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MATRIX RINGS OVER *-REGULAR RINGS
AND PSEUDO-RANK FUNCTIONS

PERE ARA

In this paper we obtain a characterization of those *-regular rings
whose matrix rings are *-regular satisfying LP = RP. This result allows
us to obtain a structure theorem for the *-regular self-injective rings of
type I which satisfy LP * RP matricially.

Also, we are concerned with pseudo-rank functions and their corre-
sponding metric completions. We show, amongst other things, that the
LP * RP axiom extends from a unit-regular *-regular ring to its comple-
tion with respect to a pseudo-rank function. Finally, we show that the
property LP < RP holds for some large classes of *-regular self-injective

rings of type 1L

All rings in this paper are associative with 1.

Let R be a ring with an involution *. Recall that * is said to be
n-positive definite if X7_,x,x* = 0 implies x, = --- = x, = 0. The in-
volution * is said to be proper if it is 1-positive definite; and if * is
n-definite positive for all n, then we say that * is positive definite.

Recall than an element e € R is said to be a projection if e? = e* = ¢
and R is called a Rickart *-ring if for every x € R there exists a
projection e in R generating the right annihilator of x, that is 2(x) = eR.
Because of the involution, we have £(x) = Rf for some projection f.
Notice that 2(x) N x*R = 0, hence the involution * is proper and R is
nonsingular. The above projections e, f depend on x only, 1 — e (1 — f)
is called the right (left) projection of x and, as usual, we shall write
1 —-e=RP(x),1 - f= LP(x).

If R is a *-ring, we denote by P(R) the set of projections of R
partially ordered by e < f iff ef = e. Thus, if e < f we have eR C fR and
Re C Rf. Recall [2, pg. 14] that if R is Rickart, then P(R) is a lattice.

Two idempotents e, f of a ring R are said to be equivalent, e ~ f, if
there exist x € eRf, y € fRe such that xy =e¢, yx=f. If e, f are
projections in a ring with involution and we can choose y = x* then e, f
are said to be *-equivalent, e ~ f. A ring is directly finite if e ~ 1 implies
e = 1. A ring with involution is said to be finite if e ~ 1 implies e = 1.
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A ring R is regular if for every a € R there exists an element b € R
such that a = aba. If R, in addition, possesses a proper involution, then
R is called a *-regular ring. By a theorem of von Neumann [14, Exercise
5, pg. 38] a regular ring with involution is *-regular iff it is a Rickart
*_ring and in fact, if R is *-regular, then xR = LP(x)R and Rx =
R(RP(x)) for every x € R.

If R is a *-regular ring and r € R with e = RP(r), f = LP(r), then it
is well-known [13] that e ~ f, in fact there exists a unique s € eRf (the
relative inverse of r) such that sr = e and rs = f.

1. The property LP < RP for *-regular rings. We say that a Rickart
*.ring R satisfies the property LP ~ RP if LP(x) ~ RP(x) for every x in
R. Also, we say that R has partial comparability (PC) if for every e,
f € P(R) such that eRf # 0 there exist nonzero subprojections e’ < e and
f’ < f such that e’ ~ f’. Clearly, in any Rickart *-ring, we have LP ~ RP

= (PC).

LEMMA 1.1. For a *-regular ring R, the following conditions are
equivalent:

(a) R satisfies LP ~ RP.

(b) Any two equivalent projections are *-equivalent.

(c) If xx* € eRe with e € P(R), then there exists z € eRe such that
xx* = zz*,

Proof. (a) < (b). Since LP(x) ~ RP(x) for every x € R.

(a) = (c). See [16, Theorem 1].

(c) = (a). First we show that R is directly finite. If xy = 1, then we
can assume that yx = e € P(R) and y € eR, x € Re. We have yy* €
eRe, so there exists z € eRe such that yy* = zz*. Now, we have 1 =
xyy*x* = xzz*x*. By [1, Theorem 3.1, (ii)], R is finite so z*x*xz = 1.
This implies e = 1. Now, by [16, Theorem 1], the result follows. O

Let R be a *-ring. We say that R is a Baer *-ring if for every subset
S C R there exists a projection e in R such that 2(S) = eR (and so
Z(S) = Rf for some projection f in R). Obviously, a Baer *-ring is
Rickart and the partially ordered set P(R) is in fact a complete lattice.

An element w € R is said to be a partial isometry if ww*w = w. In
this case ww* = e and w*w = f are projections with wR = eR and
w*R = fR. An element u is called unitary if uu* = u*u = 1.

It follows easily from Lemma 1.1 that the elements of a *-regular ring
with LP = RP have weak polar decomposition, that is, if x € R then
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x = wz where w is a partial isometry and LP(z) = RP(z) = RP(x). If, in
addition, R is unit-regular (that is, for every x in R there exists a unit u
in R such that x = xux), then w can be chosen to be a unitary.

Let R be a Baer *-ring. We say that the *-equivalence is additive in R
if for any families (e;);<;, (f;);<, of orthogonal projections of R such
that e, ~ f,, for all i € I, we have V,_;e;~ V,,f; (where V denotes
supremum). The partial isometries are addable in R if for any family
(w;);e; of partial isometries such that (ww*),., and (w*w;),o, are
families of orthogonal projections, there exists a partial isometry w in R
such that ww*w, = ww*w = w, for all i € I, and ww* =V, _ (w,w*) and
wrw =V, [(w*w,).

LEMMA 1.2. (i) If R is a self-injective *-regular ring, then the partial
isometries are addable in R.
(11) If R is a Baer *-regular ring, then the *-equivalence is additive in R.

Proof. (i) Set e; = ww*, f, = w*w,, with (¢;), o, and (f;);, families
of orthogonal projections. Consider the R-homomorphism ¢: &,_, /R
- @,_,eR for which ¢(f;) = w;, all i € I. Since R is self-injective, ¢ is
given by left multiplication by some element, say x. Set e = V,_,e; and
f=V,c;f- f w=exf then it is easily seen that ew = wf, = w;, and
ww* = e w*w = f.

(ii) Since any Baer *-regular ring R is complete, it follows from [13,
Thm. 3, p. 535] that R is a continuous ring. By [S, Thm. 13.17] R = R, X
R,, where R, is self-injective and R, is an abelian continuous ring. Since
a central idempotent of a Rickart *-ring is a projection, we have that R,
and R, are *-regular. Moreover two *-equivalent projections in R, are
equal so the *-equivalence is obviously additive in R,. Since R; is
self-injective and *-regular the partial isometries are addable in R;. In
particular the *-equivalence is additive in R,. Therefore the *-equivalence
is additive in R. a

For a ring R, we denote by Q_.(R) (Q,(R)) the maximal ring of right
(left) quotients of R. Recall that if R is right nonsingular then Q (R) is a
regular right self-injective ring.

LEMMA 1.3. Let R be a nonsingular *-ring. Then, the involution *
extends to Q (R) if and if Q. (R) = Q,(R). In case * extends to Q. (R),
this extension is unique and if * is n-positive definite on R, then the extended
involution is also n-positive definite.
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Proof. The proof is contained in [17, Thm. 3.2], except the n-positive
definite part.

It is well-known that if x,,..., x,, are nonzero elements in Q (R),
then there exist 1 <k <mand r € Rsuchthat x,r € Rfori=1,...,m
and x,r # 0. Assume that * is n-positive definite on R and let x,,..., x,,
be nonzero elements in Q = Q (R) = Q,(R), with m < n. If k and r are

as above, then we have (x;r)*(x;r) + -+ +(x,r)*(x,r) # 0, and so
r¥(xfx, + --- +x}kx,,)r # 0 (we also denote by * the extended involu-
tion). Hence * is n-positive definite on Q. a

REMARKS. (1) In particular, if R is a nonsingular *-ring with proper
involution and Q = Q. (R) = Q,(R), then Q is a self-injective *-regular
ring.

(2) Recall that for a nonsingular ring R the condition Q.(R) = Q,(R)
is equivalent to the Utumi’s conditions:

(a) For every right ideal 1, £(I) = 0 implies I <, R.

(b) For every left ideal I, (/) = 0 implies I <, R.

Obviously, (a) < (b) in any *-ring.

Let R be any *-ring. We say that R satisfies general comparability for
*-equivalence (GC) if for every e, f € P(R) there exists a central projec-
tion A in R such that he < hf and (1 — h)f < (1 — h)e, cf. [2, p. T7].

THEOREM 1.4. Let R be a *-regular ring such that Q = Q _(R) = Q,(R).
Then R satisfies (PC) if and only if Q satisfies LP ~ RP.

Proof. By Lemma 1.3, Q is a self-injective *-regular ring.

Assume that R satisfies (PC). Let e, f be two projections in Q such
that eQf # 0. Since Q is regular, there exist nonzero subprojections
e; < eand f; < fin Q such that e,Q = f,Q. Hence there exist x € e,0f,
and y € f,Qe, such that e, = xy and f, = yx. Let I be a right ideal of R
such that 7 <_ R and yI < R. We have yI = (ye,)] = y(e,;I) and eI
<, e;0. Choose a nonzero projection e, in R such that e, € e;1. We
note that ye, # 0, ye,R < fQ and (ye,)R < R. Set f, = LP(ye,), and
note that f, € P(R) and f, < f. We observe that left multiplication by y
induces an isomorphism from ejR onto f,R (since it is the restriction of
an isomorphism from e;Q onto f,;Q), and so e,R = f,R. Since R satisfies
(PC), there exist nonzero projections ej, f; in R such that e; < e, <e,
fd < fo < f and e;~ f;. It follows that Q satisfies (PC). By Lemma 1.2
and [2, Prop. 4, p. 79], we have that Q satisfies (GC). Now it follows from
[9, Prop. 3.2] that Q satisfies LP ~ RP.
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Conversely, assume that Q satisfies LP ~ RP. Let e, f be projections

in R such that eRf # 0. Then there exist nonzero projections e,, f, in R
such that e, < e, f, < f and e, ~ f,. Thus, e, ~ f, in Q, and so there
exists x in Q such that xx* = e,, x*x = f,. Let I be a right ideal in R
such that I <, R and x*I < R. Choose a nonzero projection e’ in R such
that e’ € e;R N I and note that f’ = (x*e’)(e’x) is a projection in R
such that e’ ~ f’. Inasmuch, e’ < e, < e and f’ < f, < f. So, R satisfies
(PC). a

PROPOSITION 1.5. Let R be a Rickart *-ring. Consider the following
axioms for R.

(a) R has LP ~ RP.

(b) R has (PC).

() R satisfies general comparability for *-equivalence, (GC).

(d) The parallelogramlaw (P) (e — e A f~e V f— f, fore, f € P(R)).

(e) If e ~ f, then there exists a unitary u in R such that f = ueu*.

If R is a unit-regular *-regular ring, then (a) < (d) © (e) and (c) =
(a) = (b). If R is a Baer *-regular ring, then all these conditions are
equivalent.

Proof. Assume that R is a unit-regular *-regular ring.

(a) = (d). Since R is regular we have e —e A f~ e V f— f for all
projections e, f in R [13, Lemma 1]. The result is immediate.

(d) = (a). This is a standard argument, cf. [10, Proof of Corollary 1.1,
(1

(a) < (e). This is routine.

(c) = (a). For this, note that we can adapt the proof of [9, Prop. 3.2].

(a) = (b). Obvious.

If R is a Baer *-regular ring, then R is unit-regular. By Lemma 1.2
and [2, Prop. 4, p. 79], (b) = (c). This completes the proof. O

If R is *-regular and [ is a two-sided ideal of R, then it is well-known
that 7 is a *-ideal and the factor ring R/I is also *-regular with the
natural involution. It is easy to see that if the involution on R is
n-positive definite, then that on R/I is also n-positive definite.

LEMMA 1.6. Let R be a *-regular ring and let I be a two-sided ideal of
R. Every projection in R/I has the form e, where e € P(R). If v is any
partial isometry in R/I and e, f € P(R) are such that e = vv* and f = v*v,
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then there exists a partial isometry w in R such that w = v, ww* = e; < e
and w*w = f, < f. In particular, there exist orthogonal decompositions
e=e +e, f=fi+f,withe, ~f ande,, f, € I

Proof. Set R = R/I. From LP(x)R = ¥R = LP(X)R we deduce that
LP(x) = LP(x) and similarly RP(x) = RP(x). So, any projection in R/I
has the form &, where e € P(R). If v is a partial isometry in R and e,
f € P(R) are such that & = vv*, f= v*v then we observe that we can
choose w’ € eRf such that w’ = v. We have

(1) ww*=e+y withyel.

Put h = LP(y), and note that & < e. By multiplying the relation (1)
on right and left by e — 4, we obtain

(2) (e —h)w'w*(e—h)=e— h.

Set w = (e — h)w’. Since h € I, we have w = v. Also, by (2), we have
ww* =e — h <e. Putting e, =e—h, f;=w*w=w%*e— h)w', we
have e, < e, f, < f and e, ~ f,. Moreover, &, = € and f, = f and so, if
wepute,=h=e — e, f, =f— f,,thenwehave e,, f, € I. a

It is obvious from the relations LP(X) = LP(x) and RP(x) = RP(x)
that if R satisfies LP = RP, then R = R/I also satisfies LP ~ RP. How-

ever, it is not true that property (PC) is preserved in factor rings, as the
following example shows.

EXAMPLE 1.7. There exists a *-regular ring R such that

(a) R is 8 -continuous and R yinjective (see [S] for definitions) and
Q.(R) = Q(R).

(b) R has (PC) but R does not have LP ~ RP.

(c) There exists a maximal two-sided ideal M such that the factor ring
R/ M does not satisfy (PC).

Proof. Let X be any uncountable infinite set. For i € X, set R, =
M,(R). Consider R = {x € [],. yR,|x, € M,(Q) for all but countably
many i € X }. Obviously, R is a *-regular ring.

(a) If (e,),en 1S any sequence of projections of R, then clearly
V,ene, exists in [1,. yR, and V, .ye, € R. So, since I, . xR, is con-
tinuous, R is N -continuous. Since R = M,(S), where S = {x €
Il,c xK;|K; =R for all i € X, and x; € Q for all but countably many
i € X}, it follows from [S, Corollary 14.13] that R is 8 -injective. Clearly,

Q.(R)=Q/R) = nzeXRi'



MATRIX RINGS OVER * - REGULAR RINGS 215

(b) If eRf # 0, with e, f € P(R), then there exist nonzero subprojec-
tions e; < e, f; < f such that e, ~ f,. There exist some i € X such that
e,; is nonzero, and we observe that e ; ~ f;, in M,(R). Define nonzero
projections e,, f, in Rbye,;=f,;=0if j€ X and j # i; e,; = ¢y,
fri = fi;-Clearly, e, < e, f, < f, and e, = f,.

To show that R does not satisfy LP =~ RP, note first that the
projections (173 173) and (; g) are equivalent but not *-equivalent in
M,(Q). Set p, = (173 1/3) for all i € X; g, = (§ §) for all i € X, and put
P =(P)icx 9= (4;);ex Then, p and g are equivalent but not *-equiv-
alent projections in R.

(c) Let J={x€ R|x,=0 for all but countable many i € X}.
Clearly, J is a proper two-sided ideal of R. Let M be a maximal
two-sided ideal of R such that J is contained in M. It follows from [5,
Thm. 14.33] that R/M is a simple self-injective *-regular ring. So, by
Theorem 1.4, R/M has LP ~ RP if and only if it has (PC). Consider the
projections p, g constructed in (b). We note that neither p nor g belong to
M. Wehave p~ gin R andso p ~ g in R = R/M. If R satisfies (PC),
then p <~ g, and by applying Lemma 1.6, we see that there exist orthogo-
nal decompositions p = p’ + p”, ¢ = q' + q” with p’ ~ ¢’ and p”, q” €
M. Since all p,, g, have rank one, we deduce that each p; is either 0 or p,.
It follows that p’, ¢’ € J and so p, ¢ € M. This is a contradiction. So,
R /M does not satisfy (PC). O

PROPOSITION 1.8. Let R be a *-regular ring such that the intersection of
the maximal two-sided ideals of R is zero. If R/M satisfies (PC) for all
maximal two-sided ideals M of R, then R satisfies (PC).

Proof. 1t suffices to see that given two nonzero equivalent projections
e, f in R, there exist nonzero subprojections e, < e, f; < f such that
e, ~ f- Let M be a maximal two-sided ideal of R such that e, f & M.
Then, € and f are nonzero projections in R = R/M. By hypothesis, R
satisfies (PC) so there exist nonzero subprojections &’ < &, f’ < f such
that & < f’ in R. Set e¢” = LP(ee’), f” = LP(ff’) and observe that

e’ =ée, f” =f', e" <e, f’ <f. Thus, there exist orthogonal decom-
positions e” = e, + e,, ' = f; + f, withe; = f, and e,, f, € M. Clearly,
e, and f, are nonzero *-equivalent projections and e; < e, f; < f. O

Proposition 1.8 and Example 1.7 suggest that maybe any *-regular
ring such that the intersection of the maximal two-sided ideals is zero and
the simple homomorphic images satisfy LP ~ RP has LP ~ RP. However,

this is not true and we offer a counterexample in §3.
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Now, we examine property LP <~ RP in matrix rings. Recall that if R
is a *-regular ring with n-positive definite involution, then the ring M,(R)
of n X n matrices over R is also *-regular with involution 4% = (a}),
where 4 = (a,;) (the *-transpose involution). We shall assume in the rest
of this section that M, (R) is endowed with this involution.

LEMMA 1.9. Let R be a *-regular ring with 2-positive definite involution.
Set S = M,(R). If E is a projection in S, then there exists an orthogonal
decomposition E = E, + E,, where E, = (5 ), with p, g € P(R) and
E, = (G &), witha,R = a,R and afR = a;R.

Proof. Set E = (4. %). We have

(1) a’ + bb* = a,
(2) c® + b*b = c,
(3) ab + b = b,

and a = a*, ¢ = ¢*.

Set e = LP(a) = RP(a); f= LP(c) =RP(c); g=LP(b); h=
LP(b*). From (1) and (2) we have bb* = a(1 — a) and b*b = c¢(1 — ¢)
andso, g<e, h<f.

We claim that ag = ga. Set d = bb*, and note that ad = da. We have
g = LP(d) = RP(d), and so gad = da = ad. Right multiplying this rela-
tion by d, the relative inverse of d, we obtain gag = ag. Analogously,
ga = gag, and we conclude that ag = ga.

Similarly, we can show hc = ch.

Now, we have

(4) (e—gla=ale-g)=((e-g)a)*,
(5) (e—g)a*(e—g) = (e~ g)ale - g).

It follows that (e — g)a is a projection. Note that (e — g)aR =
(e — g)eR = (e — g)R. Hence,

(6) e—g=(e—g)a
and, similarly
(7) f-h=(f-h)ec

It follows from (1)—(7) that we have an orthogonal decomposition

(e 2)={0F o)+ 0)
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Now, (ga)R = geR = gR = bR and (hc)R = hfR = hR = b*R. Put-

ting
_|(e— g 0 _(ga b
b ( 0 f- h)’ b2 (b* hC)

we have the desired projections. O

We note that the decomposition given in Lemma 1.9 is unique. Set
S = M,(R). We say that a projection E of S is of type A if E = (§ )
with p, g € P(R). We say that E is of type B if E = (3 72) with
a,R = a,R, a%R = a;R. By Lemma 1.9, every projection of S is, in a
unique way, an orthogonal sum of a projection of type A and a projection
of type B.

We now construct some projections of type B. If e € P(R) and w,,
w, € R, we say that (w,, w,) is an isometric pair for e if w;R = w*R =
w,R = eR and ww{ + w,w}¥ = e. It is routine to verify that if (w;, w,) is
an isometric pair for e, then

E =

* %k
Wrw, wWiw,
* *

is a projection of S of type B which is *-equivalent to (§ J) (implemented
by (5* 5*)-

PrOPOSITION 1.10. Let R be a *-regular ring with 2-positive definite
involution such that S = M,(R) satisfies LP ~ RP. If E is a projection in
S, then there exists an orthogonal decomposition E = E, + E,, where E, is
a projection of type A and there exist a projection e in R and an isometric
pair for e, (w;,w,), such that

E,=

L3 *

Wrwp wrw,
* * :

Wyw;, wWrw,

Proof. By Lemma 19, E = E, + E,, where E, is type A and E, is
type B. Set E, = (3 32), and put e = LP(a;) = RP(a,) = LP(a,); f=
LP(a;) = RP(a;) = LP(a$). Set G = (5 9); G, = (5 9); Gy = (§ ). It is
not difficult to see that

G-S5=G,-§SG,-S=G,-S®E,-S=G,-SOE,-S.

We conclude that G, - S = G, - § = E, - S. Since, by hypothesis, S
satisfies LP ~ RP, we have E, ~ G,. Let W be a partial isometry of S
implementing this *-equivalence. It is easy to see that W has the form
ol o2) for wy, w, € R. An easy computation shows that (w;,w,) is an
isometric pair for e. a
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PROPOSITION 1.11. Let R be a *-regular ring with 2-positive definite
involution and satisfying LP <~ RP. Set S = M,(R). Then, S satisfies

LP < RP if and only if for every projection (¢ °) of S of type B with
e = LP(a) = LP(b), we have (4. °) < (& ).

Proof. We first observe that every subprojection of a projection of
type B is itself of type B. This follows from Lemma 1.9 by observing that
a projection of type B cannot contain a nonzero projection of type A. For,
if (¢ 9) < (4 ?), where (4« 1) is of type B, then pa = p, pb = 0, gb* = 0,
gc = q. But aR = bR implies £(a) = £(b), so pa = 0 = p, and similarly
gc =0=gq.

If E = (4 79), then we say E is type A, and if E = (J ), then we say
that E is type A,. Note that every projection in S is an orthogonal sum
of projections of types A, A, and B. Also, note that any subprojection of
a projection E of type A,, A, or B is itself of the same type as E.

Suppose that E, F are two equivalent projections in S. We will show
that E ~ F provided S satisfies the stated condition. Let E = E; + E, +
E, be the decomposition of E into projections E,, E, and E; of types A,
A, and B respectively. Since E ~ F, there exists an orthogonal decom-
position F=F, + F, + F,, with E, ~ F,, E, ~ F, and E; ~ F;. For
i = 1,2,3, we have orthogonal decompositions F;, = F;, + F;, + F,; of F,
into projections of types A;, A, and B respectively. Returning to E, we
obtain E, = E; + E, + E;; with E;, ~ F,; for i, j = 1,2,3. So, we have
decomposed E and F into nine orthogonal projections, each one of pure
type. It follows that it suffices to consider the following cases:

(a) E is type A; and F is type A;.

(b) E is type A, and F is type A,.

(c) E is type A, and F is type B.

(d) E is type B and F is type B.

Case (a). If E= (5 3), F=(§ ) with p, p’ € P(R), then it follows
that p ~ p’ in R. Since R satisfies LP ~ RP, we have p <~ p’, and so
E~F.

Case (b). Similar to case (a).

Case (c). By hypothesis, F = (4 %)< (§3), where eR =aR =
bR. So, (5 3) ~ E. By case (a), (§ 3) ~ E, and so, E ~ F.
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Case (d). Each one of E, F is *-equivalent, by hypothesis, to a
projection of type A, and so, case (a) applies.

If S satisfies LP ~ RP, then it follows as in the proof of Proposition
1.10 that for a projection E = (4. ©) of S of type B, with e = LP(a), we
have E < (§ ). O

Recall that a *-ring is said to be *-Pythagorean if for every x, y in R
there exists z € R such that xx* + yy* = zz*. Following [11], we say
than an element a in R is a norm in R if it has the form a = xx*, with
x € R. Clearly, in a *-Pythagorean ring any sum of norms is a norm.

The following theorem is an extension of some results of Handelman,
cf. [9, Theorem 4.5] and [11; Theorem 4.9, Corollary 4.10].

THEOREM 1.12. Let R be a *-regular ring with 2-positive definite
involution and satisfying LP ~ RP. Then, M,(R) satisfies LP ~ RP if and
only if R is *-Pythagorean. In this case, * is positive definite and M,(R)
satisfies LP ~ RP foralln > 1.

Proof. The “only if” part follows from [16, Lemma 1).

Assume now that R is *-Pythagorean. By Proposition 1.11, it suffices
to see that for any projection E = (4 %) in M,(R) with aR = bR,
b*R = cR, e = LP(a), we have E =~ (§ }). We have a = a® + bb* =
aa* + bb*, so there exists w in R such that @ = ww*. Since R has

LP ~ RP, we see from Lemma 1.1 that we can choose w € eRe. Let w be
the relative inverse of w and note that

(1) ww = ww = e.
Consider the relation
(2) ww*ww* + bb* = ww*.

By multiplying the relation (2) on the left by w and on the right by
* = w* and using (1), we get

w
(3) w*w + whb*w* = e.

Hence,
(w* Wb)( w O) _ (e O)
0 0 b*w* 0 0 0

and so (§" §?) is a partial isometry. It follows that

_ w 0\(w* wb
F’(b*w* 0)(0 o)
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is a projection in S and we compute that
a b
F= (b* b*w*Wb)'

Note that b*w*WbR = b*R = cR, so F is of type B. To see that E = F,
we observe that for any projection (34 72) of type B, a; is uniquely
determined by a, and a,. For, note that a, = a,a, + a,a;. Let a, be the
relative inverse of a,. Multiplying the above relation on the left by a,,
and observing that f = a,a, = RP(a,) = LP(a¥) = LP(a;), we get f=
a,a,a, + a5, 50 ay = a,(1 — a))a,.

Clearly, if R is *-Pythagorean, then * is positive definite. By applying
[16, Theorem 3], we see that M,.(R) is *-Pythagorean for all n > 0, and
s0, M,.(R) satisfies LP ~ RP for all n > 0. Since any ring M, (R) is a
corner in some ring M,.(R), it follows that M, (R) satisfies LP ~ RP for
allm > 1. O

Let R be a *-ring such that M,(R) is Rickart for all n > 1. We say
that R satisfies LP ~ RP matricially if M, (R) satisfy LP = RP for all
n>1.

COROLLARY 1.13. Let R be a *-regular ring with 2-positive definite
involution. Then, R is a *-regular ring satisfying LP ~ RP matricially if and
only if R satisfies the following condition

If aa* + bb* € eRe, where a,b € R, e € P(R), then there
exists z € eRe such that aa* + bb* = zz*.

If R is a self-injective *-regular ring, we see from Propositions 1.5 and
1.8 that R satisfies LP = RP if and only if all simple homomorphic
images of R satisfy LP < RP. Now we obtain a characterization of the
self-injective *-regular rings of type I which satisfy LP < RP matricially.
The background of the structure theory for regular, right self-injective
rings can be found in [5, Chapter 10].

COROLLARY 1.14. Let R be a *-regular self-injective ring of type I.
Then, M, (R) is a *-regular self-injective ring of type 1 satisfying LP <~ RP,
for all m =1, if and only if R is *-isomorphic to a direct product

© M, (A,), where each A, is an abelian self-injective *-regular ring and
all its simple homomorphic images are *-Pythagorean division rings with
positive definite involution.
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Proof. If R = I1¥_,M,(A,), where each 4, is an abelian self-injective
*-regular ring with all division ring images *-Pythagorean and with
positive definite involution, we see from 1.5, 1.8 and 1.12 that R satisfies
LP <~ RP matricially. Also, it is well-known that M, (R) is a regular
self-injective ring of type I, for all m > 1.

For the converse, note that by [5, Thm. 10.24] there exist regular,
self-injective rings R;, R,,... such that R = [T*_,R, and each R, is of
type I,. It follows that there exist orthogonal central projections e, e,,...
in R with V e, =1, and orthogonal projections f;;, f;,,...,f; for i =
1,2,... such that f; ~f, ~ --- ~f, and e,=f; + f, + --- +f, for
i =1,2,.... Since R satisfies LP ~ RP, also ¢,R satisfies LP ~ RP and so
fatfat -+ 2f,. Set A, =f,Rf,, and observe that e,R = M,(A,).
We deduce that R = [Y_,M,(A,) and A, are abelian self-injective
*-regular rings with positive definite involution and satisfying LP ~ RP
matricially. Since all simple homomorphic images of an abelian regular
ring are division rings, the result follows. a

2. Pseudo-rank functions on *-regular rings. In this section, we
study property LP = RP for completions of *-regular rings with respect to
pseudo-rank functions. In particular, we show that if R is a *-regular
unit-regular ring satisfying LP ~ RP and N is a pseudo-rank function on

R, then its N-completion also satisfies LP ~ RP. In [3], Burke showed this
holds for an irreducible *-regular rank ring with order k, with k > 4, in
which comparability holds, which turns out to be a very special case of the
result here. Our result follows from Theorem 2.8, which is also used in §3.

A pseudo-rank function on a regular ring R is a map N: R — [0,1]
such that

(@ N1 =1

(b) N(xy) < N(x) and N(xy) < N(y)

(c) N(e + f) = N(e) + N(f) for all orthogonal idempotents e, f € R.

A rank function on R is a pseudo-rank function with the additional
property

(d) N(x) = 0 implies x = 0.

If N is a pseudo-rank function on R, then the rule 6(x, y) = N(x — y)
defines a pseudo-metric on R. Clearly, § is a metric iff N is a rank
function. The Hausdorff completion of R with respect to &, R, is showed
[S, Chapter 19] to be a right and left self-injective regular ring which is
complete with respect to the N-metric, where N is the unique extension of
N to R.
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If R is *-regular, it follows as in [8, Prop. 1] that we can extend * in a
natural way to the N-completion of R, R, so that R becomes a *-regular
ring.

We now show the analogue of [5, Lemma 19.5] for projections in
*-regular rings.

LEMMA 2.1. Let R be a *-regular ring with pseudo-rank function N, let
R be its N-completion and let ¢: R — R be the natural map. If p,
q € P(R) are orthogonal, then there exists a sequence {(p,,q,)} € R X R
such that

(@) o(p,) = P, 9(4,) > 4.
(b) For all n, p, and q, are orthogonal projections.

Proof. By [S, Lemma 19.5], there exists a sequence {(e,, f,)} € R X R
such that ¢(e,) = p, ¢(f,) = ¢ and for all n, e, and f, are orthogonal
idempotents. Set p, = LP(e,), g, = RP(f,), and note that p.e, =e,,
€,Pn = Pn> 4nfu = 4> Ju4n = f,- We have g, p, = q,f,e,p, = 0, so, for all
n, p, and g, are orthogonal projections in R.

Given ¢ > 0, we can choose M such that N(p — ¢(e,)) < ¢/2 and
N(p — ¢(e*)) < e/2 for n > M. Now, we have

N(Pn - en) = N(pne: —pnen) = N(e:‘ - en)
SJV((p(e:)—p)+]V(p—<p(en))<£ ifn>M.
It follows that ¢( p,) — p, and similarly ¢(q,) — 4. a

PROPOSITION 2.2. (a) Let R be a regular ring and let N be a pseudo-rank
function on R. Let : R — R be the natural map from R to its N-comple-
tion, R. If e, f are equivalent idempotents in R, then there exist sequences
{e,}, {f.} such that, for all n, e, and f, are equivalent idempotents in R
and (e,) = e, 9(f,) = /.

(b) In (a), if e and f are orthogonal, then we can choose {e,}, { f,}
such that e, and f, are equivalent orthogonal idempotents for all n.

(¢) If R is *-regular and p, q are (orthogonal) equivalent projections in
R, then there exist {p,}, {q,} such that, for all n, p, and q, are
(orthogonal) equivalent projections in R and ¢(p,) — p, ¢(q,) = 4.

Proof. (a) It suffices to see that given & > 0, there exist equivalent
idempotents 4, g in R such that N(e — @(h)) < ¢ and N(f — ¢(g)) < &
We observe that we can get idempotents e/, f’ in R, and elements
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x € e’Rf’ and y € f'Re’ such that N(e — @(e’)) < &/2, N(f — o(f") <
e/2 while N(e’ — xy) <e/6 and N(f' — yx) <e/6. Note that xy €
e’'Re’. Clearly, xyR + (¢’ — xy)R = e’R and so there exists an idempo-
tent 2 in R such that e’h=he’ =h, hR= xyR and (¢’ — h)R <
(e’ — xy)R. Thus, we have N(e' — h) < g/6.

Let A € Rh with xyA = h. We have

N(e'’A —e’) < N(eA—h) + N(h — ¢)
=N((e'—xy)A) + N(h —e’) <e/6 + e/6 = ¢/3.

Set g = yAx. Clearly, g is idempotent, g is equivalent to 4 and
g < f'. We have

N(f" —g) = N(f' = yAx) < N(f" = yx) + N(yx — yAx)
<e/6+ N(y(e' —e'\)x) <e/6 +¢e/3=2¢/2.
So, g and k are equivalent idempotents and
N(e — o(h)) < N(e—o(e’)) + N(e’ —h) <e/2 +¢/6 <k,
N(f—o(8) < N(f—o(f)+N(f —g)<e/2+e/2=c¢.
(b) We note that, by [5, Lemma 19.5] we can choose the idempotents
e’, f’ in the proof of (a) to be orthogonal. Since 4 € e’Re’, g € f'Rf’, h
and g are orthogonal and so the result follows. _
(c) If p, q are (orthogonal) equivalent projections in R, then by ((b))
(a) there exist {e,}, { f,} with @(e,) = p, o(f,) — ¢, and for all n, e,
and f, (orthogonal) equivalent idempotents in R. Set p, = LP(e,), q, =
RP(f,). As in the proof of Lemma 2.1, we obtain ¢(p,) > p and

¢(q,) = q. Also, it is easily shown that, for all n, p, and g, are
(orthogonal) equivalent projections in R. O

Let R be any *-ring. We say that R satisfies the *-cancellation law for
projections (briefly, R has *-cancellation) if whenever e ~ f with e,
f€ P(R), we have 1 — e ~ 1 — f. This is equivalent to saying that two
*_equivalent projections in R are unitarily equivalent. Also, it is easy to
see that if R has *-cancellation and e, f, g, h € P(R) are such that e and
f are orthogonal, g and A are orthogonal, e + f~ g + h and f~ h, then
e~ g

Examples of *-regular rings with *-cancellation are the *-regular rings
with general comparability for *-equivalence. Also, the *-regular rings
with primitive factors artinian and the *-regular self-injective rings of type

I satisfy the *-cancellation law. The key to prove this is the following
lemma.
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LEMMA 2.3. Let R be any simple artinian ring with proper involution *.
Then, R satisfies the *-cancellation law.

Proof. We note that R is *-regular. Since R is simple artinian,
there exist orthogonal equivalent idempotents e,,e,,...,e, such that
e, + --- +e, =1 and each ¢,R is a simple R-module. Since R is *-regu-
lar, we can assume that e, e,,...,e, are projections, so that e,Re; = D
is a division ring with involution. Choose x; € e,Re;, y; € ¢;Re,, i =
1,...,n, such that x,y,=e,, y,x,=e¢, for i =1,...,n. Endow M,(D)
with an involution # given by (a,)* = (b,;), where b, =
(x;x*)a¥(y*y), i,j=1,...,n. The map R - M, (D) given by a —
(x;ay;) is a *-isomorphism from R onto M, (D) with inverse map (a,;) =
Y] j-1ya;,x;. Note that xx¥* y*y, € e;Re; = D are such that
(x,x¥)p*y) = (¥*y)(x;x¥) = e; = 1p. So, x,x* = (y*y,) ! in D. Thus,
if we put ¢, =yx*y, for i=1i,...,n we have t,=1* and b, =t"a}t,
where (a,,)* = (b,)).

If x,,...,x, are in D, and some x; is nonzero, then, since # is a
proper involution on M, (D), we have xf¢;x; + --- +x}t,x, # 0. Define
(,): D" X D" - D by

(a,b)={(ay,...,a,),(by,..., b,)) = aft;b, + - +a*t,b,.
( , ) has the following properties:

M {a,b+c)=(ab) + {a,c),

(2){(a,b) = (b,a)*,

(3) (a,bA) = (a,b)A,

(4) (a,a) =0iffa=0
fora,b,c € D", A\ € D.

So, ( , ) is a nonsingular hermitian form over D”. It is easy to verify
that (Tx, y) = (x,T*y) for T € M,(D), x, y € D", and so isometric
spaces in D" correspond to *-equivalent projections in M,(D). So, the
result follows from Witt’s theorem for division rings with involution [12,
pg. 162]. O

PROPOSITION 2.4. Let R be a *-regular ring and assume that either R
has all primitive factor rings artinian or R is self-injective of type 1. Then, R
satisfies the *-cancellation law.

Proof. Let R be a *-regular ring with all primitive factor rings
artinian. By [5, Corollary 6.7], all indecomposable factor rings of R are
simple artinian. Thus, by Lemma 2.3, they satisfy the *-cancellation law.
Also, note that we can write the *-cancellation law in equational terms.
So, we can proceed as in [S, Thm. 6.10].
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If R is a *-regular, self-injective ring of type I, then R =[1°_,R,,
where each R, is of type I, and so, R, has all primitive factor rings
artinian. Thus, each R, satisfies the *-cancellation law and so, also R
satisfies the *-cancellation law. O

We note that the *-cancellation law is preserved in direct products
and direct limits of *-rings. If R is *-regular and R satisfies the *-cancel-
lation law, then, by Lemma 1.6, R/I has *-cancellation and unitaries in
R /1 lift to unitaries in R, for every two-sided ideal I of R.

LeMMA 2.5 (cf. [3, Lemma 6.5]). Let R be a *-regular ring with
*-cancellation and let N be a pseudo-rank function on R. Let e, e,, f;,
f, € P(R) such that e, ~ f,, e, ~f, and let u, be a unitary such that
fi = we,uf. Then, there exists a unitary u, such that u,e,u% = f, and
N(uy = uy) < 2AN(e, — e,) + N(f, = fy))-

Proof. We first observe that if e, f € P(R) are such that eR N fR = 0,
then eR < (e — f)R, fR < (e — f)R and so N(e) + N(f) < 2N(e — f).
Set f, = u,e,uf, and note that f, ~ £, and

N(f;-fi)= N(“l(ez - el)uf‘) = N(e, — e,).
So, :
(1) N(fs—=f£)<N(fs=fi)) +N(f,— fi) =N(ey, —e;) + N(f, = f1).

We have orthogonal decompositions f, = f, A f, + f,, =LA f +
f3, where f;, f; € P(R). Note that ;R N f{R = 0.

Since R has *-cancellation, f, = f;. Set g=f, Vv f;. Then, there
exists u} € gRg such that wjul* = uj*u} = g and u)f,ul* = f/. Set u; =
uy; +1 — g and note that u;fouf =f and 1 —u; =1 — uy)g
= g(1 — uy).

Finally, define u, = u¥u;,. We have u,e,u¥ = u¥ue,ufu; = uifsu,
= f,, and

AN(“z — u;) =N(u§k“1 - “1) =N(1 —u;) = N((l - u3)g)
< N(g)= N(fz’) + N(f3’) = 2N(f2’ _f3/)

=2N(f, = f;) <2(N(ey — &) + N(f, — f1)).
So, the result follows. O
LEMMA 2.6. Let R be a *-regular ring with pseudo-rank function N. Let

R be the N-completion of R and let ¢: R — R denote the natural map. If w
is a partial isometry in R, then there exists a sequence {w,} C R such that
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o(w,) = w and, for all n, w, is a partial isometry in R. If, in addition, R
satisfies the *-cancellation law, then the group of unitaries of R is dense in
that of R. (These groups are endowed with the relative pseudo-rank-metric
topology and they are topological groups.)

Proof. Set e = ww* € P(R). Choose sequences {e,}, {«,} such that
e, € P(R), a, € R, for all n and ¢(e,) = e, ¢(a,) = w. Note that we
can assume that a, € e,R for all n. Set y, = e, — a,a*. Then, @(v,) = e
— ww* = 0. Put e, = RP(y,) = LP(y,), all n. Clearly, ¢(e,) = 0. Con-
sequently, e/ = e, — e, are projections in R and ¢(e,’) — e. Now, we
note that 0 = e/'y,e, = e,/ — e, a,ake. So, e, = (e, a,) e, a,)*. We de-
duce that w, = e/a, are partial isometries such that p(w,) = ew = w.

Clearly, the group of unitaries of R and that of R are topological
groups (see [8, Prop. 8]). If u is a unitary in R, then there exists a
sequence {w,} such that each w, is a partial isometry and @(w,) — u. If
R has *-cancellation, then there exist unitaries u, such that wwXu, = w,
for all n. Since @(w,w*) — 1, we obtain ¢(u,) = u. a

In the next theorem, we show that the *-cancellation law extends from
R to R. This is not new in case R is type I, by Proposition 2.4.

THEOREM 2.7. Let R be a *-regular ring with pseudo-rank function N.
Let R be the N-completion of R. If R satisfies the *-cancellation law, then so
does R.

Proof. Let @: R = R denote the natural map.

Let e, f be two *-equivalent projections in R, and let w be a partial
isometry in R such that ww* = ¢ and w*w = f. By Lemma 2.6, there
exists a sequence {w,} of partial isometries in R such that ¢(w,) = w.
Set e, = w,w} and f, = w}w, and note that e, f, € P(R) and ¢(e,) — e,
¢(f,) — f. By passing to subsequences of {e,} and { f,}, we can assume
that N(e,,, —e,) <27 " and N(f,,; — f,) <27" Let u, be a unitary in
R with we uf = f,. We construct, by using Lemma 2.5, a sequence of
unitaries { u,, } in R such that u,e, u} = f, and

N(un+1 - un) =< 2'(‘Zv(en+1 - en) + N(fn+l —fn))
<22+ 2 =22

It follows that {u,} is a Cauchy sequence. Let u = lim, _, , (u,) € R.
Clearly, ueu* = f and so, e and f are unitarily equivalent in R. 0O



MATRIX RINGS OVER * - REGULAR RINGS 227

Next, we show the following technical, but useful, result.

THEOREM 2.8. Let R be a *-regular ring with *-cancellation and let N be
a pseudo-rank function on R. Let R be its N-completion. Then, R satisfies
LP ~ RP if and only if given ¢ > 0 and equivalent projections e, f in R,
there exist subprojections e’ < e, ' < fsuch thate’ ~ f' and N(e — e’) < g,

N(f-f)<e
Proof. Let @: R — R denote the natural map.

Assume that R satisfies LP ~ RP. If e, f are equivalent projections in
R, then ¢(e) ~ o(f) and, since R satisfies LP <~ RP, we have
@(e) ~ ¢(f). Let w be a partial isometry in R such that ww* = @(e) and
w*w = @(f). We observe that, in this situation, we can choose the partial
isometries { w, } constructed in the proof of Lemma 2.6 in such a way that
w, € eRf. Set e, = ww}k, f, = wkw,. Clearly, ¢(e,) = ¢(e) and o@(f,)
— @(f), and e, ~f, for all n. It follows that N(e —e,) = 0 and
N(f—f,) — 0. So, given &€ > 0, there exist e’, f’ such that e’ < e, f' < f,
e~ f and N(e —e')<e, N(f—f) <.

Conversely, assume that e and f are equivalent projections in R. By
Proposition 2.2, (c), there exist sequences { e, }, { f,}, with e,, f, € P(R),
p(e,) > e, o(f,) = f,and e, ~ f, for all n. Thus, by application of our
hypothesis with &, = 27", we have that there exist, for each n, subpro-
jections e, <e,, f/ <f, such that e,~f/, N(e,—e,) <2" and
N(f, — f)) < 27" It follows that ¢(e,) — e and ¢(f,) — f. Now, as in
the proof of Theorem 2.7, we get a unitary u in R such that ueu* = f. In
particular, we obtain that e < f. a

So, if R has *-cancellation, then R satisfies LP <~ RP iff any two
equivalent projections e, f in R can be “well approximated” with respect
to N by *-equivalent subprojections in R. Since any *-regular unit-regular
ring with LP < RP obviously satisfies the *-cancellation law, we have

THEOREM 2.9. Let R be a *-regular unit-regular ring with pseudo-rank
function N, and let R be its N-completion. If R satisfies LP ~ RP, then so
does R. O

REMARK. Let R be any regular ring. Denote by P(R) the set of
pseudo-rank functions of R. Define ([6]), if P(R) # &, N*(x)=
sup{ P(x)|P € P(R)} and N*(x) = 0if P(R) = <. Then, N* induces a
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pseudo-metric §(x, y) = N*(x — y) on R and the completion of R with
respect to 8, S, is a regular ring, called the N*-completion of R. If R is
*.regular, then S is also *-regular in a natural way. It can be seen that the
results of this section also hold for the N*-completion of a *-regular ring.
In particular, the *-cancellation law and, if R is unit-regular, the LP = RP
axiom, extends from R to S.

3. Applications to the study of property LP ~ RP for certain *-regu-
lar self-injective rings. Let R be a *-regular ring with positive definite
involution. We assume throughout in this section that M, (R) is endowed
with the *-transpose involution (see §1). We proceed to construct a
Grothendieck group for R which is attached to the *-equivalence of
projections in the rings M,(R). We shall call this group K (R). For to
construct it, we follow the construction in [7] for C*-algebras. Set P_(R)
=U®_,P(M,(R)). For e, f€ P (R), set ed f=(§ })) € P (R). If
e, f € P_(R), then we say that e and f are *-equivalent, e = f, if (§ §
< ¢ ¢§) in some ring M, (R), for some suitably-sized zero matrices.
Also, define e, f€ P_(R) to be stably *-equivalent, written e = f, pro-
vided e ® g~ f® g for some g P_(R). Let P_(R)/ = denote the
family of all the equivalence classes defined by = (which is clearly an
equivalence relation). For e € P_(R), we use [e], to denote the equiva-
lence class of e with respect to = . It follows easily that P,_(R)/ =, with
the operation [e]s + [f]l« =[e ® f]s, is an abelian semigroup with
cancellation. So, we may formally adjoin inverses to P_(R)/ =, obtain-
ing an abelian group, denoted by KF(R).

Recall that, if we use in the above construction equivalence instead of
*-equivalence, we obtain the group K (R), which can also be defined by
using finitely generated projective modules over R (see [5, Chapter 15]).

We have a map @: KJ(R) = K, (R) given by ®([e]s) = [e] where
[e] denotes the corresponding equivalence class of e in K,(R). This map
is clearly a group homomorphism from KJ(R) onto K,(R).

Define a cone C in KF(R) by C = K§(R) = {[el«|le € P (R)}. It
follows from [1, Thm. 3.1, (b)] that (KJ(R),[1]s) is a partially ordered
group with order unit ([5, pg. 203]) for any *-regular ring R with positive
definite involution. Also, we may view ®: (K}(R),[1]s) = (Ky(R),[1]) as
a morphism in the category & defined in [5, pg. 203].

Now, we study KF(F), where F is any *-field with positive definite
involution. In this case, KF(F) and K,(F) admit in a natural way a
structure of ring, where the product is induced by the tensor product.
Recall that M, (F)® M, (F) = M, (F) and the usual isomorphism is in
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fact a *-isomorphism of *-algebras, if we define (x ® y)* = x* ® y*
for x€ M, (F) and y € M, (F). Also, note that K,(F)=1Z, and
so ®: KF(F)— Ky(F) induces a ring map r: KJ(F) — Z given by
r([els« — [f]s) = rank(e) — rank(f). If we set K = Ker(r), we have an
exact sequence of groups

0->K->K¥F)-Z-0

Hence, K§(F)=Z ® K as abelian groups. In fact, KJ(F) is the
ring generated by [1], and K. Since K is an ideal of KJ(F), this is the
unitification of the (non unital) ring K.

We now relate KJ(F) with the Witt ring of F, W(F). The construc-
tion of W(F) can be found in [15]. There are no extra difficulties in
constructing W(F) using hermitian forms instead of symmetric bilinear
forms. We now fix some notation.

For any *-field F, an hermitian form over F isamap ®: VX V — F,
where V is a finite-dimensional vector space over F, such that

(1) ®(e; + €,,v) = ®(ey,v) + B(e,,v),

(2) ®(Ae,v) = A®(e,v) for A € F,

(3) ®(e,v) = D(v,e)*.

Let F, denote the fixed field of F, thatis F, = {x € F|x = x*}. For
a € V, we note that ®(a,a) € F,. We define D (®) = (A€ F|A =
®(a,a)forsomea € V} C F,

Each hermitian form @ is isometric to a form (a,,...,a,), with
a,...,a, € D(®), where (a,,...,a,) denotes the hermitian form 4:
F" X F" —» F defined by {Y((x,-..,%,), (V1 --.5¥,)) = @ x5
+ - +a,x,yr

If ch(F) # 2, then we construct W(F) as in [15, Chapter 2] using
hermitian forms instead of symmetric bilinear forms. Recall [15, Prop.
I1.1.4] that

(1) The elements of W(F) are in one-one correspondence with the
isometry classes of all anisotropic hermitian forms.

(2) Two nonsingular hermitian forms ®,®’ represent the same ele-
ment in W(F) iff the anisotropic part of ®, @, is isometric to the
anisotropic part of ®’, ®/; in symbols, ®, = ®,.

(3) If dim® = dim®’ (where ®, ®’ are nonsingular) then ® and &’
represent the same element in W(F) iff & = @’.

We now return to the case where * is positive definite. For e €
P(M,(F)), we have an hermitian form associated H(e) = (e(F"), h,),
where h, is the restriction to e( F") of the hermitian form (x, y) = x, yf*
+ --- +x,y¥ over F". Set -H(e)= (e(F"),—h,); and note that
{-H(e)} = —{ H(e)}, where { ®} denotes the class of ® in W(F).
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PROPOSITION 3.1. (a) There exists an injective ring map ¢: KF(F) —
W(F) such that g(lelx — [fls) = {H(e) ® (-H([))}, fore, f € P (F).

(b) The hermitian form H(e) ® (—H(f)) is isotropic if and only if there
exist nonzero subprojections e’ < e, f' < fsuch that e’ ~ f" in P,_(F).

Proof. Define ¢': K§(F)*— W(F) by ¢'(lels) = {H(e)}. We
show that ¢’ is well-defined, @'([els + [fls) = ¢'([els) + ¢'([f]4) and

¢'(lels - [f1s) = @'([els) - @'([f 1), for e, fE€ P (F). For, assume that
[ele = [f]s with e € M, (F), f€ M, (F). There exist g € P_(F) and
suitably-sized zero matrices such that

e 0 O f 0 0
0 g 0|<|0 g O
0 0 O 0 0 O

in some ring M,(F). By Lemma 2.3, M,(F) has *-cancellation, so
€92 (19 in M,(F). It follows easily that (e(F"),k,) is isometric
to (f(F™),h;). So, {H(e)} = {H(f)} and ¢’ is well-defined. If e,
f€ P_(F), then

¢'([els +[/1s) = ¢'([e ® fls) = {H(e ® f)}
= {((e @ N)(F"* ™), heoy)} = {(e(F"), b)) +{(F(F™), )}

= {H(e)} +{H(f)} = ¢'([e]s) + ¢'([f]4)-
Since the products in K,(F) and in W(F) are both induced by the tensor

product, we obtain similarly ¢'([e]« - [f1«) = @'([e]x) - @'([f]4)-
From this, we deduce that we can define ¢: K§(F) — W(F) such

that e([e]ls — [f1+) = ®(els) — o([f14)- So,
o(lels —[fls) = {H(e)}) —{H(f)}) = {H(e)} +{-H(f)}
= {H(e) ®(-H(f))}.

We note that, since the involution on F is positive definite, H(e) is
anisotropic for every e € P_(F).

Suppose that ¢([elx — [f]+) = 0. Then, { H(e)} = { H(f)} and so,
H(e) = H(e), = H(f),= H(f). It follows that e ~ f in P,_(F) and so,
lele = [f]s

(b) Assume that H(e) ® (—H( f)) is isotropic. Then, there exist non-
zero vectors u = (uy,...,u,), v = (Vy,...,0,,) such that u € e(F"), v €
f(F™) and wuf + --- +tu,uf = v 0¥ + --- +v,0k. We infer that there
exist (nonzero) subprojections e’ < e and f’ < f with ¢'(F”") = uF and
f'(F™) = vF. It follows that e’ ~ f’.
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Conversely, assume that e’ <e, f' <f are nonzero *-equivalent
projections. Then, H(e’) and H( f’) are nonzero isometric subspaces of
H(e) and H(f) respectively. So, H(e) ® (-H(f)) is isotropic. O

We define D (m) = D(m(1)) and Dp(o0) = U%_,Dp(m). Let W(F)
denote the subgroup of additive torsion of W(F). Clearly, W,(F) is an
ideal and by [15, Corollary XI.3.2], W,(F) is a 2-primary group. If
w € Dp(o0), let 2" be the smallest power of 2 for which w € D.(2").
Then, by [15, Prop. XI.1.3], the additive order of the form (1,-w) is
precisely 2”. So, (1,-w) € W,(F)if w € Dg(o0) and, by [15, Prop. X1.3.3
and supplement], W,(F) coincides with the ideal generated by these
elements.

PROPOSITION 3.2. Let K be the kernel of the map r: K§(F) — Z given
by r([els — [f1s) = rank(e) — rank( f) and let ¢: K}(F) = W(F) be the
map defined in Proposition 3.1. Then, (K) C W,(F) and so, K is a
2-primary group. Moreover, @(K) = W,(F ), where W,(F ) is the (non
unital) subring of W(F') generated by {{1,-w)|w € Dg(o0)} and K§(F)
is ring isomorphic, via @, to the unitification of W,(F).

Proof. We first observe that K is generated by the elements[1], — [e].,
where e € P_(F) is of rank 1. If e € M, (F), then we deduce that
o([1]« — [els) = {{(1,-w)}, where w € Dg(n). Thus, clearly ¢(K) =
W,(F). We have a commutative diagram

0 - K - KxF) 5 Z > 0
£ Lo £
0 - W(F) - W({F) - WF)/W(F) - 0
So, KXF)=7® K> Z® W(F)C W(F) and clearly K#(F) is
ring isomorphic to the unitification of W,(F). O

If D.(o0) induces a total ordering on F, that is, if F = Dg(o0) U {0}
U (—Dg(00)), then K(;"(~F) = W(F). On the other hand, if F is *-Pytha-
gorean, then W,(F) = W/(F)=0and KJ(F) = Z.

DEFINITIONS. Let (F, *) be a field with positive definite involution. A
*-algebra A over F is said to be matricial if A is isomorphic as *-algebra
to M, ,(F) X --- XM,,,(F) for some positive integers n(1),...,n(r).
The *-algebra is wultramatricial if A contains a sequence 4, C 4, C ---
C A, C --- of matricial *-algebras such that U?_,4, = 4.
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In [7, Prop. 16.1], it is shown that a *-algebra A is ultramatricial iff 4
is isomorphic as *-algebra to a direct limit (in the category of *-algebras)
of a sequence of matricial *-algebras and *-algebra maps.

The *-algebra A is standard matricial if A = M, ,(F)
X+« XM, (F) for some positive integers n(1l),...,n(r); (see [7,

Chapter 17]).

If 4 =M,,(F)X -+ XM, ,(F) and B = M, (F)
X -+ XM, (F) are standard matricial *-algebras, then a standard map
from A to B is any map which sends the element (a,,...,a,) of 4 to

_al ‘\_S\“ ] —al \SQ —

: . al . al
a; \_Sl\A a; ‘\s<
_ o L o

where s,; are nonnegative integers such that s,n(1) + --- +s,n(k) =
m(i) for all i. Clearly any standard map is a *-algebra map. We observe
that the maps we obtain by iterated composition of standard ones are
precisely the “block diagonal” maps.

A standard ultramatricial *-algebra is a direct limit of a sequence
@, o, @,
A > A, > A3 > -

maps ®,: A, = A4, ;.

of standard matricial *-algebras A, and standard

ProposiTION 3.3. If F is *-Pythagorean then every ultramatricial
*-algebra over F is isomorphic as *-algebra to a standard ultramatricial
*-algebra. Moreover, if A and B are ultramatricial *-algebras over F, then
A and B are isomorphic as rings if and only if they are isomorphic as
*-algebras.

Proof. We know that property LP ~ RP holds in M, (F) for all n. So
we can adapt the proofs of [7, Prop. 17.2] and [7, Thm. 20.6]. O

We do not know if Proposition 3.3 remains true for arbitrary fields
with positive definite involution. By using [S, Thm. 15.26] one can show
that any ultramatricial algebra over a field F is isomorphic as F-algebra
to a standard ultramatricial algebra.

Now we proceed to study completions of direct limits of direct
systems of standard matricial *-algebras and standard maps with respect
to a pseudo-rank function. We need a lemma which gives a characteriza-
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tion of those pseudo-rank functions N on a regular ring R such that the
N-completion of R is type II.

LEMMA 3.4. Let R be a regular ring with pseudo-rank function N and let
R be its N-completion. Then, R is type 11 if and only if for each idempotent
ein R, for each ¢ > 0, and for each m > 1 there exist equivalent orthogonal
idempotents e,,e,,...,e, € R such that eie = ee,=e; for all i, and
N(e —(e; + --- +e,)) <e

Proof. Let ¢: R — R denote the natural map.

Assume that for each idempotent e € R, ¢ > 0, and m > 1, there
exist equivalent orthogonal idempotents e, ..., e,, such that ee, = e,e = ¢,
for all i, and N(e — (e; + --- +e,,)) < &. If R is not type II then there
exists a central idempotent 4 € R such that # # 0 and AR is type I, for
some n > 1. Set ¢ = N(h), where N denotes the natural extension of N to
R. There exist equivalent orthogonal idempotents e, e,,...,e,,; € R
such that N(1 — (e; + --- +e,,;)) <& We observe that hg(e;),...,
he(e,, ) are equivalent orthogonal idempotents of R. We have

N(h(l "(‘P(el) + - +‘P(en+1))))
<N(1 —(e,+ -+ +e,,,) <&e=N(h).

In particular A(¢p(e;) + --- +o(e,.1)) # 0. So ho(e,), ..., hop(e,. 1)
are nonzero equivalent orthogonal idempotents in #R. This contradicts [5,
Thm. 7.2] and consequently we deduce that R is type II.

Conversely, assume that R is type II. First we show that for each
e € R, for each ¢ > 0, and for each n > 1, there exist 2" equivalent
orthogonal idempotents e, e,,...,e,» € R such that ee;, = e,e = e, for
all i, and N(e — (e; + --- +e,.)) <& We proceed by induction on .
Set n = 1. If N(e) = 0O then the result is trivial. So assume that N(e) # 0
and consider the pseudo-rank function N’ on eRe defined by N'(z) =
N(z)/N(e) for z € eRe. Then the N’-completion of eRe is precisely
@(e)Ro(e) which is also type II. So we can assume without loss of
generality that e = 1. Since R is type II it follows from [5, Prop. 10.28]
that there exist equivalent orthogonal idempotents g,, g, € R such that
1 =g, + g,. By Proposition 2.2, (b) we can choose sequences {g;,},
{g,,} such that, for each r, g,, and g,, are equivalent orthogonal
idempotents in R and ¢@(g,) = g, 9(&,) — g Consequently
there exist equivalent orthogonal idempotents e;, e, € R such that
N(g — ¢(e))) < ¢&/2and N(g, — @(e;) < £/2. Hence

N(l —(e; + ez)) = N(& - (P(e1)) + N(gz - ‘P(ez)) < e
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Now assume that the result is true for 1 < k < n with n > 2. Taking
=1 we see that there exist equivalent orthogonal idempotents e;,
e5 € R such that e] + ¢} < e and N(e — (e; + ¢€5)) < ¢/3. Taking now
k = n — 1 we obtain 2"~ ! equivalent orthogonal idempotents e, ..., e,.-1
€ R such that e; + -+ +e,-1 <ej and N(e; — (e, + -+ +ey1)) <
¢/3. Since e; ~ e} there exist equivalent orthogonal idempotents
€yn-1415---5€5 € R such that ey-1,; + - -+ +e, <€) and e; ~ e3-1,4
~ -+ ~ e,. We have

N(e; —(epig + - "'ez"))
= N(e;) = N(eyryy) = -+ —N(ey)
= N(e]) = N(e;) — --+ —N(ep1) < &/3.

So, ey,...,e, are 2" equivalent orthogonal idempotents such that e,
+ -+ +e, < eand

N(e—(e, + -+ +ey)) < N(e—(e] + ¢))
+N(e| —(e, + -+ +ey))
+N(ej)—(egry, + -+ +ep))<e.

Now let e € R be an idempotent and let ¢ > 0, m > 1. Choose n > 1
such that m /2" < e¢/2 and put 2" = mr + k where r > 0 and 0 < k < m.
As we have seen there exist equivalent orthogonal idempotents eq, ..., €5,
€ R such that eje = ee; = e/ for all i, and N(e — (e] + -+ +ek)) <
/2. Observe that N(e;) < 27" for all i. Define e, = e(,_1,,.; + -+ +e,
for i=1,...,m. Then e,,...,e,, are equivalent orthogonal idempotents

of R such that e,e = ee, = e, all i. Moreover we have
N(e—(e, + -+ +e,)) =N(e—(e] + - +el,))
< N(e —(e{ + e +e§n)) + N(ejm1 + o teh)
<g/2 + kN(egn)
<e/2+m/2"<eg/2 +e/2 =¢.
Hence N(e — (e, + - -+ +e,:)) < € as desired. a

THEOREM 3.5. Let F be a *-field with positive definite involution. Let
{R,,®,}, e beadirect system such that, for every i € I, R, is a standard
matricial *-algebra over F and, if i <j, ®,: R, — R, is a composition of
standard maps. Let R be the direct limit of {R,,®,} and let N be a
pseudo-rank function on R. Then the type 11 part of the N-completion of R
satisfies LP ~ RP matricially.
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Proof. 1t suffices to see that the type II part of the N-completion of R
satisfies LP ~ RP.

Let R be the N-completion of R and let ¢: R — R denote the
natural map. There exists a unique decomposition R = R, X R, where R,
is type I and R, is type II. Let N be the natural extension of N to R, and
note that N is a rank function on R. If R, and R, are nonzero, then
there exists a central projection 4 # 0,1 such that AR = R, and (1 — k)R
= R,. By [5, Prop. 16.4] there exist unique rank functions Ny, N; on R,
R, such that

N(x) = N(h)N{(hx) + N(1 = B)NJ((1 = h)x)

for all x € R. For y € R, define N,(y) = N;((1 — h)g(y)). Then, it is
easily seen that N, is a pseudo-rank function on R. Also, one can see that
the map ¢: R — R, defined by ¢(y) = (1 — h)p(y) is the natural map
from R to its N,-completion, so that the completion of (R, N,) is
precisely (R,, N,).

If R, = 0, there is nothing to prove. If R, # 0, then we see from the
above discussion that R, is the completion of R with respect to a certain
pseudo-rank function on R. So, we can assume without loss of generality
that R is of type II.

Since each R, has *-cancellation, so does R. Thus, by Theorem 2.8, it
suffices to prove that given &€ > 0 and equivalent projections e, f in R,
there exist subprojections e’ < e, f’ < f such that e’ < f’ and N(e — ¢’)
<ég& N(f—f)<ePForielletf: R,~ R be the natural map from R,
to the direct limit. There exist i € I and projections g, 4 in R, such that
0.(g)=e, 8(h)=f and g~ h in R,. Since R, is a standard matricial
*-algebra, there exist some positive integers c(1),...,c(n) such that R, =
M, 1 (F) X -+ XM,,,(F). Clearly, we may assume without loss of gen-
erality that g = (0,...,0,¢",0,...,0)and 2 = (0,...,0, #’,0,...,0) where
g’  and h’ are projections of rank one in some ring M, (F) for some
l<ac<n.

Let k£ be the additive order of [g']y — [A']x in KJ(F). By Proposition
3.2, k is a power of 2. Moreover, since M, ( F) has *-cancellation for all n,
we have
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Let / be a positive integer with 1// <¢/2, and set m = kl. By
Lemma 3.4 (and a standard argument) there exist m orthogonal equiva-
lent projections e;,...,e, in R such that e, + --- +e, <e and
N(e — (e; + -+ +e,)) <&/2. Now, there exist j € I such that j>i
and m orthogonal equivalent projections g;,..., g, in R, such that g, <
®,(g) and 0(g,) =e, for p=1,..., m There exist positive
integers d(1),...,d(r) such that R, = M, (F) X +-+ XMy, ,(F). Set
8, = (8p15---,8y,) for p=1,....,m, and note that, for each g =
1,...,75 814+ » 8my ar€ m orthogonal equivalent projections in My, (F).
Without loss of generality, we can assume that g;;,..., g, # Oand g,
= .-+ =g, =0.Set ®,(g) = (ey,...,e)). We note that

N(6,((0,...,0,¢/11,....¢]))) < N(8,(®;(g) — (g, + -+ +8,)))
=N(e—(e,+ -+ +e,)) <e&/2.
Since @, is a composition of standard maps, each e;, has the form

for suitably-sized zero matrices.

Since g, + -+ +g,,<e, for ¢g=1,...,r, we have rank(e;) > m
forg=1,...,r" . If weput ®,(h) = (f{,..., f/) we see that rank(f,) = m
forg=1,...,r.

For g =1,...,r/, set {(q) = rank(e;) and note that #(q) is precisely
the number of copies of g’ that appear in the expression of e;. Put
t(q) = s(q)k + t'(q) with 0 < t'(q) < k. We observe that m < s(q)k.
For each ¢ = 1,...,7r’, let e be the projection of M, (F) which has
s(q)k g'-blocks in the same places as the first s(g)k g’-blocks of e, and
zeroes elsewhere, that is
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For ¢ =1,...,r/, let f” be the projection of M, (F) formed in the
same way as e but with 4’ instead of g".

Set e =0,((ef,...,e/,0,...,0)), f =06(f"...,1"0,...,0).
Clearly, ¢’ <e and f’ <f. Since e; ~f for ¢=1,...,r', we have
e’ ~f.

Set N, = N8, Then, N, is a pseudo-rank function on R; and by [5,
Corollary 16.6], we have that there exist nonnegative real numbers
a,...,a,withe; + --- +a, = 1 such that

N,((x,...,x,)) = eyrank(x,)/d(1) + - -+ +a,rank(x,)/d(r).
Forg=1,...,r" we have

rank(e; — e;)/d(q) = 1'(4)/d(q)

<t(q)/m<k/m=k/(kl)=1/1<¢/2.

Finally,

N(e—e)=N(6(e;—ef,....e, —e/ey,....€))
< N((ef —ef,...,e. — el’,0,...,0))
+N,((0,...,0,¢/,1,....¢/))
<N((ef —ef,....e, — ¢/,0,...,0)) + /2
= o, rank(e] — e}’)/d(1)
+ -+ +a,rank(e, — e”)/d(r') + &/2
<(ay+ -+ +a,)e/2 +e/2 <e.

Similarly, N(f — f’) < &. So, the proof is complete. O

As a consequence of Theorem 3.5, we see that if F is any *-field with
positive definite involution, then there exists a simple, *-regular, self-injec-
tive ring of type II satisfying LP ~ RP whose center is F. For example, let
n(l) < n(2) < --- be positive integers such that n(k)|n(k + 1) for all
k, and set S = lim M, ,,(F) (with respect to the obvious standard maps).
Let R be the completion of .S with respect to the unique rank function on
S. Then, R is a simple, *-regular, self-injective ring of type II whose
center is F ([4, Thm. 2.8]). By Theorem 3.5, R satisfies LP ~ RP matri-
cially.

Next, we shall construct a simple, *-regular, self-injective ring of type
I1 which does not satisfy LP ~ RP. In [9, pg. 31, Example 1] Handelman
tries to offer an example of a simple, *-regular, type II self-injective ring
R which does not satisfy LP ~ RP and a Baer *-subring S of R which
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contains all the partial isometries of R and does not satisfy neither
LP < RP nor the (EP)-axiom. The ring R constructed by Handelman is
the completion of lim M,.(Q(x)) with respect to its unique rank function.
So, it follows from Theorem 3.5 that R satisfies LP ~ RP and therefore,
also the Baer *-subring S has LP < RP. It is true, however, that they do
not satisfy the (SR)-axiom of [2, pg. 66].

EXAMPLE 3.6. There exists a simple, *-regular, self-injective ring of type
11 which does not satisfy LP ~ RP.

Proof. Let F be a formally real field such that D.(1) ¢ Dz(2) ¢ -
(for example we can take F = R(xy, x,,...), [15, Exercise 6, pg. 315]). Set
S =TI*_,M,.(F). Let M be a maximal two-sided ideal of S which
contains the direct sum @  M,.(F). Set R = S/M. By [S, Thm. 10.30]
R is a simple, regular, right and left self-injective ring of type II. Clearly,
both R and S are *-regular rings (here, the involution on F is the
identity). For n > 1, choose w, € D(2") — D(2"~'). From Propositions
3.1 and 3.2, we see that there exist rank one projections f, ; € M,.(F),
i=1,...,2" such that for each n, f,, are 2" orthogonal *-equivalent
projections adding to the identity in M,.(F), thatis f, , + -+ +f, ,» =
1,., and @([ £, Js) = {{w,)} fori =1,...,2" Set

A T +fy Gua=fiyat oo +fpom

2n—l -1

2"
1,...,1,0,...,0); h,o= diag(O,...,O, 1,...,1).

h,, = diag

From [15, Corollary X.1.6] and 3.1 (b) we deduce that for each n, g, ,
and h,, does not have nonzero *-equivalent subprojections. Set g; =
(811 8210---); & = (812> 8225 - - - ) hy = (hl,la hypoon); hy =
(Bys,hyy,...). We have g, ~g,, hy~h, and g + g, =h +h, =1
Note that g, ~ 4, and g, ~ h, in S. So, in R we have g ~ h, and
g, ~ h,. Clearly, g, h, # 0.

Suppose that g, ~ h,. By Lemma 1.6, there exist orthogonal decom-
positions g, = g{ + g1, h, = h} + h{ such that g{ ~ h{ and g{’, h{’ € M.
But g,, does not have any nonzero subprojection *-equivalent to a
subprojection of 4, ;. We conclude that g{ = h; =0, and s0 gy, h; € M
which is a contradiction. So, g, and k, are equivalent but not *-equivalent
projections in R and we conclude that R does not have LP ~ RP. o

We now consider the special case in which F is chosen to be a
formally real number field.
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LEMMA 3.7. Let F be a formally real number field and let e, f be two
projections in M,(F). Then, if e ~ f, there exist subprojections e’ < e,
f' < fsuch that e’ ~ f’ and rank(e — e’) < 4, rank(f — f) < 4.

Proof. If rank(e) < 4, then the result is trivial. If rank(e) > 4, set
q = H(e). By[15, Thm. XI.1.4] we see that g represents 1 (since dimgq > 4)
and so g = (1) 1 ¢'. Thus, we conclude that we can get a quadratic form
r such that dimr = 3 and

q= <1,...,1> Lr.

This implies that there exists an orthogonal decomposition
s

e=¢e +e” withe’idiag(l,...,l,O,...,O).

Similarly,

f=f+f withffidiag(l,...,l,o,...,o).

So, e’ < f’ and rank(e — e’) = rank(e”) = rank(f"”) = rank(f — f') =
3. -

PROPOSITION 3.8. Let F be a formally real number field.

(a) Let {R,,®;};;c be any direct system where each R, is a matricial
*-algebra over F (with the identity involution on F). Set R = lim R, and let
N be a pseudo-rank function on R. Then, the type 11 part of the N-comple-
tion of R satisfies LP ~ RP matricially.

(b) Set S =112, M, ;,(F) with n(1) < n(2) < ---, and let M be any
maximal two-sided ideal of S which contains @ M,(F). Then, the
factor ring S/M is a simple, *-regular, self-injective ring of type 11
satisfying LP ~ RP matricially.

Proof. (a) The proof is analogous to that of Theorem 3.5, using
Lemma 3.7 adequately.

(b) Set R = S/M. By [5, Thm. 10.30], R is a simple, regular, right
and left self-injective ring of type II. Also, R is *-regular with positive
definite involution. It suffices to show that R satisfies LP ~ RP.

Let e, f be two nonzero equivalent projections in R. By Proposition
1.5, we only have to prove that there exist nonzero subprojections e’ < e,
f' < f such that e’ ~ f’. Let n be any integer such that n > 6. By [5,
10.28] (and a standard argument), there exist n orthogonal equivalent
projections e,,...,e, in Rsuchthate =¢, + --- +e,.
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Choose equivalent projections p, ¢ € S such that p =e and g = f.
By applying [5, Prop. 2.18] we obtain orthogonal projections pi,..., p, € S
such that p/ < p and p =e; for j=1,...,n. By [S, Prop. 2.19] there
exist projections p, < p’ such that p, ~ --- ~p, and p,=p, = e, for
j=1,...,n.Set g=p, + --- +p, < p.Since p ~ q there exists a projec-
tion & < g such that g ~ h. Notethat g=p, + --- +p,=e, + --- +e,
=e¢and h~g=e~f. Since h < f and R is directly finite, we obtain
h = f. Summarizing we have g =e, h=f, g~hand g=p, + -+ +p,
where the p, are equivalent orthogonal projections.

Set g =(g,8y---), h={(hyh,,...) where g, h, € P(M,, (F)).
Note that g, ~ h, in M, ,(F) and that each g, (and so each k,) is the
sum of n equivalent orthogonal projections. By Lemma 3.7 we can choose

subprojections g’ < g, h,<h, for i=1,2,... such that g/ ~h/,
rank(g, — g/) < 4 and rank(h, — h}) < 4. Set g/'=g,— g/, h/=h,—
h!. Since n > 6 we have g/’ <g/ and h] <h, for i=1,2,.... Set

g =(g), W =(h), g" =(g/"), h" = (h}"). Wehave g’ ~ I, g’ + g" =
g, W +h"=h, g’ <g and h”" < h’. Hence g’ ~h’, g <g=e and
h’ < h = f. It only remains to prove that g’ & M. If g’ € M then since
g’ < g we have g € M and so g€ M which is a contradiction.
Therefore g’ # 0 and this completes the proof. O

EXAMPLE 3.9. There exists a *-regular ring such that
(a) The intersection of the maximal two-sided ideals is zero.
(b) For every maximal two-sided ideal M of R, R/M satisfies LP ~ RP

matricially, but R does not satisfy LP ~ RP.

Proof. Set R = {xell?_,M,R)|x, € M,(Q) for all but finitely
many n}. Clearly the intersection of the maximal two-sided ideals of R is
zero. If M is a maximal two-sided ideal of R such that M does not
contain the direct sum & M, (R), then R/M £ M, (R) for some m and

so R/M satisfies LP = RP matricially. If M contains the direct sum
®= M,(R) then R/M =TI ,M,(Q)/(M NTI7,M,(Q) and so, by
Proposition 3.8, (b), R/M satisfies LP ~ RP matricially. On the other
hand it is clear that R does not satisfy LP ~ RP. O

REFERENCES

[1] P. Ara and P. Menal, On regular rings with involution, Arch. Math., 42 (1984), 26-30.
[2]1 S. K. Berberian, Baer *-rings, Grundlehren Band 195, Springer-Verlag, Berlin and
New York, 1972.



(3]
(4]

[5]
[6]

(7]
(8]
(9]
(10]
(11]

(12]
(13]

(14]
(15]

[16]

(17]

MATRIX RINGS OVER * - REGULAR RINGS 241

J. L. Burke, On the property (PU) for *-regular rings, Canad. Math. Bull,, 19 (1976),
21-38.
K. R. Goodearl, Centers of regular self-injective rings, Pacific J. Math., 76 (1978),
381-395.

, Von Neumann Regular Rings, Pitman, London, 1979.

, Metrically complete regular rings, Trans. Amer. Math. Soc., 272 (1982),
275-310.

, Notes on Real and Complex C*-algebras, Shiva, Nantwich (Cheshire), 1982.
D. Handelman, Completions of rank rings, Canad. Math. Bull., 20 (1977), 199-205.
___, Coordinatization applied to finite Baer *-rings, Trans. Amer. Math. Soc., 235
(1978), 1-34.
, Finite Rickart C*-algebras and their properties, Studies in Analysis, Adv. in
Math. Suppl. Studies, 4 (1979), 171-196.
__, Rings with involution as partially ordered abelian groups, Rocky Mountain J.
Math., 11 (1981), 337-381.
N. Jacobson, Algebra, Volume 2, Van Nostrand, Princeton 1953.
I. Kaplansky, Any orthocomplemented complete modular lattice is a continuous geome-
try, Ann. of Math,, (2), 61 (1955), 524-541.
, Rings of Operators, Benjamin, New York, 1968.
T.Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin Inc., Reading Mass.,
1973.
N. Prijatelj and 1. Vidav, On special *-regular rings, Michigan Math. J., 18 (1971),
213-221.
E. Pyle, The regular ring and the maximal ring of quotients of a finite Baer *-ring,
Trans. Amer. Math. Soc., 203 (1975), 201-213.

Received June 3, 1985. This work was partially supported by CAICYT grant 3556 /83.

UNIVERSITAT AUTONOMA DE BARCELONA
BELLATERRA (BARCELONA)
SPAIN








