theorem 1.1 is fulfilled. To deal with the latter case of (ii), we
consider first the particular situation when there is a plurisubharmonic
function p on a pseudoconvex open neighborhood U of K such that
Ka {p = 0} and (D\K) Π [/c (p > 0). Then, since the 0(ϊ/)-hull
ky of K coincides with the hull Ky of K with respect to the plurisub-
harmonic functions (cf. Hόrmander [4], Theorem 4.3.4), it follows that
K = KN = KN, for any open neighborhood JV of K in D with N c U\
and so we fall back into the previous case. Finally, let us consider the
latter case of (ii) in full generality. Given a pseudoconvex open neighbor-
hood U of Ky we can find a C°°-strictly plurisubharmonic exhaustion
function u for U such that K c Uo = {z e U; u{z) < 0}. Then, let
D> = D \ ϋ0 and K' = Ί> Π 9£/0. Clearly, if ί/ Π 5 is small enough, we
are again in the above situation, with D' and K' in place of D and K.
Since we may choose U so that U Π D is as small as we please, we
conclude that the theorem is true for D and K as well.3 D

Our next theorem is concerned with holomorphic functions, rather
than with CR-functions, and improves a result of Stout [7] (Theorem
I.l.(B)).

THEOREM 2.2. Suppose n > 3. Let Ω c D be an open set such that

Ω U (dD\K) is a neighborhood in T) of 3D \ K. For every f e 0(Ω) there

exists an F e Θ(D) with F = f on Ω near dD\Kprovided the following

two conditions hold:

(i) D is pseudoconvex;

(ii) There exists an open neighborhood Nof K in D such that KN = K,

or else K has a pseudoconvex neighborhood basis relative to D. 4

3 The role of the condition (i) of this theorem is merely to ensure that, for each component
Kλ of K, there are peak points for Θ(D) on 3D \ K as close to Kλ as we please. Indeed
the theorem is still true under this weaker condition in place of (i).
4 Here we may dispense with the assumption, made in Introduction, that dD\K is
C1-smooth.
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Proof. In view of (i) we may find an increasing sequence {Ds}f=ιoί

C00-bounded strictly pseudoconvex subdomains of D such that D =

Uf-i A We consider first the former case of (ii). Let P c JV be a closed

neighborhood of K in D and let PN = Π φ e ^ ( Λ Γ ) φ~ 1 (φ(^ > )) Clearly, since

KN = K, we may assume that PN\K is as small as we please, provided P

is small enough.jNΓow let us set D's = Ds\PN, K's = Z>; Π PN and Ns' =

~D'S Π M Then (K;)N; = #/, dD^\κ; c 32)5 and further, for all suffi-

ciently large s, dD's \ Kf

s c Ω; and hence, on account of Theorem 2.1, it

follows that there exists an F e Θ(D\PN) with F = / on Ω near

dD\PN. This concludes the proof under the former case of (ii), since

PN\K may be as small as we please. The proof under the latter case of

(ii) is similar and even simpler: we just need to replace PN by the closure

of the open set Uo considered in the proof of Theorem 2.1 D

From the theorem above we can readily derive the following further

result, relating to our main problem, which may be considered as a partial

improvement of the classical Hans Lewy extension theorem:

COROLLARY 2.3. Suppose n > 3. Every f e CR(dD\K) has a unique

extension F e Q(D) Π C°(D\K) provided the following three conditions

hold:

(i) D is pseudoconvex;

(ii) There exists an open neighborhood N of K in D such that KN = K,

or else K has a pseudoconvex neighborhood basis relative to D;

(ϋi) dD\K is C2-smooth and its Levi form (with respect to D) has at

least one positive eigenvalue at each point.

Proof. By a refined version of Hans Lewy extension theorem (cf.

Harvey-Lawson [3], Theorem 10.2), we know that, for every / G

CR(dD\K), there exists an open neighborhood T of dD\K in Ί)\K

such that / has a unique extension fλ e Θ(T Π D) Π C°(Γ). Hence our

thesis follows at once from Theorem 2.2, for Ω = T Π D. D

Our next—and last—result is of a rather different kind from the

previous ones, as being a Hartogs' type theorem for a suitable class of

relatively open domains in a Levi-flat hypersurface.

THEOREM 2.4. Let M be a C2-smooth Levi-flat real hypersurface in an

open set ί / c C 1 , n > 3. Let Ω c c U be a pseudoconvex open domain

such that the following two conditions hold:

(i) A = M Π 2 is an open domain in M with connected boundary

dA= M Π 8Ω;
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(ii) β \ i = Ω 1 UΩ 2 , with Ω1 and Ω2 being separated open domains.
Then every f e 0(dA) has a unique extension F e Φ(A).

Proof. In the first place we observe that, since Ω is pseudoconvex and
M is Levi-flat, Ω1 and Ω2 are both pseudoconvex as well. Hence we may
consider three increasing sequences of C00-bounded strictly pseudoconvex
domains {ΩJf=1, {2]}%, and {Ω2}f=1? such that Ω = U?LA, Ω1 =
UjLxΩί and Ω2 = Uf=1Ω

2. Now, let / e Φ(dA) be given. Plainly, there is
an integer t large enough so that / e Θ(M Π 9ΩJ for s > t, and there-
fore it suffices to prove that there isan F e ί ( M Π Ω,) with F = / on a
neighborhood of M Π 9Ωr Writing Ds = Ωr\(Ω* U Ω2) and Ks = ΩtΓ)
(9ΩJ U 3Ω2), it is readily seen that M n Ω, = Γ^LxZ), and Λf Π 3Ω, =
Πf_i(θ/>Λ*Λ a n d h e n c e / G Θ^Ds\Ks) for all sufficiently large s.
Since D^ and JSΓ, satisfy the conditions of Theorem 2.1, it follows that
there is exactly an F e Θ(DS) Π C ° ( 5 5 \ ^ 5 ) with F = f on dDs\Ks,
which yields the desired conclusion. D

REMARK. None of the results of this section extends in general to the
case n == 2. As regards Theorem 2.1, Theorem 2.2 and Corollary 2.3, this
is shown by the same example which disproves Theorem 1.1 for n = 2,
discussed in the first remark of §1. In fact that example satisfies also all
the conditions of Theorem 2.1, Theorem 2.2, and Corollary 2.3 (both cases
of the condition (ii)). As regards Theorem 2.4, let M = {(z,w) e C2;
\w\ = 1}, which is a real-analytic Levi-flat hypersurface in C2, and Ω =
B4(\/ϊ). Then M and Ω satisfy the two conditions of Theorem 2.4, with
A = {(Z,H>) e C2; \z\ < 1, |w| = 1} and dA = {(z,w) e R2, \z\ = |w| =
1}, but plainly the thesis of that theorem is not true in this case.
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