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GROUPS OF KNOTS IN HOMOLOGY 3-SPHERES
THAT ARE NOT CLASSICAL KNOT GROUPS

MAGNHILD LIEN

In this paper we attempt to enlarge classical knot groups K by
adding a root to a meridian of K. Thus if X is a classical knot group with
a meridian g, then the groups we study are of the form G = K + \ (t).

=t
This group can always be realized as the group of a knotted 3-};phere in
S3. By using explicit geometric constructions we also show that such a
group G is a 2-knot group and the group of a knot in a homology
3-sphere. Finally, we show that G is not realizable by any knot in S°.

1. Introduction. In [R,] J. Ratcliffe gave an example of a group T’
that is the group of a fibered knot in a homology 3-sphere which cannot
be realized as the group of a classical knot. Let K be the group of the
trefoil knot and let p € K represent a meridian. As seen in [R,] I" can be

expressed as a free product with amalgamation K * , ().
p=t

In this paper we generalize the result in [R,]. We study groups G
obtained from classical knot groups K by forming an amalgamated free
product of K with Z. More specifically if K is a classical knot group with
meridian p, then G = K * (t). Note that if g = 1 then G = K. Hence

p=tt . . .
we assume ¢ > 1. One natural question to ask about G is if G is the

group of a knot in any dimension. We show that G is the group of a
knotted 2-sphere in S*. Furthermore we show that G can be realized as
the group of a knot in a homology 3-sphere. However, G is not a classical
knot group.

I would like to thank the referee for his suggestion of how to
construct the 2-sphere in §3. This made the third section a lot simpler
than it was in the first version of this paper.

2. Preliminaries. In this paper we work in the smooth category. S™”
and B” denote the standard n-sphere and n-ball. If N and M are
manifolds and f: M — N is a map then both of the induced homomor-
phisms (M) —> m(N) or H(M)— H,(N) will be denoted by f,.
Homeomorphism between spaces and isomorphism between groups are
denoted by = . An n-dimensional knot is the image of a smooth
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embedding =" of §” into $"*? or R"*2 By the knot group we mean
a,(S"*2 — 2"). For n = 1, we call these groups classical knot groups.

We define the deficiency of a group presentation with n generators
and m relators to be the integer n — m. The following well known
proposition is due to Kervaire [K].

PROPOSITION 2.1. If a group K has a deficiency one presentation and
K/K’ = Z then Hy(K) =0

Consider an oriented knot = in S°. Remove an open neighbourhood
N of = in S to produce the knot manifold X = S* — N. The preferred
meridian, longitude pair (g, A) of 2 are two nontrivial simple closed
curves on Bd( X) such that p bounds a disk in N and A is homologically
trivial in X.

DEFINITION 2.2. A ( p, q)-curve is a simple closed curve J on Bd(X)
that is homotopic to p?A? where p and g are relatively prime. We also call
J a( p, q)-cable about 2.

3. A 2-knot with group K * (¢). Let K be a classical knot group
=9

with meridian p. We construct ‘;1 new group G by adding a gth root (via

amalgamted free product) to the meridian p of K, ie, G =K * , (t).
t
The following proposition is easy to verify using Kervaire’s char‘ablctenza-

tion of high dimensional knot groups ([K], Theorem 1).
PROPOSITION 3.1. The group G is a high dimensional knot group.

Proof. Since K is a classical knot group it has a deficiency one
presentation. We can thus obtain a deficiency one presentation of G from
a presentation of K by adding one more generator (¢) and one more
relation (p = t?). Moreover since K is a knot group and hence satisfies
the conditions of Kervaire’s characterization it is straightforward to check
that G/G’ = Z and that G/{{t)) = 1. By Proposition 2.1 we obtain
H,(G) = 0, and it follows that G can be realized as the group of a knotted
3-sphere in S°. O

Let = be a knot in S* with group K. We shall construct a knotted
2-sphere =* with 7(S* — 22) =K = , (1). The equatorial cross-section

of this 2-sphere will be a (1, q)- ~cable : about the composite knot Z# — Z*,
where —2* is the mirror image of 2 with its orientation reversed.
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DEFINITION 3.2. A knot = in S° is a slice knot if there exists a
smooth disk D in B* such that Bd(D) = =.

THEOREM 3.3. Let = be a knot in S* and let L be the (1, q)-cable about
2# — Z* Then L is a slice knot.

Proof. For any knot 2, the knot 2# — 2* is a slice knot [F, M]. To
construct a slice disk D in B* with Bd(D) = 2# — =*, we do as follows.
First note that (S3,2) = (B3 B) U, (B> B') where B8 is a knotted arc
and (B3, B?) is a standard ball pair. Remove the ball pair (B>, B') from
(S3,2) and cross (B>, B) with the interval to obtain a disk D = 8 X I
contained in B*. Then Bd(D) = Z# — 3*. Thus D is the desired disk.
Let N = D X int B? be an open neighbourhood of the slice disk and let
M = B* — N. Then D X Bd(B?) is in Bd(M). We shall attach a 2-handle
B? x B? which contains a slice disk for the trivial (1, ¢)-torus knot to M
along D X Bd(B?). If B> X B? is attached along S! X B? then let the
torus knot be the (1, g)-cable about the core of the solid torus B2 X S
Note that the attaching sphere S* X {0} represents the gth power of the
meridian of the torus knot. Since the image of {*} X S' under the
attaching map is Bd(D) = 2# — Z* it follows that the image of the
boundary of the slice disk for the (1, g)-torus knot is L. Thus there exists
a disk in B* with boundary L. o

Since L is a slice knot, we can use L as the equatorial section of a
knotted 2-sphere in S* by joining together smooth disks in B4 and B*
bounded by L. We denote the 2-sphere obtained this way by S(Z, q).

THEOREM 3.4. Let = be a knot in S* with group K and meridian u,
q > 1 and let S(Z, q) be the 2-knot described above. Then

m($*~8(2.9) =K * (9).
Proof. If D is the slice disk for the (1, g)-cable about S# — =* it

suffices to show that m(B*— D) =K =* , (t). Using the notation from
=t
the proof of Theorem 3.3 we have that g

B4 - D = MusleZ_Bd("D) (B2 X BZ) - D.
Since M is homotopic to B* — D which equals (B> — 8) X I it follows

that (M) = m (B> — B) = K. Moreover, since Bd(D,) is the (trivial)
(1, g)-torus knot we get that the fundamental group of B> X B®> — D is
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infinite cyclic generated by the meridian of the torus knot. Thus the

fundamental group of B* — D, is obtained from (M) by attaching a

gth root of the original meridian p, i.e. m(B* — D) = K *
In

. (t). O

4. 3-manifolds that can realize the group K * (t} We now con-

sider how close G is to being a classical knot group As the following
shows the Alexander polynomial A;(#) for G is symmetric and it satisfies

Aa(l) =

THEOREM 4.1. Let K be a classical knot group with Alexander poly-
nomial A (t) and let G = K * ( ty. Then the Alexander polynomial

A5(2) for G satisfies Ag(t) = K(t")

Proof. Let K = (x¢, x;,...,X,; Ry,...,R,) be a standard Wirtinger
presentation for K and let A [aR,/ax ] be the n X (n + 1) Alexander
matrix with respect to this presentation.

il_z_l R, 0 ]
X, 0X,_,

A is equivalent to B =
oR,, dR,, 0
90X, 0X,_,

which is obtained from A by adding the first n columns to the last
column. The Alexander polynomial for K, A (¢) is the generator of the
principal ideal generated by the determinants of all the n X n submatrices
of B. Thus A4(¢) = determinant of the n X n submatrix obtained from B
by deleting the last column. The group G has a presentation (¢, X, .. ., X,;
R,, ..., R,, xot™7) and its Alexander matrix is

0
q
a0
1 0 0 k(2)
where k(1) = d(x,¢~9)/0¢t. This matrix is equivalent to
[ R, R, |
— (19 t9
7%, 1) ax,_ () 0 0
C=| dRrR" oR
q n q
aXo(t) 3Xn_1(t) 0 0
|1 0 1 k(t) ]
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The ideal generated by all (n + 1) X (n + 1) minors of C is easily seen to
be principal and its generator is A, (7). Hence G has an Alexander
polynomial A;(¢) and moreover A;(1) = Ag(t9). a

Since K is a classical knot group there is a knot 2 in S3 with knot
manifold X such that #;(X) = K. Let (pn, A) be the preferred meridian,
longitude pair for Bd( X), and let A = p X I be an annulus on Bd( X). By
T3 we mean the standard solid torus S* X D? in R3. Furthermore, let J
be a (1, g)-curve on the boundary of T* and let B = J X I be an annulus
on Bd(T?). We construct a cabled 3-manifold M [J,M] by glueing
together X and T3 along the two annuli 4 and B,ie. M = X U ,_, T>.

PropPOSITION 4.2. m(M) = K * \ ().
p=t

Proof. Let m(T?) = (t), m(A) = (p) and 7 (B) = (j). The image
of p in 7;( X) under the homomorphism induced by the inclusion map
A > M is pu, and the image of j in m(7T>) under the homomorphism
induced by the inclusion map B — T3 is t% Thus by the Van-Kampen
Theorem we conclude that 7;(M) = K * (t). a

p= q

The boundary of M is homeomorphic to S* X S, and if (u,A) is a
standard meridian, longitude pair for Bd( X), then a basis for Bd(M) is
AL

THEOREM 4.3. If K is a classical knot group with meridian p, then
G=K * , (t) is the group of a knot in a homology 3-sphere.
p=t

Proof. We construct a 3-manifold M’ by sewing a solid torus to M in
such a way that a meridian of the solid torus is identified with the curve
At%. Then m(M’) is obtained from =,( M) by adding the relation ¢ = A.
Since m(M) =K * (t) we get that m(M’) = K/{{pA"?)). It is now

=9

easy to see that H (M") = 0 and we conclude, using the usual Poincaré
duality argument that M’ is a homology 3-sphere.

In some recent work done by Culler, Gordon, Luecke, and Shalen, it
is shown that if (1, q)-surgery on a nontrivial knot yields a simply
connected manifold then |g| = 0 or 1 [C, G, L, S]. If a knot 2 has group
K and m, ! € K is the meridian and the longitude, then the fundamental
group of the surgery manifold 2(1, q) is K/({mi?)). We thus have the
following proposition.
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ProrosITION 4.3. If K is a classical knot group and q > 1 then
K/{((ml?)) # 1.

THEOREM 4.4. Let K be a classical knot group with meridian p. and let
G =K * (t),q> 1. Then G is not a classical knot group.
p=1t7

Proof. Let M = X U , T? be the cabled manifold we constructed in
the paragraph preceding Proposition 4.2, then = (M) = G. Suppose there
exists a knot L in S> with 7,(S> — L) = G. We shall eventually show
that L must be a cable knot about some core L’ and that the surgery
manifold L'(1, q) is simply connected which contradicts Proposition 4.3.

The knot manifold X is aspherical [P]. Moreover, M as the union of
aspherical spaces sewn together along an incompressible subspace is
aspherical [W,]. Let N be the knot manifold for L. Since m (M) is
isomorphic to m;(N) and M and N are aspherical spaces, there exists a
homotopy equivalence f: N — M that induces the group isomorphism.

The annulus 4 is bicollared in M. Furthermore, m(A4) —» (M) is
injective since m,(4) = m(X) and m(A4) —» 7 (T?>) are injective; also
7y (A) = 7 (M) =m(M)=m(M — A) =0 since M, X and T> are
aspherical spaces. Hence ker(7,(4) = 7(M)) =0, j=1,2. By Lemma
1.1 in [W, ] there exists a map g that is homotopic to f such that:

1. g is transverse with respect to A4, i.e. there exists a neighbourhood
g7 (A) XTI of g7}(A) so that g(x,y) = (g(x),y) for every x €

g (A)and y € I

2. g7}(A) is an orientable compact 2-manifold and g=}(4) N Bd(M) =

Bd(g'(A)).

3.1f F is a component of g~'(A4) then ker(w,(F) —» m(N)) =0, j=

1,2.

Choose a map g that minimizes the number of components of g=!(4). We
shall show that for such a map g, g~!(4) is just one annulus F and that F
separates N into a solid torus ¥ and a knot manifold Y having the same
group as X. We use techniques similar to those used in [F, W] and [S] to
prove the following assertions. (Some proofs are omitted since they are the
same as proofs in [F, W] and [S].)

Claim 4.4.1. g7'( A) is nonempty.

Claim 4.4.2. Let F be a component of g~}(A4). Then F is an essential
annulus.
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We thus have g7(4) = F, U - - - UFy, k > 1. Since each component
of g7}(A) is an essential annulus we get that the core L of S — Int(N) is
either a composite knot or a cable knot ([W,], Lemma 1.1).

Claim 4.4.3. L is a cable knot.

Since g'(4)=F, U .-+ UF and L is a (p’, ¢’)-cable about a knot
L’ we have for each i,1 <i <k, N =Y, UV, where V, is a solid torus
and Y; is a knot manifold. Moreover a boundary component of Bd( F)) is a
(p’,q’)-curve on S* — Iny(Y)).

Claim 4.4.4. m(N) has trivial center.

Proof of 4.4.4. Since m(N) = K * (t) the center of m(N) =

C(K) N {(p) (IM,K,S], Cor. 45). If K 1s not a torus knot group then

C(K) = 1 and consequently 7,( N) has no center. On the other hand if K

is a torus knot group then C(K) = (u?9A), but (p?Ay N {(p) =1in K

and consequently in K * (). a
p= q

Claim 4.4.5. The annuli F,, ..., Fy are parallel in N.

Proof of 4.4.5. N is prime since it is a cable knot manifold. Moreover
N is irreducible. Since ;( V) has trivial center, N cannot be a Siefert fiber
space with decomposition surface a disk with 3 singular fibers as such a
space has fundamental group with nontrivial center [J]. By Lemma 2.4 in
[J,M] there exists a unique (up to ambient isotopy) essential annulus
embedded in N. Hence each annulus F, is parallel to F). a

Claim 4.4.6. For each i, 1 <i <k, g|p is homotopic to a homeo-
morphism.

Proof of 4.4.6. 1t suffices to show that g,: H,(F;,) = H,(A4) is an
isomorphism. Since H,(F;) = m(F;) and H,(A) = m(A), this implies that
gx: m(F;) > m(A) is an isomorphism. Hence g| £ is a homotopy equiva-
lence and is therefore homotopic to a homeomorphism.

Let f, be a generator for H,(F;) and let a be a generator for H,(A).
Then g,(f;) = a’. We wish to show that r = +1. We use a homotopy
inverse h of g (h: M — N). As done earlier in the proof we can modify /
such that A~'(F,) is a collection of essential annuli, B,,..., B,. Since M is
irreducible ([J], Lemma 3.1) and M is not a twisted /-bundle over the
Klein bottle (if M is a twisted I-bundle over the Klein bottle then (M)
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abelianizes to Z @ Z,) there exists an isotopy 4, (0 < ¢ < 1) such that
h,(Bd(B;)) " Bd(4) # @. Hence Bd(B;) is homologous to Bd(A4) in
H,(M), i.e. the generator a for H;(A) is homologous to a generator b, for
H,(B;). Furthermore, h,(b;) = f;. Since A is a homotopy inverse of g we
get g4(hy(b,)) = b, i.e. a*” = b,. Since a is homologous to b, in H,(M)
we obtain a*” = a in H;(M). Hence sr = 1, and it follows that r = +1.0

Claim 44.7. p'q’ = q.
Proof of 44.7. z,,, = H(N)/H(F) = H(M)/H\(4) = Z,. ]
Recall that g7}(4) = F, U --- UF;.

Claim 4.4.8. k is odd.

Proof of 4.4.8. Since the annuli F,, 1 <i < k are all parallel V,
contains a core v; of V]. Let a be a path in V] from F, to v,, then 7,(Y;)
and av,a™! generate m;(N). If k is even then g maps Int(Y;) and v, into
the same component of M — 4. If Y, and v, are both mapped into
X — A, then m(M)/m(X) =1 which contradicts the fact that
H,(M)/H(X) = Z,. On the other hand Y; cannot be mapped into T3,
because that would imply that g,: 7,(Y;) = 7(T?) is 1-1 which con-
tradicts the fact that Y, is a knot manifold. a

Claim 449. k = 1.
The proof of 4.4.9 is the same as the proof of Claim 7 in [S].

Since k = 1, we have that N = Y U . V, where Y is the knot mani-
fold for the knot L’, V is a solid torus, and a boundary component of
Bd(F) is a (p’, q')-curve of the boundary of S — Int(Y). Moreover we
have a homotopy equivalence g: YU ¥V - X U , T? such that grisa
homeomorphism. We saw in the proof of Claim 4.4.8 that g(Y) is not
contained in 7> Hence g(Y) € X and g(V) € T3 and gu(7,(Y)) C 7 ( X)
and gu(m(V)) C 7,(T?). Let s be a generator for 7,(V) and let m, [ be a
meridian, longitude pair for m(Y), then m(N) = m(Y)*, g m(V) =
T (Y)* 0 _(5). Recall that m(M) = m(x)* ., m(T?) where m(x)
= K and m(T?) = (). Since g, is an isomorphism and g,(m,(F)) =
m(A4) we have the following gu(m(N)) = gu(m(Y))* may 8(m(V)) =
K * . 4(1). By Proposition 2.5 in [B] we conclude that g, |, v, m(Y) —
K and g|, oy m(V) > m(T 3) is an isomorphism. Therefore, since
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q = p’q’ we have the following: g,(m?19)7) = g (s77) = g (s9) = t*4
= p*l. Hence m(Y)/{({(m?19)?)y = K/{((p*!)) = 1. Since
m(Y)/{{(mP17)?")) abelianizes to Z,,. this implies that p’ = +1
which in turn implies that ¢’ = +g¢. Hence 7, (Y)/((ml9)) =1 which

contradicts Proposition 4.3. O
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