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GROUPS OF KNOTS IN HOMOLOGY 3-SPHERES
THAT ARE NOT CLASSICAL KNOT GROUPS

MAGNHILD LIEN

In this paper we attempt to enlarge classical knot groups K by
adding a root to a meridian of K. Thus if K is a classical knot group with
a meridian μ, then the groups we study are of the form G = K * (t).

This group can always be realized as the group of a knotted 3-sphere in
S5. By using explicit geometric constructions we also show that such a
group G is a 2-knot group and the group of a knot in a homology
3-sphere. Finally, we show that G is not realizable by any knot in S\

1. Introduction, In [Rx] J. Ratcliffe gave an example of a group Γ
that is the group of a fibered knot in a homology 3-sphere which cannot
be realized as the group of a classical knot. Let K be the group of the
trefoil knot and let μ e K represent a meridian. As seen in [RJ Γ can be
expressed as a free product with amalgamation K * (t).

μ=t2

In this paper we generalize the result in [RJ. We study groups G
obtained from classical knot groups K by forming an amalgamated free
product of K with Z. More specifically if K is a classical knot group with
meridian μ, then G = K * (t). Note that if q = 1 then G = K. Hence

μ = ti

we assume q > 1. One natural question to ask about G is if G is the
group of a knot in any dimension. We show that G is the group of a
knotted 2-sphere in S4. Furthermore we show that G can be realized as
the group of a knot in a homology 3-sphere. However, G is not a classical
knot group.

I would like to thank the referee for his suggestion of how to
construct the 2-sphere in §3. This made the third section a lot simpler
than it was in the first version of this paper.

2. Preliminaries. In this paper we work in the smooth category. Sn

and Bn denote the standard w-sphere and n-ball. If iV and M are
manifolds and /: M -> N is a map then both of the induced homomor-
phisms TΓ^M) -> v^N) or Hλ{M) -> Hλ(N) will be denoted by /*.
Homeomorphism between spaces and isomorphism between groups are
denoted by = . An ^-dimensional knot is the image of a smooth
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embedding Σ" of S" into Sn+2 or Rn+1. By the knot group we mean
π1(Sn+2 — Σn). For n = 1, we call these groups classical knot groups.

We define the deficiency of a group presentation with n generators
and m relators to be the integer n — m. The following well known
proposition is due to Kervaire [K].

PROPOSITION 2.1. // a group K has a deficiency one presentation and
K/K' s Z then H2(K) = 0.

Consider an oriented knot Σ in S3. Remove an open neighbourhood
N of Σ in S3 to produce the knot manifold X = S3 — N. The preferred
meridian, longitude pair (μ, λ) of Σ are two nontrivial simple closed
curves on Bd( X) such that μ bounds a disk in N and λ is homologically
trivial in X.

DEFINITION 2.2. A (/?, #)-curve is a simple closed curve / on Bd( X)
that is homotopic Xo μpλq where p and q are relatively prime. We also call
/ a (/?, #)-cable about Σ.

3. A 2-knot with group ĴΓ * (t). Let iΓ be a classical knot group

with meridian μ. We construct a new group G by adding a #th root (via
amalgamted free product) to the meridian μ of K, i.e., G = K * (t).

The following proposition is easy to verify using Kervaire's characteriza-
tion of high dimensional knot groups ([K], Theorem 1).

PROPOSITION 3.1. The group G is a high dimensional knot group.

Proof. Since K is a classical knot group it has a deficiency one
presentation. We can thus obtain a deficiency one presentation of G from
a presentation of K by adding one more generator (t) and one more
relation (μ = tq). Moreover since K is a knot group and hence satisfies
the conditions of Kervaire's characterization it is straightforward to check
that G/G' = Z and that G/((t)) = 1. By Proposition 2.1 we obtain
H2(G) = 0, and it follows that G can be realized as the group of a knotted
3-sρherein S5. D

Let Σ be a knot in S3 with group K. We shall construct a knotted
2-sphere Σ 4 with π^S4 — Σ 2) = K * (t). The equatorial cross-section

μ=tq

of this 2-sphere will be a (1, #)-cable about the composite knot Σ # — Σ*,
where - Σ * is the mirror image of Σ with its orientation reversed.
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DEFINITION 3.2. A knot Σ in S3 is a slice knot if there exists a
smooth disk D in B4 such that Bd(D) = Σ.

THEOREM 3.3. Le/ Σ be a knot in S3 and let L be the (1, q)-cable about
Σ# - Σ*. ΓAefl L is α j/iα? knot.

Proof. For any knot Σ, the knot Σ # - Σ* is a slice knot [F, M]. To
construct a slice disk D in I?4 with Bd(D) = Σ # - Σ*, we do as follows.
First note that (S3,Σ) = (B3,β) Ud(B3,Bι) where β is a knotted arc
and (2?3, B1) is a standard ball pair. Remove the ball pair (B3, B1) from
(S3, Σ) and cross (B3,β) with the interval to obtain a disk D = β X I
contained in B4. Then Bd(D) = Σ # - Σ*. Thus Z> is the desired disk.
Let N = D X int B2 be an open neighbourhood of the slice disk and let
M = B4 - N. Then D X Bd(52) is in Bd(M). We shall attach a 2-handle
B2 X B2 which contains a shce disk for the trivial (1, q)-toτ\xs knot to M
along D X Bd(£2). If B2 X B2 is attached along Sι X B2 then let the
torus knot be the (l,ςr)-cable about the core of the solid torus B2 X S1.
Note that the attaching sphere S1 X {0} represents the qth power of the
meridian of the torus knot. Since the image of {*} X Sι under the
attaching map is Bd(D) = Σ # - Σ* it follows that the image of the
boundary of the slice disk for the (1, #)-torus knot is L. Thus there exists
a disk in B4 with boundary L. D

Since L is a slice knot, we can use L as the equatorial section of a
knotted 2-sphere in S4 by joining together smooth disks in B\ and B4_
bounded by L. We denote the 2-sphere obtained this way by S(Σ, q).

THEOREM 3.4. Let Σ be a knot in S3 with group K and meridian μ,
q > 1 and let S(Σ, q) be the 2-knot described above. Then

π1{S4-S(Σ,q)) = K * (q).

Proof. If D is the slice disk for the (l,#)-cable about Σ # - Σ* it
suffices to show that πx(B4 - D) = K * (t). Using the notation from

the proof of Theorem 3.3 we have that

B4 - D = MUslχB2_Bάφ) (B2 X B2) - D.

Since M is homotopic to B4 - D which equals (B3 - β) X I it follows
that πx(M) = πλ(B3 - β) = K. Moreover, since Bdibj is the (trivial)
(1, <3r)-torus knot we get that the fundamental group of B2 X B2 - D is
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infinite cyclic generated by the meridian of the torus knot. Thus the
fundamental group of B4 — Z), is obtained from wi(M) by attaching a

root of the original meridian μ, i.e. πτ(B4 — ϊ>) = K * (t). Π

4. 3-manifolds that can realize the group K * (t). We now con-

sider how close G is to being a classical knot group. As the following

shows the Alexander polynomial ΔG(t) for G is symmetric and it satisfies

ΔG(1)= ± 1 .

THEOREM 4.1. Let K be a classical knot group with Alexander poly-
nomial Δκ(t) and let G = K * (/). Then the Alexander polynomial

ΔG(t) for G satisfies Δc(ί) = Δ £ A

Proof. Let K = (x0,xv...,xn\ <Rχ,...,Rn) be a standard Wirtinger
presentation for K and let 4̂ = [dR/dXj] be the n X (/i + 1) Alexander
matrix with respect to this presentation.

A is equivalent to B =

32*1

0

which is obtained from 4̂ by adding the first n columns to the last
column. The Alexander polynomial for K, Δκ{t) is the generator of the
principal ideal generated by the determinants of all the n X n submatrices
of B. Thus Δκ(t) = determinant of the n X n submatrix obtained from B
by deleting the last column. The group G has a presentation (/, x0,..., xn;
R-!,..., Rn, xot'

q) and its Alexander matrix is

A(t<)
0
0

1 0 0

where k(t) = d(xot~
q)/dt. This matrix is equivalent to

C =

Hf) -(f) o o

dR"
2

1 k(t)
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The ideal generated by all (n + 1) X (n 4- 1) minors of C is easily seen to
be principal and its generator is Δκ(tq). Hence G has an Alexander
polynomial ΔG(t) and moreover ΔG(t) = Δκ(tq). D

Since K is a classical knot group there is a knot Σ in S3 with knot
manifold X such that πx( X) = K. Let (μ, λ) be the preferred meridian,
longitude pair for Bd(X), and let A = μ X / be an annulus on Bd( X). By
Γ 3 we mean the standard solid torus S1 X D2 in I?3. Furthermore, let /
be a (1, #)-curve on the boundary of T3 and let B = / X / be an annulus
on Bd(Γ3). We construct a cabled 3-manifold M [J,M] by glueing
together X and T3 along the two annuli A and 5, i.e. M = X U A==B T3.

PROPOSITION 4.2. πx(M) = K * ( ί ) .

Proof. Let ^ ( Γ 3 ) = (r), ^(A) = (μ) and TΓ^J?) = (j). The image
of μ in πλ(X) under the homomoφhism induced by the inclusion map
A -> M is μ, and the image of y" in ^ ( Γ 3 ) under the homomoφhism
induced by the inclusion map B -> Γ 3 is tq. Thus by the Van-Kampen
Theorem we conclude that πx(M) = K * (t). Π

The boundary of M is homeomoφhic to S1 X 51, and if (μ, λ) is a
standard meridian, longitude pair for Bd( X), then a basis for Bd(M) is
μ,λr\

THEOREM 4.3. // K is a classical knot group with meridian μ, then
G = K * (t) is the group of a knot in a homology 3-sphere.

Proof. We construct a 3-manifold M' by sewing a solid torus to M in
such a way that a meridian of the solid torus is identified with the curve
λt~ι. Then ΊT^M') is obtained from ^(Af) by adding the relation t = λ.
Since wx(M) = K * (ί) we get that ^ ( M 7 ) = K/((μ\~q)). It is now

easy to see that Hλ{Mf) s 0 and we conclude, using the usual Poincare
duality argument that Mr is a homology 3-sphere.

In some recent work done by Culler, Gordon, Luecke, and Shalen, it
is shown that if (1, #)-surgery on a nontrivial knot yields a simply
connected manifold then \q\ = 0 or 1 [C, G, L, S]. If a knot Σ has group
K and m, / G JSΓ is the meridian and the longitude, then the fundamental
group of the surgery manifold Σ(l,q) is K/{{mlq)). We thus have the
following proposition.
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PROPOSITION 4.3. // K is a classical knot group and q > 1 then
K/((mI«)) Φ 1.

THEOREM 4.4. Let K be a classical knot group with meridian μ and let
G = K * (/), q > 1. Then G is not a classical knot group.

Proof. Let M = X U A T3 be the cabled manifold we constructed in
the paragraph preceding Proposition 4.2, then ^ ( M ) = G. Suppose there
exists a knot L in S3 with τr1(5'3 — L) = G. We shall eventually show
that L must be a cable knot about some core V and that the surgery
manifold Z/(l, #) is simply connected which contradicts Proposition 4.3.

The knot manifold X is aspherical [P]. Moreover, M as the union of
aspherical spaces sewn together along an incompressible subspace is
aspherical [W2]. Let N be the knot manifold for L. Since ^(Af) is
isomorphic to πι(N) and M and N are aspherical spaces, there exists a
homotopy equivalence f:N-+M that induces the group isomorphism.

The annulus A is bicollared in M. Furthermore, π^A) -> πx(M) is
injective since πλ(A) -> ^(X) and ^(^4) -» ^ ( Γ 3 ) are injective; also
<π2{A) = 772(M) = π3(M) = τr2(M - Λ) = 0 since M, X and T3 are
aspherical spaces. Hence ker(iΓj(A) -> 7Tj(M)) = 0, j = 1,2. By Lemma
1.1 in [Wt] there exists a map g that is homotopic to / such that:

1. g is transverse with respect to A, i.e. there exists a neighbourhood
g~ι(A) X / of g~\A) so that g(x, j ) = (g(x), >0 for every x e
g"^^) and J G / ,

2. g " 1 ^ ) is an orientable compact 2-manifold and g~\A) Π Bd(M) =

3. If F is a component of g ι(A) then ker(tf/(/Γ) -> iΓj(N)) = 0, 7 =
1,2.

Choose a map g that minimizes the number of components of g~ι(A). We
shall show that for such a map g, g~\A) is just one annulus F and that F
separates N into a solid torus V and a knot manifold Y having the same
group as X. We use techniques similar to those used in [F, W] and [S] to
prove the following assertions. (Some proofs are omitted since they are the
same as proofs in [F, W] and [S].)

Claim 4.4.1. g~ι(A) is nonempty.

Claim 4.4.2. Let F be a component of g~ι(A). Then F is an essential
annulus.
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We thus have g~\A) = Fx U UFK, k > 1. Since each component
of g~ι(A) is an essential annulus we get that the core L of S3 — Int(N) is
either a composite knot or a cable knot ([W3], Lemma 1.1).

Claim 4.4.3. L is a cable knot.
Since g~ι(A) = Fλ U UF^ and L is a (/?', #')-cable about a knot

U we have for each i,l < i < k, N = Ŷ  U ̂  P̂  where FJ is a sohd torus
and Yi is a knot manifold. Moreover a boundary component of Bd(i^) is a
(p',q')-cuiveon s3 - Int(Y ).

Cfa/m 4.4.4. irx(N) has trivial center.

Proof of 4.4.4. Since ^(iV) = K * ( ί) , the center of ττλ{N) =

C(A') Π (μ> ([M,K,S], Cor. 4.5). If K is not a torus knot group then
C(K) = 1 and consequently TΓ^JV) has no center. On the other hand if K
is a torus knot group then C(K) = (μpqλ), but ( μ ^ λ ) Π (μ) = 1 in ^
and consequently in ϋΓ * (/>. D

Claim 4.4.5. The annuli FV...,FK are parallel in JV.

Proof of 4.4.5. iV is prime since it is a cable knot manifold. Moreover
N is irreducible. Since iTι(N) has trivial center, N cannot be a Siefert fiber
space with decomposition surface a disk with 3 singular fibers as such a
space has fundamental group with nontrivial center [J]. By Lemma 2.4 in
[J,M] there exists a unique (up to ambient isotopy) essential annulus
embedded in N. Hence each annulus Ft is parallel to Fv D

Claim 4.4.6. For each i, 1 < / < k, g\ F is homotopic to a homeo-
moφhism.

Proof of 4.4.6. It suffices to show that g*: H^F^ -» HX{A) is an
isomorphism. Since ffi(i^) = Wi(-F)) and ^(^1) = ^i(>4), this implies that
g%: ^(i5)) ~> ̂ i(^4) is an isomorphism. Hence g\Fι is a homotopy equiva-
lence and is therefore homotopic to a homeomorphism.

Let ft be a generator for H^Fj) and let a be a generator for Hλ(A).
Then g*(/;) = 0r. We wish to show that r = ± 1 . We use a homotopy
inverse h of g (h: M -* N). As done earlier in the proof we can modify Λ
such that ir^F;) is a collection of essential annuli, Bl9...9 Bn. Since M is
irreducible ([J], Lemma 3.1) and M is not a twisted /-bundle over the
Klein bottle (if M is a twisted /-bundle over the Klein bottle then πx(M)
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abelianizes to Z ® Z2) there exists an isotopy ht (0 < t < 1) such that
hι(Bd(Bi))ΠBd(A)Φ 0 . Hence Bd(^) is homologous to Bd(^l) in
HX{M), i.e. the generator a for Hλ{A) is homologous to a generator bt for

i). Furthermore, Λ*(6f) = ff. Since h is a homotopy inverse of g we
+ibi)) = 6/? i.e. # 5 r = Z>z. Since <z is homologous to bt in Hλ{M)

we obtain α5 r = a in Hλ(M). Hence sr = 1, and it follows that r = ± 1. D

4.4.7. p'q' = #.

o/4.4.7. zp,q, = H.iNyH^) = H^MyH^A) = Zq. D

Recall that g" 1 ^) = ̂ i u

Claim 4.4.8. k is odd.

of 4.4.8. Since the annuli Fiy 1 < i < k are all parallel Vk

contains a core yx of Vv Let α be a path in Vx from i^ to vv then Wxίl̂ )
and αi;!^"1 generate π^N). If A: is even then g maps In^Yj) and vλ into
the same component of M — A. If Yλ and ϋx are both mapped into
X — A, then πι(M)/tπι{X) = 1 which contradicts the fact that
Hι(M)/Hι(X) = Zq. On the other hand Yλ cannot be mapped into Γ3,
because that would imply that g*: ^ ( 7 ^ -> TΓ^Γ3) is 1-1 which con-
tradicts the fact that Yx is a knot manifold. D

Claim 4.4.9. ifc = 1.

The proof of 4.4.9 is the same as the proof of Claim 7 in [S].

Since k = 1, we have that N = Y U FV, where Y is the knot mani-
fold for the knot L\ V is a solid torus, and a boundary component of
Bd(jF) is a (//, g^-curve of the boundary of S3 — Int(7). Moreover we
have a homotopy equivalence g: YU FV -> XU A T3 such that g jF is a
homeomorphism. We saw in the proof of Claim 4.4.8 that g(Y) is not
contained in Γ3. Hence g(Y) c * a n d g(K) c Γ 3 and g*K(y)) c TΓ^X)
and g*(^i(F)) c ^ ( Γ 3 ) . Let s be a generator for TΓ^F) and let m, / be a
meridian, longitude pair for πλ(Y), then π}(N) = ̂ ( 7 ) * W ( F )

^ i ( Ό * mpΊ'-*<>{s) R e c a 1 1 t h a t ^ i ( M ) = * i(*)* . l ( /ί)^i(^ 3) where
= AT and TΓ^Γ3) = ( ί) . Since g* is an isomoφhism and gxi

flfiί^) we have the following g*(*i(Λ0) = g K ( Ό ) % < Λ ) g
AT * πi{A)(t). By Proposition 2.5 in [B] we conclude that g* | ̂ ^ ^ TΓ^Γ) ->
K and g* U^^: ^ ( F ) - » ^ ( Γ 3 ) is an isomorphism. Therefore, since



GROUPS OF KNOTS IN HOMOLOGY 3-SPHERES 151

q = p'q' we have the following: g*{{mp'lq')p') = g*(sq'p') = g*(sq) = t±q

= /i*1. Hence ^ ^ / ( ( ( m *'/«')*'» = ^ / ( ( μ * 1 ) ) = 1. Since
π1(Y)/(({mpΊq')p')) abelianizes to Z(pf)i this implies that /?'= ± 1
which in turn implies that q' = ±#. Hence πι(Y)/((mlq)) = 1 which
contradicts Proposition 4.3. Π
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