
PACIFIC JOURNAL OF MATHEMATICS

Vol. 129, No. 2,1987

FIXED POINTS OF ̂ -FIBRATIONS

DACIBERG LIMA GoNςALVES

Let M be a S1-fibration over a space B and /: M -> M a map over
B. We give some results when / can be deformed over B to a fixed point
free map. When the fibration is principal then we compute
Hn~1(Fίx(f), k) where n = dim M and we find g homotopic to / over
B which minimize the fixed points.

Introduction. In [1] or [2], A. Dold defined a fixed point index for
fibre-preserving maps, i.e. for every map /: U c E -> E which commutes
with the projection p: E -> B he defines an index /(/) s.t. /(/) Φ 0
implies that every map g homotopic to / through a fibre-preserving
homotopy has at least one fixed point. (We call fibre-preserving homotopy
a homotopy over B). From [1] one can see that this index is not easy to
compute even in the case where the fibration is

p is the projection in the first coordinate and /(x, y) = (JC, xy). The
purpose of this paper is to study the fixed point of a fibre-preserving map
/: M -* M where M is a S ̂ fibration over a space B and M, B are
compact manifolds without boundary.

The paper is divided in 3 parts: In Part I we give a criterion, in terms
of the fundamental group, for / to be deformed over B to a fixed point
free map. This is Proposition 1.3. Some corollaries of this result are given.
In Part II we look at orientable S^-fibrations. We give a lower bound for
the number of Nielsen classes over B of / as well as the topological
dimension of this class. This is Theorem 2.5.

In Part III we state the question of realizing a homotopy class over B
by a map / s.t. Fix(/) = the set of fixed points of / is minimal in the
sense we will describe. We will answer this question in the case where the
fibration and the total space are orientable. This is Theorem 3.7.

I would like to thank, Professors A. Dold, D. Sullivan, Drs. C. Biasi
and O. Manzoli Neto for the help I had in writing this paper.

Part I. Detecting fixed points. Let

Sι ->M
4
B
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be a S^-fibration over B where Af, B are compact manifolds without
boundary and /: M -> M be a map over 5 i.e. p° f = p. For the study
of the category of spaces over B see [1] and [2]. By a deformation over B
we mean a fibre-preserving homotopy. Let M XBM be the fibre square
which we denote by S(M) and Δ the diagonal in S(M). Now we will
recall Proposition 2.4 of [3].

PROPOSITION 1.1. The map f can be deformed over B to a fixed point
free map if and only if there is a map h: M -» S(M) — Δ which makes the
diagram below commutative up to homotopy.

V
•S(M)

In [3], they consider fibrations F -> M -> B where F is a manifold of
dimension greater than or equal to three. Under this hypothesis they show
that the homotopy fibre of the inclusion ι: M X M — Δ -> M X M is at
least 1-connected. Therefore by general obstruction theory we can always
lift the map (1,/) over the 2-skeleton of M and the obstructions to lift
over the higher dimensional skeletons are cohomology classes. On the
other hand if F is the circle S1 or a 2-dimensional surface, different from
S2 or RP2, the obstructions to lift (1, /) are no longer cohomology classes.
In these cases the problem of lifting (1,/) can be treated in terms of Π^
The case where F is a 2-dimensional surface is much more complicated
than the case where F = Sι. We return to the case F = Sι.

Let j c 0 G M b e a base point of M and let us assume that f(x0) Φ x0.
Denote (x0, /(JC 0)) the base point of S(M) - Δ and S(M).

PROPOSITION 1.2. The map h exists if and only if

- Δ; (xo,f(xo)))).

Proof. Let M be the covering space of S(M) which corresponds to
the subgroup (1, / ) # (Π 1 (M, x0)). So we have the commutative diagram:
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where / is a lifting of (1,/) which exists by elementary properties of
covering spaces.

Now let us assume that

) # { ( - Δ; (xo,/(x

Then there is a map j : S(M) — Δ -> M which is a lifting of i. By
Proposition 2.1. of [3] we have

Π,(S( Af), S(M) - Δ) * Π ^ S 1 , S1 - y0) = 0, i > 1.

So 7 induces isomorphisms in all homotopy groups. Since S(M) — Δ and
M are CW-complexes, there exists /: M -> 5(M) - Δ which is a homo-
topy inverse of y. Take h = I ° /.

Now suppose that Λ exists. Since i°h is homotopic to (1,/), it
follows that

Let pλ: S(M) -• M be the projection on the first coordinate. We have the
fibration

i
M

Therefore pλ\ Π1(Sf(M)) -> Π^M) is an isomorphism. Since j ^ ^ h « id
we have that Λ# is an isomorphism and the equality (1,/)#(Π 1(M, JC0))

PROPOSITION 1.3. A map f can be deformed over B to a fixed point free
map if and only if

Proof. This follows directly from Proposition 1.1. and 1.2.

Let us consider a fibre preserving map A: M -> M whose restriction
to each fibre is the antipodal map. Such a map exists because M -> B is a
locally trivial 51-fibration. Without loss of generality let us assume that
f(x0) = A(x0).

PROPOSITION 1.4. // im(/#) = im(l,/) # then A# = / # . Conversely if
Tl^S1) -> Π^M) is injective or surjectiυe then A# = / # implies im(/#) =
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Proof. The map (1,A): M -> S(M) is a left inverse of pv Since
Π 1(5(M) — Δ) -> n x (M) is an isomorphism, (see the proof of Proposi-
tion 2.2) it follows that

is an isomorphism. Therefore im(i#) = im(/ <>(1, ̂ 4))#. But

is equivalent to (i °(1, ^4))#(α) = ( l ,/) # (α) for every α G Π^M). This
implies τ4#(α) = /#(«).

For the second part let us assume first that

is injective. From the diagram below

i h i J

ΠX(M)

we have

for some β e Π^S11). So

/,2.[(1, ^ ) # ( α ) - ( l , / ) * ( α ) ] = ^ # ( α ) - / # ( α ) =y#()S) = 0.
Since y# is injective we have β = 0. Therefore (l,^4)#(α) = ( l ,/) # (α)
and the result follows. Finally let us assume that j # : Π^S 1) -> U^M) is
surjective. We have the diagram:

( l , Λ | s i )

5 1 ? 5 1 X Sι

α./i5«i)

M \ S(M)
(i./)

From the fact that / # = A# and using the long exact sequence in
homotopy of the fibration S1 -» M -> 5 we have that (^415i)# = ( / | s i ) # .
Given α G Π^M), there exists β̂ G Π^S'1) s.t. j#(β) = a. So we have

and the result follows.



FIXED POINTS OF ^-FIBRATIONS 301

COROLLARY 1.5. Let Sι -* K -> Sι be the Sι-fibration where K is the
Klein bottle. Then the \κ: K -» K \κ = identity map cannot be deformed
over B to a fixed point free map.

COROLLARY 1.6. Let

f: Bx S1 ^Bx S1

J

B

be a fibre-preserving map. Then f can be deformed over B to a fixed point
free map if and only if f = (1, g) where g: B X Sι -> Sι is homotopic to p2:
B X Sι -* S1 defined by p2(x, y) = y.

Proof. The " i f part is clear. So let us assume that / can be deformed
over B to a fixed point free map. By Proposition 1.4. we have f# = A#

and therefore />2#/# — JP2#^# O Γ (PI °/)# = ( ί 2 ° ^ ) # B u t Λίs means
that

(/^2O/)* = {Pi°A)*: Hι(Sι) - i/x(^ X Sι)

and consequently /?2 ° / is homotopic to /J2 ° A which is homotopic to p2.
So the result follows.

REMARK. In general / # = A# does not imply im(l ,/) # = im(/)#.
We can construct a counter-example with B = S1 X S1 X S2 and the
fibration is the induced fibration from the universal S^fibration by the
map g: Sι X Sι X S2 -• K(Z,2) which is represented by a2 0 1 4- 2 ®
iβ2 e H2(SxSι X S2\ a2, β2 being generators of i ϊ 2 ^ 1 X 51), i/ 2(S 2)
respectively.

Part II. The homology of the fixed points set. We will start by
recalling some results of [4],

Let x, y e Fix(/), where / is a fibre-preserving map and Sι -> M ->
B is a Srl-fibration. We say that x is equivalent to j ; over B if there is a
path λ: [0,1] -> M s.t. λ(0) = x, λ(l) = / and λ is homotopic to /(λ)
rel{jc, y) over 5.

DEFINITION 2.1. The equivalence classes are called the Nielsen classes
of / over B.

PROPOSITION 2.2. // M is compact then the number of Nielsen classes
over B is finite.
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Proof. This is Lemma 2.1 of [4].
In [4] he also defines essential Nielsen classes and the Nielsen number

of /. Now we will define a lower bound for the number of non-empty
Nielsen classes of / over B for the case of a principal S^-fibration. I
believe it would be interesting to compare this number with the Nielsen
number as defined in [4].

Let S1 -> M -> B be an orientable S^-fibration and Θ: S1 X M ^> M
the ^-action. Given /: M -> M a fibre-preserving map, there is a map θf:
M -> Sι, which satisfies the equation f(x) = θf{x) x9 where θf(x) x
means θ(θf(x), x).

PROPOSITION 2.3. Given an orientable fibration and a map f then
Fix(/) = θf~\l) where 1 e S\

Proof. Obvious.

Let /(/) denote the number of elements of the group

PROPOSITION 2.4. Ifi(f) = oo then f can be deformed over B to a fixed
point free map.

Proof. If /(/) = oo then θf# is the constant map. Therefore θf is
homotopic to the constant map equal to -1 e Sι. Therefore / is homo-
topic over B to the antipodal map A.

THEOREM 2.5. Let /(/) = r < oo. If g is homotopic to f over B then
there exist at least r Nielsen classes Fv..., Fr such that Hn~ι{Fi,K) Φ 0
(Cech cohomology) where K is Z or Z 2 depending on whether M is an
orientable or a non-orientable n-dimensional compact manifold.

Proof. Let us first assume that r = 1. Then we have the following
commutative diagram

Hλ{M) -> H^M^M-Fixif)) -> H0(M-Fix(f))

i I i

where the coefficients are in Z or Z 2. Since Hλ(M) -> Hλ(Sι) is surjective
then HX(M,M - Fix(/)) Φ 0. So by Poincare Duality it follows that
H"-\Fix(f)) Φ 0 and the result follows.
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Now let /(/) = r and S1 -» Sι be the r-fold covering map. There is a

lifting θy: M -> Sι where

and we have that Θy#: Π^M) -> Π1(5'1) is surjective. By the case r = 1
we have that

H"-ι(θf-
ι(e2UiK'/r)) Φ 0.

It is easy to see that

x e θ / 1 ^ 2 1 1 ' * / ' ) , ^ e Θ ; 1 ( e 2 m * ' A )

and KΦ K' then x and 7 do not belong to the same Nielsen class.
Therefore the result follows.

REMARK. (1) The Proposition 2.2. and Theorem 2.5. suggest what
should be a function g e [/] over B s.t. Fix(g) is minimal. The definition
will be given in Part III.

(2) I have not been able to extend the definition of this lower bound
for non-orientable fibrations.

Part III. The realization problem. From now on let us assume that
Sι -> M -» B is a principal S^-fibration and M is a compact orientable
^-manifold. Let /: M -> M be a fibre-preserving map.

DEFINITION 3.1. We say that Fix(g) is minimal, where g is homotopic
to / over 2?, if Fix(g) is an n — 1-submanifold with /(/) connected
components.

PROPOSITION 3.2. Given f: M -> M we can find g homotopic to f over B
such that Fix(g) is an n — l-submanifold.

Proof, Let θf: M -> Sι be as defined in Part II. Now we can deform
θf to a map Θ: M -> Sι such that 1 G S1 is a regular value. Therefore
g(x) = Θ(x). x is homotopic to / over B and Fix(g) = Θ'^l) is an
n — l-submanifold.

PROPOSITION 3.3. The homology class [Θ~1(l)] represented by the
submanifolds ©"^(l) is the Poincare dual of the 1-dimensional cohomology
class Θ*^) where Θ*: Hι(S\ Z) -* H\M,Z) and iλ is the generator of
H\S\Z).
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Proof. See [6].

Recall that H\M, Z) is a free abelian group and Hn_1(M, Z) is also a

free abelian group by Poincare Duality.

PROPOSITION 3.4. // Θ # : π^M) -> πλ(Sι) is surjectiυe then Θ * ^ ) is

indivisible.

Proof. Let θ*(ix) = λ α , λ E R , α G H\M,Z).

So

( i x , A θ # ( x ) ) = ( θ fa), A(JC)) = (λα, Λ(JC)> = λ(α, Λ(JC))

where Λ is the Hurewicz homomorphism, x e Π ^ M ) and ( , ) is the

evaluation. Therefore i m Θ # c λ Z. Since Θ # is surjective we have

λ = 1 and the result follows.

PROPOSITION 3.5 (D. Sullivan). Given an indivisible homology class of

Hn_ι(M9 Z) then it can be represented by a connected n — 1-submanifold.

Proof. See [5] or the appendix.

THEOREM 3.6. // θf: UX(M) -> Π ^ S 1 ) is surjective then f can be

deformed over B to a map g s.t. Fix(g) is a connected n — 1-submanifold.

Proof. Since θf$: irλ(M) -> π^S1) is surjective, by Proposition 3.4. θf

defines an n — 1-homology class of M which is indivisible. By Proposi-

tion 3.5 there is a connected n — 1-submanifold TV which represents this

class. Now let us take a tubular neighborhood of this submanifold. This

neighborhood is homeomorphic to N X (-ε, ε). Then we define Θ: M ->

S1 such that Θ ' ^ l ) = N and 1 is a regular value of Θ. By Proposition 3.3

Θ is homotopic to θf and g(;t) = Θ(jc) j c i s a function such as we are

looking for.

Finally the main result.

THEOREM 3.7. Given f: M -> M there is a map g homotopic to f over B

such that Fix(/) is minimal.

Proof. Let Θ :̂ M -» Sι be a lifting of θf i.e. pr°&f= θf where pr is

the r-fold cover of S1. By Theorem 3.6 θf is homotopic to a map θ:

M -> Sι such that Θ - 1 ( l) is a connected n — 1-submanifold. Let φ:

Sι -> Sι be a diffeomorphism homotopic to the identity which sends the
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set {e2WK/r IK = 0,1,..., r — 1} into a small neighbourhood of 1 whose
points are regular values of Θ. Let Θ = pr <> φ~ι ° Θ. Then g(x) = θ(x) - x
is a function such as we are looking for.

Appendix. Now let us sketch the proof of Proposition 3.5. (This is
due to Prof. D. Sullivan.)

Proof. Let M be a compact orientable manifold of dimension n and
N c M an n — 1-compact embedded submanifold. Suppose n > 3 and N
has more than 1 connected component. Call Nv N2 two components.
Given p & Nv q e iV2 there is a path λ in M such that λ(0) = p9

λ(l) = g since M is connected. We can assume that λ[0,1] Π N is a finite
set {α l 9 . . ., at) and ^ = p, α, = q. Let λ have the natural orientation.
At each point ai we have the intersection number of λ and N which is
+ 1, -1 or 0. We can assume that the intersection number of aέ is either
+ 1 or - 1 , otherwise we deform λ in such a way that at is not in the
intersection. Now let us suppose that the total intersection number of λ
and N is equal to zero. Then we can find 2 consecutive points, ai9 ai+ι

such that one has intersection number 4-1 and the other has intersection
number - 1 . Now we apply surgery, replacing two small discs around ai9

al + ι by a tube around the arc from α, to ai+ι. The new manifold
represents the same homology class. Since m > 3 the following fact is
true: if ai9 ai+ι belong to the same component of N then the new
submanifold has the same number of components as N, otherwise the
number of components decreases by one. Because the total intersection
number is zero we can continue this process and end up with a submani-
fold N' with less components than N. If N' is not connected we apply the
above procedure again until we get a connected submanifold.

Now let me show that it is always possible to connect one point of Nλ

to a point of N2 by a curve which has total intersection number zero. Let
p e Nv q e N2 and λ a curve from p to q such that λ[0,1] Π N is finite.
Call r the intersection number of λ and the submanifold N. Since
[N] e Hm_1(M, Z) is indivisible by Poincare Duality we can pass by g an
embedded circle φ: [0,1] -> M φ(0) = φ(l) = g which has total intersec-
tion number + 1 with N. Given a number s let s φ = φ* *φ where *
is the composition of paths. Let T be a tubular neighborhood of φ[0,1].
Since M is orientable then T « Dn~ι X S1 where Dnl is the n - 1-disc.
Now we can deform sφ to φs in such a way that φs([0,1]) is an embedded
circle. Finally let φ's be a small deformation of φs such that φ^(l) = gr Φ g
and g' e N2 and near g. Now consider the following curve λ * φ's. Call
7λ(g) and /φ;(g) the intersection numbers of g as points of λ and φ's
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respectively. If Iλ(g) = -/φ;(g) then let s = r - Iλ(g). If Iλ(g) = Iφ,(g)
let s = r. Then we have that the total intersection number of λ * φ's is
zero.

Now let m = 2. The fact that, in this case, an indivisible homology
class can be represented by an embedded circle is classical and was known
by Poincare.
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