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LINES HAVING CONTACT FOUR WITH A
PROJECTIVE HYPERSURFACE

GEORGE JENNINGS

Let I c P " + 1 ( Q be a projective hypersurface and p e X. The
third contact cone of X at /?, Cp

3, is the set of all lines in P n + 1 having
contact > 4 with X at p. If dim X > 3 then the map p •-> (projective
moduli of C*) usually is a local immersion (answering a conjecture of
Griffiths and Harris), and one can prove a rigidity theorem: X is
determined by the projective moduli of its C^'s and certain fourth order
invariants. This immersion property may fail e.g. if X is a homogeneous
space. We study this case also.

Introduction. In [G-H, pp. 450], Griffiths and Harris remark that the
local geometry of a projective hypersurface can be described in terms of
certain third order invariants (the C^'s) which occur in moving frames
computations. It is known (see [J.2, Cor. 15]) that Cp usually is a smooth
complete intersection of type (2, 3) in the projectivized tangent space
PTpX of X at p. For example, Griffiths and Harris observe that, if X is a
general hypersurface of dimension 4 then Cp is a canonical curve of genus
4 in Y*TpX (at a general p) and they conjecture that the associated map
X -> (moduli of curves of genus 4) should be locally injective. Is this true?
To what extent does this map determine the geometry of XΊ What
happens in other dimensions?

The present study grew out of an attempt to verify the Griffiths-
Harris conjecture. In §1 we give the basic definitions, and work some
examples. Section 2 is concerned with computing the ideals of the Cp 's in
terms of a moving frame, and a proof of the Griffiths-Harris conjecture in
the general case (Prop. (2.10)). Novel features of our moving frames
computation are the explicit general formulas (2.6) and (2.8) which greatly
simplify the usual inductive procedure for computing invariants, and the
fact that the invariants appear naturally as polynomials instead of simply
as lists of coefficients (as in [G-H] and [C]).

In §3 we prove a rigidity theorem (Th. (3.3)) involving the map into
moduli space and a quartic related to its first derivative, and conclude
with a theorem (Th. (3.6)) relating failure of the Griffiths-Harris conjec-
ture (in certain cases) to group actions.
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1. Definitions and examples. Let °lί be open in P " + 1 = P"+1(C), and
X c °ll a smooth analytic hypersurface. Let G(l, n + 1) be the Grassman-
nian of lines P w + 1 , and / - {(/?,/) e P * + 1 X G(l, n + 1) \p e /} the
incidence correspondence with projection π: J -> P w + 1 .

DEFINITION. For each r = 0,1,.. ., the rth contact cone of X is

Cr = {(/>> 0 G ^r"1* If has contact > r + 1 with X at /?}, with

The contact cones measure the local geometry of the embedding
X ^> <%. Identify / with the projectivized tangent space p ^ P " * 1 via the
relation "v is tangent to /". Then C° = P Γ P W + 1 | ^ , C1 = PTX, C/ =
(asymptotic lines through /?}, etc. The following facts are proved in [J.2].

(i) Cr is an analytic subscheme of /.
(ϋ) If X is not ruled then, at a generic point p e X, C£+ι is empty

and, for all r = 1,..., w, Cr

p c p r p w + 1 i s a smooth complete intersection
of type (1,2,..., r\

(iii) Moreover if, for some r < n, Cr

p is a smooth complete intersec-
tion of type ( 1 , . . . , r) at generic p e X, then Cp

5 is a smooth complete
intersection of type ( 1 , . . . , s) at generic p e C for all s = 0,..., r (even if
X is ruled).

Throughout this paper we shall assume that C* is a smooth complete
intersection of type (1,2,3) for generic p e X.

View C ,̂ r > 1, as an abstract algebraic subvariety of P " " 1 = PTpX
defined modulo "protective equivalence" = linear change of coordinates
in P " " 1 . If r, n > 3 then the projective equivalence class [Cp] has
nontrivial projective moduli. Let [C3]: X -» (moduli of C^'s) be the map
into projective moduli space.

(1.2) EXAMPLE. If n = 3 then Ĉ 2 = P 1 is a plane conic, and Cp is six
points on Cp. Thus Cp has oo3 projective moduli. If n = 4, Ĉ 3 c P 3 =
PT^X is a canonical curve of genus 4 with oo9 moduli. If n = 5, Ĉ 3 c P 4

is an algebraic K — 3 surface with oo19 moduli.
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Despite the large number of moduli the map [C3] may not be
injective. In fact it is constant if, as in the following examples, the group
GL(« + 2), which acts linearly on P w + 1 , contains a subgroup which acts
transitively on X. See Th. (3.6).

(1.3) EXAMPLE. (Abelian). Let X c pm+n~ι be defined by the homo-
geneous polynomial F(Y, Z) = Π ^ Y? - Π]==ι ZJ1. X is the closure of
the orbit of [1 , . . . , 1] under the group of diagonal matrices of the form

A =

0

0
such that 1 = Π a* = Π */•

If m, n are relatively prime then X is not ruled, so C* is a smooth
complete intersection of type (1,2,3) for generic p e X.

(1.4) EXAMPLE. (Non-Abelian). Regard P 4 = P # 0 ( P \ 0(4)) as the
linear system of quartics on P1. Let G c SL(5) be the image of the
representation S4: SL(2) -> SL(5) arising from the action of SL(2) on

quartics:

(a b\ F(X, Y) = F(aX + bX,cX + dY).
\c a)

Then G s SL(2)/{\/Γ} is non-Abelian.
If F has at least three distinct roots then the orbit G

hypersurface in P 4 . Let pl9..., p4 be the roots of F,
F is a

their cross ratio, / = 4(1 - λ + λ2)3/27λ2(l - λ) 2 (which does not de-
pend on the order of the /?/s), D(F) the discriminant, and E(F) the
cubic in the coefficients of F such that E{F) = 0 whenever d2F/dXι

9

3 2F/3^37, and d2F/dY2 are linearly dependent quadrics, with E(F)
normalized so that E(F)2 = Dίi 7) when /(jp) = 0. Then the closure of
the orbit G F is the algebraic hypersurface

where/ =
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If J(F) Φ 0,1, or oo then the six cross ratios gotten by permuting the
roots of F are distinct, and G F is an algebraic hypersurface of degree six
which is not ruled. The exceptional cases are:

/ = 0: There are only two cross ratios. G F is a smooth quadric
threefold, ruled by lines.

J = 1: There are only three cross ratios. G F is a cubic—the secant
variety of the rational normal curve [s, t] -> [(sX - tY)4] in P 4 . Thus G F
is ruled by lines.

J = oo: F has a multiple root. G Fhas degree six. Its dual in P 4 * is
the rational normal curve [X,Y]-> [X\ X3Y, X2Y2, XY\ Y4]. Thus G^~F
is ruled by planes.

2. Moving frames and the Griffiths-Harris conjecture. Let (x) =
(xl9. . . , J C M + 1 ) be an affine coordinate system on a neighborhood of p,
(dx) = (dxv..., dxn+1), g ^ 0p. Expand g in a power series:

(2.1) g(χ(p) + t) = g°(χ(P)) + g ^ ί ^ O + g2(χ(p);t) + • •,

where / = ( ί 1 ? . . . , fπ+1) are indeterminants and gr(x(p);t) is the rth
order part. If g generates the ideal JpX of X at /?, then y e 7^Rn+1 is
tangent to a line / with (/?,/) e C/ iff 0 = g°(x(p); dx(υ)) = =
gr{x(p)\ dx{υ)). Viewing Cr as a subscheme of PΓP n + 1 it follows that
the ideal sheaf Jr of Cr is generated by

in coordinates.
Let (x, y) = (x x,..., xM, >;), t = (r l 9 . . . , ί„).
If /? G X is a smooth point and dxv..., Jxrt are linearly independent

on TpX then we may assume g is of the form

(2.2) * (* ,>) =/(x)- .K

for some local analytic function f(xl9...9xn) uniquely determined by X
and the choice of coordinates. The ideal

determines a variety in P"""1 s Y*TpX which is projectively equivalent to

;
Let e = (e o , . . . ,e π + 1 ) be a basis for C n + 2 . The set J ^ P n + 1 of all

such e is a principal bundle over P " + 1 with projection πe = e0

(projectivized). J ^ P W + 1 = GL(n + 2) by right multiplication: e ^ =
(Σrer - Ar

0,.. .9Σrer ^ + i ) . The structure group i/0 c GL(n + 2) is the
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group of matrices of the form

325

(2.3) A =
0

0 *

The Maurer-Cartan forms ωj are defined by

(2.4) det = Σer »',.

Each e G ̂ * P n + 1 determines a unique homogeneous coordinate sys-
tem [ Z o , . . . , Zn+ι], such that Z i(e/) = δj, and a unique affine coordinate
system (x, y) such that xt = ZJZ^ i = 1,...,Λ, and >> = Zn+1/ZQ.
Clearly

(2.5) (Λ: ,J ;)(^ 0 ) = 0, and w*rfxr = ωj, r = l , . . . , w .

If ^0 G X is a smooth point and Jx 1 ? . . ., dxn are linearly independent
on Te X then ^ determines a unique function / as in (2.2); write

/ = /(*;•), and fr(x(e0); t) = f'(e; t), r = l , 2 , . . . ,

for the power series as in (2.1).
If iΓ<z GL(n + 2) is sufficiently small so that, for all A e TΓ,

/(e; •) and /(e 4̂; •) are both defined on a common neighborhood of e0

and (e - A)o, then, after substituting ^ = f(x) into the affine coordinate
transition functions, one has an identity

= / e ; . . . , -

where i runs from 1 to n. Differentiate at A = / and take rth order parts:

(2.6) ψ = (1 - r)/'«8 +(2 - r)f'-ιΣtjtf + Σ\l -

cr+l

w« + l

sn + l£ r « + l f\r\ t n + 1 fr n-

j
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where /, j run from 1 to «, f ι = 0, and dfr is the derivative of the
polynomial-valued map e »-» fr(e; t).

By (2.5), f°(e) = 0 for all e G iτ~\p). By making a change of frame
of the form e -> e A, A ^ Ho (2.3), one may arrange that eθ9...9en

span Tp X, i.e. that / 1 ( e ; i ) ^ 0 . Assuming Cp is a smooth complete
intersection a further normalization makes f\e\t) = β, where Q is the
standard quadric

Q-ΪΣtf

The set of all such frames forms a principal bundle
whose group H is all nonsingular (« + 2 ) X ( « + 2) matrices

(2.7) A =
a * *

0 5 *

lo o c

such that
ja,c e C -{0},and

where O{n) <z GL(n) is the complex orthogonal group.
Set

R=f3(e;t)9 T = f5(e;t) and G

On &QX9 f° = 0, fι = 0, / 2 = β, so
Using these relations (2.6) becomes

(2.8) ωg+1 = 0, ωf+1 =

= 0, rf/1 = 0,

over X

= 0.

dR =

where i, y, fc run from 1 to «, and i?7 denotes 8JR/8/f. etc.
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Let e, ef E j ^ I , π(e) = ef) = p\ Then by definition, C/, C/, are
projectively equivalent iff β Π Re and 2 π Λ e / are, i.e., iff there exists a
complex orthogonal map B such that B - Re, = Omodβ, Re. Differenti-
ating this condition, it follows that the tangent space at [C*] to the
projective moduli space Jί of C* may be identified with

T[φJΪ=H0(P",&(3))/{Q,R,Qi,RJ-QjRi\i,j=l,...,n).

Then using (2.8), the derivative of the map p »-» [C^] e Jl may be
identified with

(2.9) { j j \ }
A:

The following answers a conjecture of Griffiths and Harris [G-H, pp. 450].

(2.10) PROPOSITION. For a generic algebraic hypersurface I c P " + 1 o /
dimension n > 3 and degree > 3, the map [C3]: X -^ JSf is a local immer-
sion near a generic p e X.

Proof. By (2.9) we need to show that G 1 ? . . . , Gn are linearly indepen-
dent modulo <2, R, {QiRj - QjRf} for some (hence any) e e π~x(p) Π
J ^ X This is an open condition on the pair (p, X), so it suffices to
produce a single example at p e X where X is a cubic.

An example which does the trick is the cubic

if

with/? = (0,0,...,0).

REMARK. The above analysis can be generalized easily, leading to an
analogue of formula (2.6) for projective varieties of any codimension. See
[J.I].

3. Rigidity Theorem. Orbits. Elie Cartan proved a rigidity theorem
which pertains to the following situation [C, §50]. Let X and Y be (local)
hypersurfaces in P w + 1 , and g: X -* Y a. holomorphic map. Assume that
for each p e X there exist affine coordinate systems (xl9..., xn+ι) on a
neighborhood in P " + 1 of p and (yl9..., yn+ϊ) on a neighborhood of g(p)
so that, for each i = 1,..., n + 1, the restriction to X of the coordinate
functions xi and the pullbacks y{ ° g agree on X through second order at
p. In this case X and Y are said to be "projectively applicable." Cartan's
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theorem says that, if n > 3 and X is not developable (X is not developa-
ble if its second contact cones are nonsingular), then X and Y are
projectively applicable iff they are projectively equivalent (in other words,
if X and Y are projectively applicable then g extends to a linear map on
P M + 1 ) . (For n = 2 see [C, §16] or [F-C, §65B]).

We seek to replace the hypothesis on g with one involving equiva-
lence of contact cones. Let g: X -> Y be a holomorphic map. For each
p G X (# G 7) let C/-Y (C^T) be the rth contact cone. Suppose one
knows only that for each p G X the contact cones CpX and CpX are
nonsingular and isomorphic to C2

{p)Y and Cg(p)Y (we do not require the
isomorphism to come from g). As the following example shows, X and Y
may not be projectively equivalent.

(3.1) EXAMPLE. Let Xc P " + 1 and let 7 c P" + 1 * be its dual: 7 =
(hyperplanes ffcPn+1 such that # is tangent to X), Let g: X -> 7 be
the Gauss map: g(p) = // if H is tangent to Jf at /?. If (e 0 , . . . , en+ι) is a
frame in !FQX over /? and eξ9...9e*+ι G C w + 1 is the dual basis (e*(e7)
= δ/y) then one checks that (eZ+ι,ef,e$,...,e%9e*) is a frame in i ^ 7
over g(ρ). The corresponding affine coordinates are related by yx ° g\x =
- x j ^ through first order at /?, and the defining polynomials for the
contact cones agree: Q(e*) = Q(e) and i?(e*) = /?(e). Thus the (pro-
jectivized) differential dg: l*TpX -* PΓg ( / > )7 restricts to an isomorphism
from CpX to C^p)Y (r = 2,3). But X and 7 are not in general projec-
tively equivalent.

(In some cases X and its dual are projectively equivalent—for ins-
tance, if X is the variety in Example (1.3), or if X is a smooth quadric.)

(3.2) DEFINITION. Triples (β, R, G) and (Q\ R\ G') of polynomials of
degrees (2,3,4) are frame equivalent if there exist a matrix A e GL(n)
and a scalar λ G C - {0} such that

QoA = Q,RΌA = XRmodQ for some λ ^ O , and

G' A = X2Gmod{Q2,QRi - RQt\i = 1, . . . ,«} .

(Here (Q - A)(t) = β(ΣrΛ?ίr,... , Σ r ^ ί r ) similarly for i?, G.)

In particular, if (g, i?, G) = (β, Λ, G)(^) for some frame e G ^
then the frame equivalence class of (Q,R,G) is just the set of all
{Q\R\G') of the form (Q'9R'9G') = (β,i?,G)(eO for some er in the
same fiber π~ιπe c ^Pn+l\x. (To see this, integrate equations (2.8) along
the fiber.) It follows that the notion of frame equivalence does not depend
on the partcular frame in a given fiber.
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Let I J c P " + 1 be (locally defined) irreducible hypersurfaces, φ:
I - » 7 a holomorphic map, CrX, CΎ the respective rth contact cones. If
φ extends to a nonsingular linear map φ: P n + 1 -» P n + 1 then CpX = C£{p)Y
are projectively equivalent for all p e X, r > 0. Conversely:

(3.3) THEOREM. With X, 7, φ as above: assume also that n > 3, CpXis
a smooth complete intersection of type (1,2,3) for all p e X, [C3X]:
X -> (Moduli of C3) is a local immersion, and (<2, i?, G) ( / 7 ),
(Q, R,G)(φ(p)) are frame equialent for all p e X. Then φ extends to a
nonsingular linear map on P" + 1 .

(REMARK. In Example (3.1), G(e*) = -G(e), so this does not con-
tradict the theorem.)

The proof of Theorem (3.3) depends on the following two lemmas,
whose proofs are given in the appendix.

(3.4) LEMMA. If n > 2 and Q is smooth and Cp = Q Π R is a smooth
complete intersection then there are no linear relations among the cubics i?,
<2<2,, i: = 1,..., Λ, and QtRj - QjR^ 1 < i' <j< n.

(3.5) LEMMA. // Q is smooth and Q Π R is a smooth complete intersec-
tion in P " " 1 andn > 3 then any quintic T in P " " 1 satisfying

T{ = O m o d f β 2 , QRk - RQk\k = 1 , . . . , « } , for alii = l , . . . , / i ,

is zero.

Proof of Theorem (3.3). Shrinking X, Y if necessary one may choose
sections e: X -> &QX, e': Y -> &QY such that (β, R,G)(e(p)) =
(Q,R,G')(e'(f(p))) for all p e X Define a map Φ: ^ Z - > J ^ 7 by
Φ(β(p)o A) = e'(f(p))oh for all /> e AT, A e # (2.7). Then since Φ is
//-equivariant,

Φ*ωj = ωιjmod COQ, . . . , ωg for all /, j = 0,..., n + 1

and (β, i?, G) = (β, i?, G) o φ on &QX.
Set ψ} = ω) - Φ*ωj, /, j = 0,..., n + 1. Then

0 = dR - Φ*Ji? = ΣG,ψS + y
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Since [C3X] is a local immersion into moduli space, Gv...,Gk are

linearly independent mod{g, R^Q Rjr— βy-R,-}, hence Ψo = 0 for all

fc = 1, . . . , it. Then by Lemma (3.4), ψ< - ψ/, ψ'n + 1 - ψ°, ψ;+} - ψ° all

vanish z, y = 1,. . . , w.

Plugging this into the JG-equation (2.8),

0 = dG- Φ*dG

Apply Lemma (3.5). Then T= Γ° φ, so ψ'n + 1 + ψ?, ψ° + 1 vanish for

all i = 1, . . . , n. Next, by (2.8), ψg+\ ψ«+\ β./Ψg + Ψϊί}) " (Ψ} + Ψ/)

all vanish, /, j = 1,.. . , n. Finally, by multiplying ef by an appropriate

scalar-valued function, one may arrange things so that Σ"=o Vr

 = 0 (this

doesn't affect the other forms).

Now

Φ*ωj = ωj for all /, j = 0,...,« + 1.

Let t: J ^ X ^ J ^ P ^ 1 = GL(π + 2) be the inclusion. By the

Frobenius theorem for maps into a Lie group [S, pp. 10-40, 41], 1 and

Φ © 1 differ by a left translation: Φ <> 1 = A ° 1 for some fixed A e

GL(π 4- 2). Clearly the induced map A: Pn+ι -* P r t + 1 extends φ. D

Theorem (3.3) does not apply in examples such as (1.3) and (1.4),

since there [C3] is a constant map. It would be nice to know whether all

such examples are homogeneous spaces. A partial result along these lines

is the following.

(3.6) THEOREM. Let I c * c P Λ + 1 , n > 3 be a smooth irreducible

analytic hypersurface such that C* is a smooth complete intersection of type

(1,2,3) for allp e j f . Then:

(a) the following are equivalent:

(i) X extends to an immersed orbit X of a connected Lie group

& c SL(w 4- 2) acting on P w + 1 in the usual way.

(iϊ) (Q, R,G)(e) and (Q,R,G)(e') are frame equivalent for all e,

(b) // (a)(i) holds then d i m ^ = n.

(c) The following are equivalent:

(i) (a)(i) holds and & is Abelian

(ii) G s 0mod{β 2 , QRt - RQ\i = 1, ...,*} for all e
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Proof. Given (a)(i), replace X by X. The map g •-» g - e =
(g e 0 , . . . , g eπ + 1) embeds @ in ^ ( X). Identify & with its image.

Let p: C w + 2 - {0} -> P n + 1 be the usual projection, f(e t) is de-

termined by the condition: ρ(e0 + extx + +entn + en+ιf(e; t)) e X

for all ί small. Multiply on the left by g e ^. Since g acts on X,

P((geo) + (g*i)Ί + +(g*,,+i)/(e; 0) ^ gX = X, hence

( * ; ' ) = / ( * ; ' ) for all g G ^ .

In particular g, i?, G are constant on 9. This implies (a)(ϋ).
Now let p = π(e), ^ = { j ^ ^ | g ° j p =,?}. ô i s constant up to

scalar multiples on π~ι(p). Thus, if υ e Γe(S^) then ω§,..., ωg+1 vanish
on v, as do Σ ? ί o < ( s i n c e % c SL(« + 2)) and dQ, dR, and JG (since,
by the above, Q, R, G are constant on 9p).

Applying the forms in (2.8) and using Lemma (3.4), it follows that
v = 0. This proves (b).

Suppose that (a)(ii) holds. Let e e , f β ( I ) . Identify S^Pn+1 with
GL(n 4- 2) by left multiplication A <-> A e. Then the Maurer-Cartan
forms ω*j are just the left invariant 1-forms on GL(n + 2).

Let

^° = SL(Λ + 2) n { ^ € ^Q(X)\(Q9R9G)(e') = (β,Λ,G)(β)}.

(a)(ii) implies that π: @° -> X is surjective. Replace ^° by the connected
component containing e. Then by the same argument as above, dim^° =
n. Since ^° -• X is surjective it follows (2.4) that the forms ωj, . . . , ωg are
a basis for Γ*^ 0 . So there are relations:

(3.7) ωj ~ ω/ - Σ*ij<

A:

in Γ*^° for some functions a£J9...,e
k where /, j , k run from 1 to n.

°Since Ji? = 0 on Γ^°, (2.8) implies

(3.8) o =
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on Γ%, hence the expression inside the parentheses vanishes for all k.
Since G is constant on ^° Lemma (3.4) implies that ak^ Z>f, ck are
constant.

Similarly, the dG equation says that

+ -ΣakGR
I 1 \ 1

r\ = j rji ±_ V^ /^ /? I — Y^ Ώ Ώ
ιj

t ~ RQi) ~ ekQ2 + ckG, k =

If there were any other solution T'9 dk\ ek\ i, k = 1,...,«, to these
equations then T' — Tr would be a quintic satisfying

n 4- 1, satisfies
Let > be the

0 = ( Γ - Γ')Λ + j Σ(rf* - ^ ')(βΛ, - RQi) ~(ek - ek')Q2

i

for all k, hence T by Lemma (3.5).
This implies that dk = Jf', e* = βΛ/, hence all of the coefficients in

(3.7) are constant. By (2.8), δl7(ωg + ω^{) - (ωj + ω/) = ΣkRijkω
k,

ω"+ι = ω'o, COQ + 1 all have constant coefficients on #°, and since ^° c
SL(« 4- 1), so does Σn

rloωr

r = 0.
Therefore every left invariant 1-form ωj, i, 7 = 0,

a relation ωj = Σkf
kjθθQ with constant coefficients on

space of 1-forms on GL(n + 2) spanned by ωj — E^/^COQ, /, 7 = 0,...,
n + 1. Then ./ is integrable on 9?°, hence, since the coefficients are
constant and dim^° = w, ./ is integrable on GL(n + 2). Let ^ c
GL(« + 2) be a maximal connected integral manifold extending &°. Since
the coefficients are constant and J> is integrable, ^ is a subgroup [S, pp.
10-40, 41]. 7r^ extends X, hence (a)(ii) implies (a)(i).

It remains to show: (c)(i) iff (c)(ii). If (c)(ii) holds then

Gk s 0mod{QQk,QkRi - RkQt + QRik - RQik, 1, A: = 1,..., n)

so (a)(ii) follows by (2.9). Thus if either (c)(i) or (c)(ii) holds then
everything above holds.

Let Hf c H (eq. (2.7)) be the subgroup consisting of all matrices:

1

Λ(λ,τ) =
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in block form (blank spaces are zero). Integrating formulas (2.8) it follows
that Q(e h) = Q(e\ R(e h) = R{e\ but

(3.9) G(e h(λ9τ)) = G(e)-

We may choose a constant λ(λ, T) so that replacing e by e h,

if (c)(i) hold then the ck 's are all zero in (3.8) ^

(3.10) {

(differentiate (3.9) with respect to tk

and apply (3.8)) } for all e

if (c)(ii) holds then G = 0 (on G),

and in particular the ck 's are all zero.}

Replace <§* c&QX by ^° h. In GL(π + 1), this just amounts to
conjugating ^° by Λ, so it doesn't affect commutativity. ω\,..., ωg are a
basis for the left invariant 1-forms on ̂ °. So ̂ ° is Abelian iff 0 = dω^
i = 1,..., n, in Λ2Γ*^°. Differentiating (2.4) on

d°>Ό = ~ Σ ω j Λ ω o
7 = 0

Using (2.8), (3.7), (3.10) this reduces to

1 n

dω0 = y Σ afy<4 Λ ω0 ? I = 1,...,Λ.

If (c)(ii), then all ** = 0 by (3.8), (3.10), (3.4) so (c)(ii) =* (c)(i).
If (c)(i) holds then akj = a\k for all /, j9 k = 1,..., n. Since ak

tj = -ak

t

for all i, y, A:, and n > 3, it follows that 0* = 0 for all /, j \ k. Then (3.8)
becomes

G/ S Omodβ, k = 1,.. .,Λ.

Symmetry of mixed partials now forces G = 0 mod (?2, which is (c)(ii). D

Appendix. Proofs of Lemmas (3.4) and (3.5).

Proof of (3.4). Suppose that

(A.I) 0 = Σ"uQiRj + ΣbtQQi + cR, au = -aJn

is a relation. Set

a
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It suffices to show v = 0, since then (A.I) and the fact that β is smooth
also imply bi = 0 for all i.

Let dQ = ΣQtdti, dR = Σi?zΛ, be the formal differentials. Since
β, = /,., (A.I) says

(A.2) 0 = dQ(v) = dR(v)modζ)

(by the Euler relation).
Let Σ -> P " " 1 be the vector bundle

n

2 = 0 0(1).
ι = l

Since β, β Π i? are smooth there exist vector bundles Σ' -> P"" 1 ,
Σ " -> β defined by exact sequences

(A.3) 0 -> Σ r -> Σ -^ 0(2) -> 0, and

(A.4) o - Σ ^ Σ Ί ρ - 0 ( 3 ) | ρ - O ,

where dQ(σl9..., σj = Σβj σ,. and similarly for dR. Then ϋ| β G
H°(Q,Σ"), by (A.2). The restriction map H°(Pn-\Σ) -* //°(β,Σ|ρ) is
injective, so it's enough to show that H°(Q, Σ") = 0.

Let AkΣ(d) = (λkΣ) ® 0( J). Similarly for Σr, Σr/. By (A.3), there is
an exact sheaf sequence:

(A.5) 0 -> Λ"Σ( J - 2(/i - k)) ^ A ^ ^ ί r f — 2(w — A: — 1))

^ . ^ Λ^+ 1Σ(d - 2) -> Λ^Σ'ί J ) -> 0

over P " " 1 for each J G Z , k = 0 , . . . ,Λ, where " J β " means "contract
with J β " . Since the sheaf sequence is exact, the spectral sequences of
hypercohomology [G-H2 pp. 445] abut to zero. Since

"-\ AkΣ(d)) = Λ*C" 0 H?(Pn-\ Φ(k + d)) = 0

for all /? = 1,..., w - 2, d, A: G Z,

it follows that (A.5) is exact at the global section level if k > 1.
Similarly, in the spectral sequence associated to the exact sheaf

sequence

0 -> KkΣf{d) -> AkΣ(d) ^ λk-ιΣ(d + 2) -> -> Φ( J + 2A:) -> 0
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the 'dp+1 map induces isomorphisms Έ^p = Έξ+1'° for /? = 1,...,« — 2.
Since (A.5) is exact at the global section level if k > 1, it follows that

(A.6) HP(P»-ι,AkΣ'(d)) = 0 if p Φ k and p = 1,..., n - 2,

for all k, d. Apply the restriction sequence 0 -> Λ*Σ'(d - 2) -» AkΣ'(d)

-> Λ*Σ'(</)|β->Oandget:

(A.7) #*(β,Λ*Σ'(</)) β O if &*/?,/>+ 1, and/? = l , . . . , w - 3 ,

for all jfc, J.
By (A.4) one has an exact sheaf sequence on Q:

0 -> Λ ^ Σ '

dR Ί ,

Computing spectral sequences and applying (A.7) one has that rdr\

dR:H°(Q, A2Σ'( — 3)\Q) -* H°(Q,Σ") is surjective. By (A.6), and the
restriction sequence, the restriction map H°(Pn~ι, Λ2Σ /(-3)) -*
H°(Q,A2Σ'(-3)\Q) is surjective. By global exactness in (A.5), dQ:
H°(P"-\ Λ 3Σ(-5)) -> H°(P"-\ Λ2Σ7(-3)) is surjective. Finally,
H°(P"-\ Λ3Σ(-5)) s Λ3Cn β jff^P11-1, Φ(-2)) = 0. It follows that

Proo/o/ (3.5). If

T,= Σ aίk(QRk - RQk) + b&2 then

T,j - Σ M < 2 A - Λ A ) + β Σ a l k R k J + 2b,Qj\ - R Σ cιιkQjk.
A: = l \A: = 1 / A: = l

Since 0 = Ttj - Tjo for all i, j , Lemma (3.4) says that
aij = ajk = ^ if i9 j , k are distinct, and

So atj = 0 for all i, y, since n > 3. Thus

0 = Γιy - I), = Q{b,QJ - bjQ,) for all /, j

which is impossible unless all bt = 0 since Ql9..., Qn are linearly inde-
pendent.
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