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A CHARACTERIZATION THEOREM FOR COMPACT
UNIONS OF TWO STARSHAPED SETS IN R?

MARILYN BREEN

Set S in R? has property P, if and only if S is a finite union of
d-polytopes and for every finite set F in bdryS there exist points
¢1,--., ¢ (depending on F) such that each point of F is clearly visible
via S from at least one c;, 1 < i < k. The following results are estab-
lished.

(1) Let S € R3. If S satisfies property P,, then S is a union of two
starshaped sets.

@ Let SCRY d>3.H Sisa compact union of k starshaped
sets, then there exists a sequence {S,} converging to S (relative to the
Hausdorff metric) such that each set S; satisfies property P,.

When d =3 and k = 2, the converse of (2) above holds as well,
yielding a characterization theorem for compact unions of two starshaped
sets in R>.

1. Introduction. We begin with some definitions. Let S be a subset
of R Hyperplane H is said to support S locally at boundary point s of S
if and only if s € H and there is some neighborhood N of s such that
N N S lies in one of the closed halfspaces determined by H. Point s in S
is called a point of local convexity of S if and only if there is some
neighborhood N of s such that N N § is convex. If S fails to be locally
convex at g in S, then q is called a point of local nonconvexity (Inc point)
of S. For points x and y in S, we say x sees y via S (x is visible from y
via §) if and only if the segment [x, y] lies in S. Similarly, x is clearly
visible from y via S if and only if there is some neighborhood N of x
such that y sees via S each point of N N S. Set S is locally starshaped at
point x of S if and only if there is some neighborhood N of x such that x
sees via S each point of N N S. Finally, set S is starshaped if and only if
there is some point p in S such that p sees via S each point of S, and the
set of all such points p is called the (convex) kernel of S.

A well-known theorem of Krasnosel’skii [3] states that if S is a
nonempty compact set in R¢, S is starshaped if and only if every d + 1
points of S are visible via S from a common point. Moreover, “points of
S” may be replaced by “boundary points of S” to produce a stronger
result. In [1], the concept of clear visibility, together with work by
Lawrence, Hare, and Kenelly [4], were used to obtain the following

63



64 MARILYN BREEN

Krasnosel’skii-type theorem for unions of two starshaped sets in the
plane: Let S be a compact nonempty set in R?, and assume that for each
finite set F in the boundary of S there exist points ¢, d (depending on F')
such that each point of F is clearly visible via S from at least one of ¢, d.
Then § is a union of two starshaped sets. -

In this paper, an analogous result is proved for set S in R?, where S
satisfies the additional hypothesis of being a finite union of polytopes.
Furthermore, while not every compact union F of two starshaped sets in
R3 satisfies this hypothesis, F will be the limit (relative to the Hausdorff
metric) for a sequence whose members do satisfy it. This in turn leads to a
characterization theorem for compact unions of two starshaped sets in R>.

The following terminology will be used throughout the paper: ConvS,
cl S, int S, relint S, bdryS, relbdryS, and kerS will denote the convex
hull, closure, interior, relative interior, boundary, relative boundary, and
kernel, respectively, for set S. The distance from point x to point y will
be denoted dist(x, y). For distinct points x and y, L(x, y) will be the
line determined by x and y, while R(x, y) will be the ray emanating from
x through y. For x € §, A4, will represent { x: z is clearly visible via S
from x}. The reader is referred to Valentine [7] and to Lay [5] for a
discussion of these concepts and to Nadler [6] for information on the
Hausdorff metric.

2. Theresults. The following definition will be helpful.

DEFINITION 1. Let S C RY. We say that S has property P, if and
only if § is a finite union of d-polytopes and for every finite set
F C bdryS there exist points c;,...,c, (depending on F) such that each
point of F is clearly visible via S from at least one ¢;, 1 < i < k.

Several lemmas will be needed to prove Theorem 1. The first of these
is a variation of [2, Lemma 2].

LEMMA 1. Let S C RY, z € S, and assume that S is locally starshaped
at z. If p € convA, and p # z, then there exists some point p’ € [ p, z)
such thatp’ € A,.

Proof. As in [2, Lemma 2], use Carathéodory’s theorem to select a set
of d + 1 or fewer points p,,..., p, in A, with p € conv{ p,,..., p,}. Say
p=2{Ap:1<i<k}, where 0 <A, <land Z{(A:1<i<k}=1
Observe that for any 0 < p <1, point pz+ (1 —pu)p on [z,p] is a
convex conbination of the points pz + (1 — p)p,, 1 <i < k. Also pz +
1 —-pw)p,€lz,p], 1 <i<k. By the definition of locally starshaped,
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together with the definition of clear visibility, we may choose a spherical
neighborhood N of z, p &€ N, such that z and each p, see via S every
point of N N S. We may choose py, 0 < py < 1 and p, sufficiently near 1
that each point pyz + (1 — py)p; = p! belongs to N. Define

p = E{Aip{: 1<ix< k}

=poz+(1—py)pe conv{p{,...,p}c} N(z,p) N N.
We will show that p’ satisfies the lemma. For x € NN S, [x,z]C N
N S, p, sees [x, z] via S, and hence conv{ p{, x,z} € N N S. By an easy
induction, conv{ p;,..., p1,x,z} € N N S. Since p’ € conv{ p;,..., i}
[p’,x] < S. We conclude that p’ sees via S each point of NN S,
p’ € A,, and Lemma 1 is established.

LEMMA 2. Let S be a closed set in R%. Let P be a plane in R¢, B a
component of P ~ S, with S locally starshaped at z € bdry B. Assume that
line L in plane P supports B locally at z and that B N\ M is in the open
halfplane L, determined by L for an appropriate neighborhood M of z. Then
(convd4,) N P C cl L,, where L, is the opposite open halfplane determined
by L.

Proof. Suppose on the contrary that there is some point p €
(convA4,) N P N L,, to obtain a contradiction. Then p # z, so by Lemma
1 there exist point p’ € [ p, z) and convex neighborhood N of z such that
p’ sees via S each point of N N S. For convenience of notation, assume
that NC M C P.

By a simple geometric argument, we may choose a point b € BN N
such that R( p’, b) meets N N L at some point w. Since BN NC BN M
C L,, w é& B, so(b,w] meets bdry B at a point c. We have ¢ € [b,w]C N
and c€ bdryBC S, so ¢ € NN S. Therefore, by our choice of p’,
[p/sc] < S. Hence b € [p’,c] C S, impossible since b € BC P ~ S. We
have a contradiction, our supposition is false, and (conv4,) N P C cl L,.
Thus Lemma 2 is proved.

LEMMA 3. Let S be a compact set in R>, and assume that S is a finite
union of polytopes. Let P be a plane in R*, with b a bounded component of
P ~ S. For z a point of local convexity of cl B, z in edge e C relbdrycl B,
there exists a plane H such that the following are true:

(1) H N P is a line containing e.

(2) The two open halfspaces determined by H can be denoted H, and H,
in such a way that for N any neighborhood of z such that (cl B) N\ N is
convex, B N N lies in H, while A, C cl H,.
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Proof. Notice that S is locally starshaped at each of its points and
that bdry B is a closed polygonal curve in P. Let J be a plane, J # P,
such that J contains edge e of bdry B. If N is any neighborhood of z such
that (cl B) N N is convex, then J supports (cl1B) "N at e, and BN N
necessarily lies in one of the open halfspaces J, determined by J. If
A, € clJ,, then J satisfies the lemma. Otherwise, 4, N J, # &.

For convenience of notation, let P, and P, denote distinct open
halfspaces in R> determined by plane P, let L = P N J, and label the
halfplanes in P determined by L so that BN N C L, =J, N P. (See
Figure 1.) Observe that convA, is necessarily disjoint from one of J; N P,
or J; N P,, for otherwise (conv4,) NJ; N P = (convA,)NL, NP+ &,
contradicting Lemma 2. Thus we may assume that (conv4,) NJ; N P, =
@, and since (conv4,) N L, = &, (convA4,) NJ; C P,.

FiGure 1

Examine the pointsof A, NJ, C P,. Forx € 4, N J,, x seesvia S a
nondegenerate segment s, at z contained in edge e, thus generating a
planar set T, = conv(s, U { x}). Since none of the T, sets lie in P, each
determines with cl L, an angle of positive measure m(x). Define m =
glb{m(x): x € A, N J;}. Since S is a finite union of polytopes, the T,
sets lie in a finite union of polytopes, each meeting edge e in a nondegen-
erate segment at z, each contained in P, U L. This forces m to be
positive. Using a standard argument, select sequence { x;} in 4, N J; so
that { m(x,)} converges to m. Some subsequence of { x,} also converges,
say to x,. Moreover, the angle determined by conv(e U {x,)} and cl L,
has measure m, and x, € (cl4,) NJ, C P,. Let H be the plane de-
termined by conv(e U { x,}). Of course H N P = L. Furthermore, for an
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appropriate labeling of halfspaces determined by H, L, € H, so BN N
C H,.

It remains to show that A4, C cl H,. Suppose on the contrary that
y€A,N H,. If y € P, then the angle m chosen above would not be
minimal. If y € P, then y € 4, N P N L,, contradicting Lemma 2. If
y € P,, then since y € P, H; and x, € P, N H, [y, x,] would meet
P N H, = L,. Moreover, since x, € cl 4,, there would be a point x; € 4,
sufficiently near x that [y, x;] would meet P N H, = L, also, say at
point w. Then w € (conv4,) N P N L,, again contradicting Lemma 2. We
conclude that 4, N H, = &, and A4, C cl H,, finishing the proof of
Lemma 3.

The final lemma follows immediately from [4, Theorem 1].

LEMMA 4 (Lawrence, Hare, Kenelly Lemma). Let S be a closed set in
R4, Assume that every finite set F in bdryS may be partitioned into two sets
F, and F, such that each point of F, is clearly visible from a common point of
S. Then bdryS may be partitioned into two sets S, and S, such that for every
finite set F in bdryS, each point of F N S, is clearly visible from a common
point of S, i = 1,2.

We are ready to prove the following theorem.

THEOREM 1. Let S C R3. If S satisfies property P,, then S is a union of
two starshaped sets.

Proof. Using Lemma 4, select a partition S;, S, for bdryS such that
for every finite set F in bdryS, each point of F N S, is clearly visible via
S from a common point. For i = 1,2, define J, = {cl 4,: z € S;}. Then
each 7, is a collection of compact subsets of S. Moreover, by our choice
of S; and S,, each 7, has the finite intersection property. Hence {7 T
in J,} # &, and we may select points ¢ and d withc € \{T: T in I}
and d € (T: T in J,}. Observe that for z € bdryS = S; U S,, one of ¢
or d, say c, belongs to cl4,. Then [c,z] C S. We conclude that each
boundary point of S sees via S either ¢ or d.

We will show that each point of S sees via S either ¢ or d. Portions of
the argument will resemble the proof of [1, Theorem 1]. Let x € S and
suppose on the contrary that neither ¢ nor d sees x, to reach a contradic-
tion. Certainly x & { ¢, d}, and by a previous observation. x € intS. As
in [1, Theorem 1], choose the segment at x in S N L(c,x) having
maximal length, and let p and g denote its endpoints, with the order of
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L'

FIGURE 2

the points ¢ < p < x < q. Then p, g € bdryS, neither is seen by ¢, so d
sees via S both p and ¢. Notice that d &€ L(c, x) since d cannot see x.
Similarly, choose a segment at x in S N L(d, x) having maximal length,
and let r and s denote its endpoints, d < r < x < 5. Then point ¢ sees via
S both r and s. (See Figure 2.)

Since points c, d, x are not collinear, they determine a plane P in R>.
In the next part of our proof, we restrict our attention to P. Since
[d,x] & S, there is a segment in (d,r) ~ S, and this segment lies in a
bounded component K of P ~ S, K C relintconv{d, p,q}. Likewise,
there is a segment in (¢, p) ~ S belonging to a bounded component J of
P ~ S, J Crelintconv{c,s,r}. Letting L(c,r) N L(d, p)={v}, it is
not hard to show that J and K lie in opposite open halfplanes of P
determined by L(v, x).

For future reference, observe that for any line U from ¢ meeting K,
d & U, d cannot see via § all points of bdry K on the opposite side of U
from d, so c¢ sees via S some of these points. Thus if line U’ from ¢
supports conv K, by a convergence argument, ¢ sees via S some point of
U’ N (bdry K'). We will use this observation in the next part of the proof.
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Define line L’ and associated point ¢ as follows: Clearly L(c,v) NJ
= . In case L(c,v) N K # @, let L, denote the open halfplane of P
determined by L(c,v) and containing J. Let L’ be the line from ¢
supporting convK at a point of L,. Using our previous observation,
L’ N (bdry convK) contains some point ¢ of bdryK such that [c, 7] C S.
In case L(c,v) N K = @, rotate L(c, v) about ¢ toward d until bdryK is
met. Let L’ be the corresponding rotated line. Again using our observa-
tion, there is some 1 € L’ N (bdryconvK) N (bdryK) with [c, ¢] C S. Of
course, in each case ¢+ may be chosen to be the furthest point from ¢
having the required property. Moreover, [¢, ] N J = &, and we may label
the open halfplanes of P determined by L’ so that J € Lj. Then K U {d}
lies in the opposite halfplane L.

Since S is a finite union of polytopes, bdry K is necessarily a simple
closed polygonal curve in plane P. By our choice of ¢, clearly ¢ is a point
of local convexity of cl K. Also, ¢ must be a vertex of bdry K, so bdryK
contains two edges e, and e, at t. Moreover, for an appropriate labeling
of these edges, e; C cl L), e, € L} U {t}, and for any neighborhood N of
¢t with (c1 K) N N convex, K N N and c lie in the same open halfplane of
P determined by L(e,).

Using Lemma 3, select a plane H such that H N P is a line con-
taining e,, K N N C H;, and 4, C cl H,. Similarly, select plane M for e,
so that K N N C M, and 4, C cl M,. Recall that by our choice of ¢ and
d, at least one of these points lies in cl 4, C cl H, N cl M,. Since ¢ and
K N N are in the same open halfplane of P determined by L(e,), ¢ € H,.
This forces d to belong to cl H, N cl M, N P. However, clearly cl H, N
clM, N P C clL, while d € L’,. We have a contradiction, our supposi-
tion is false, and every point of S must see via S either ¢ or 4. Hence S is
a union of two starshaped sets, and Theorem 1 is established.

THEOREM 2. Fork > 1 and d > 1, let # (k, d) denote the family of all
compact unions of k (or fewer) starshaped sets in R?, €(k, d) the subfamily
of & (k, d) whose members are finite unions of d-polytopes. Then €(k, d) is
dense in % (k,d), relative to the Hausdorff metric. Moreover, % (k,d) is
closed, relative to the Hausdorff metric.

Proof. In the proof, h will denote the Hausdorff metric on compact
subsets of RY. That is, if (4); = {x: dist(x, A) < &), then for 4 and B
compact in R? h(A,B) = inf{8: A C (B);and B C (A);,8 > 0}.

To see that €(k,d) is dense in F(k,d), let S € #(k,d). For an
arbitrary § > 0, we must find some C in ¢(k, d) for which A(S,C) < 6.
Assume that each point of S is visible via S from one of s,,...,s,. Form
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an open cover for S, using interiors of d-simplices whose diameters are at
most 8/2. Using the compactness of S, reduce to a finite subcover, say
{int P: 1 <j<m}, where P, is a d-simplex. For 1 <i <k, define
C; = U{conv(s; U P)): s; sees via S some point of P;, 1 <j < m}. Cer-
tainly set C = C; U -+ UC, is a union of k starshaped sets as well as a
finite union of d-polytopes. Thus C € ¥ (k, d).

Clearly S € C, so § € (C);s. To see that C C (S),, let x€ C~ S.
Then x € conv(s; U P)) for some i and j. Moreover, for an appropriate i
and j, there is some y’ € P,N S with [s;, y']C S. If x, s, y' are
collinear, then since x & S, x must belong to P, and dist(x, y’) < §/2.
Thus x € (S),. If x, s;,, y are not collinear, assume x € [s;, y] where
y € P, and let x’ be the point of [s,, y’] such that [x, x'] and [y, y’] are
parallel. Then x” € S and dist(x, x") < dist(y, y’) < §/2. Again x € (S);.
We conclude that C C (S);, A(S,C) <9, and ¥(k, d) is indeed dense in
F(k,d).

Finally, to see that % (k,d) is closed, let {S;} be a sequence in
F (k,d) converging to the compact set S,, to show that S, € #(k, d)
also. For convenience of notation, for i > 1, let S; be a union of &
starshaped sets whose compact kernels are 4,;, 4,,,..., A;, respectively.
Then by standard results concerning the Hausdorff metric [6], {A4;:
i > 1} has a subsequence { 4]} converging to some compact convex set
A,. Pass to the associated subsequence {S/} of {S;}, and repeat the
argument for corresponding kernels { 4, }. By an obvious induction, in k

steps we obtain subsequences { AP}, {4¥},...,{A¥} converging to
compact convex sets A,,..., A, respectively. It is a routine matter to

show that S, is a union of k or fewer compact starshaped sets having
kernels 4,,..., 4,.

THEOREM 3. Let S be a compact union of k starshaped sets in R¢,
k > 1, d > 3. Then there is a sequence {S;} converging to S (relative to the
Hausdorff metric) such that each S; satisfies property P,. That is, using the
notation of Theorem 2, sets having property P, are dense in F (k, d).

Proof. As in the proof of Theorem 2, 4 will denote the Hausdorff
metric on compact subsets of R“. For any § > 0, we must find some C
having property P, for which A(S,C) < 8.

Assume that each point of S is visible via S from one of the distinct
points s,, ..., s,. Form an open cover for S using spheres of radius 8 /4,
centered at points of S. Reduce to a finite subcover, and choose the center
of each sphere. Say these centers are the points ¢,,...,¢,. Partition
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{t,...,t,} into k subsets V},...,V, such that the following is true: If
t € V, then s; is a point of {s;,...,s,} closest to ¢ with [s;, ] C S.
Define T, = U{[s,, t]: t € V;}. Observe that s, & T, for i # j: Otherwise,
5; € (s;,t] for some t € V,, [s;,1] C (s;, 7] € S, and s5; would be closer to
t than s; is to ¢, impossible by the definition of V.

In case the sets T, . .., T, are pairwise disjoint, let 7, = T, 1 < i < k,
and define T to be their union. Otherwise, suppose 7; meets T, U --- UT,.
Then for some point in ¥V, call it #, (for convenience of notation), (s, #;]
meets T, U --- UT,. Using the facts that each 7, set is a finite union of
edges at s, s, € T, U --- UT,, and d > 3, it is not hard to show that
there exists an edge [s,, #;] not collinear with [s,, #;] such that [s,,#{] is
disjoint from 7, U --- UT, and dist(¢, t;) < 8/4. Thus A([s;, t,),[51, t1])
< 8 /4, also. Repeating the procedure for each edge of 77, in finitely many
steps we obtain a new set 77 starshaped at s, such that 77 is disjoint
from 7, U --- UT, and h(T, TY) < 6/4.

Continuing the process for T,,...,T,, by an obvious induction we
obtain pairwise disjoint starshaped sets 7}, T5,..., T, with A(T,,T;) <
8/4, 1 <i<k. Define T=T/ U --- UT,. Standard arguments reveal
that

h(S, T, U --- uTk)<%, h(T, U --- UTk,T)<g-,

and hence A(S,T) < §/2.

Finally, we extend the sets 77,..., T/ to finite unions of d-polytopes.
define m = min{ h(T;/,T/):i #j}. Using techniques from Theorem 2,
selectset C = C, U --- UC, in ¥(k,d) with h(T,,C;) < min{8/2, m/2}
and with s, € kerC,, 1 <i < k. Since h(T,,C;) < m/2, certainly the C,
sets must be pairwise disjoint. Therefore, each boundary point of C is
clearly visible from some s;, 1 < i < k, and C has property P,. Moreover,

h(S.C) < h(S.T) + h(T.C) < 2 + 2 -s.
Theorem 3 is established.

It is interesting to observe that while Theorem 3 holds when d > 3, it

fails in the plane, as the following easy example reveals.

ExAMPLE 1. Let S be the set in Figure 3. Then S is a union of two
starshaped sets with kernels {c}, {d}, respectively. However, sets suffi-
ciently close to S fail to satisfy the clear visibility condition required for
property P,.
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FiGURE 3

Finally, the characterization theorem for unions of two starshaped

sets in R® is an easy consequence of our previous results.

COROLLARY 1. Let S C R3. Then S is a compact union of two starshaped

sets if and only if there is a sequence {S,} converging to S (relative to the
Hausdorff metric) such that each set S, satisfies property P,.

Proof. The necessity follows immediately from Theorem 3. For the

sufficiency, Theorem 1 implies that each set S; is a compact union of two
starshaped sets in R3. By Theorem 2, their limit S is a compact union of
two starshaped sets as well.
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