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CONVERGENCE FOR THE SQUARE ROOT OF
THE POISSON KERNEL

PETER SJOGREN

Let I be a symmetric space and / an integrable function on its
boundary 3 X. The O-Poisson integral Pof is the function on X obtained
by integrating / against the square root of the Poisson kernel. We give
Fatou theorems saying that the normalized function Pof/Pol converges
almost everywhere to / on dX. Many such results are known for
λ-Poisson integrals Pλf with λ in the positive Weyl chamber. But the
case λ = 0 is different, since larger regions of convergence can be used.
Some of our results are general, some are given for the bidisk or
SL(3, R)/SO(3). The paper extends previous results by the author for the
disk and the bidisk.

1. Introduction. Let P = P(z,eiθ) denote the Poisson kernel in the
unit disk D. If / is an Lι function on T = 3D and A E R , the λ-Poisson
integral of / is

=[ P(z,e")x+1/2f(e")de.

It is an eigenfunction of the hyperbolic Laplacian in D, with eigenvalue
4λ2 — 1. The corresponding normalized λ-Poisson integral is ^ λ / =
P λ //P λ l , where 1 is the constant function on T. Assume λ > 0. Then
&*xf(z) -» f(eιθ) as z -> eiθ

9 uniformly for continuous /. This is not true
when λ < 0.

Let / e Zλ For λ > 0 it is known that &>λf tends nontangentially to
/ a.e. in T. This means that one lets z -> eiθ satisfying a condition
|argz — θ\ < const.(l - \z\). But when λ = 0, more is true. In fact,

&of(z) -> f(*iθ) a s z -> *iθ> l a r § z ~ θ\ < c o n s t (1 " kDiogίl - kl)"1 for
a.a. θ, see Sjδgren [16]. We call this weakly tangential convergence; it is
false for ^ λ / , λ > 0. J. Taylor has found a simple description of it in
terms of the hyperbolic metric.

In this paper, we shall give some convergence results for &>Qf in
symmetric spaces, most of which are not valid for other ^ λ / . For rank 1
spaces, the generalization of weakly tangential convergence is rather
straightforward, see Theorem 5.4 below. A metric description of the
approach region appearing here is also given. Koranyi and Picardello [11]
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362 PETER SJOGREN

have an analogous result for homogeneous trees, which in many respects
behave like rank 1 symmetric spaces.

For the bidisk D 2, Sjδgren [14] contains a result of this kind, which
we now recall. Poisson integrals Pλf and &*\f9 f & Lι(Ύ2), are here
defined as in D, by means of the kernel

P(zι,e*)κ+ι/2P(z2,e*)λ+1/z, (i 1 (z 2)eD 2, (β'V*) e T2.

In D 2 one defines restricted (nontangential) convergence by letting z =
(zl9 z2) -> (eiθ\eiθl) e T 2 in such a way that each z} tends nontangen-
tially to eiθj and

(l.i) i - | * i l ~ i - l * 2 l -

Here and in the sequel, F - G means C~ι < F/G < C, and C denotes
many different (large) constants. As is well known, restricted nontangen-
tial convergence holds a.e. when / e 1} for the standard Poisson integral
P 1 / 2 / , and also for &>λf, λ > 0. Theorem 2 of [14] says that for 0>of one
can replace (1.1) by the weaker condition

(1.2) log(l - U J ) - log(l - | z 2 | ) .

This is called weakly restricted (nontangential) convergence.
Another natural generalization to D 2 of the result in D would be to

use weakly tangential convergence in each Zj. Then we again have a.e.
convergence of ^ 0 / , / e L1, provided we use the restriction condition
(1.1). This is Theorem 4.1 below. It is easy to see that (1.1) cannot be
replaced by (1.2) here. As in D, one would like to describe Theorem 4.1 in
terms of the bihyperbolic distance. However, the natural attempt to do
this fails, as verified in §4.

In §5, we consider a general Riemannian symmetric space X = G/K
of the noncompact type. It has a boundary K/M. The (standard) notation
used here will be explained below. Several modes of convergence at K/M
are used, which we briefly recall. See further Koranyi [10]. Admissible
convergence corresponds to approaching a boundary point kM by means
of points kexp(H) x, with H -> + oo in α and x staying in a compact
subset of X. Letting instead H -> 4- oo along the ray {tH0: / > 0} for any
fixed Ho in the positive Weyl chamber α+, one defines restricted conver-
gence. Weakly restricted convergence is defined by letting H -» + oo
staying in a strict subcone of α+. This corresponds to (1.2) in D 2 . In
Theorem 5.1, we show that the normalized 0-Poisson integral &>0f con-
verges weakly restrictedly a.e. to / for / e Lι(K/M). When / is continu-
ous, we obtain admissible convergence for / e L\K/M), uniformly in
K/M, which has also been proved by van den Ban and Schlichtkrull [2].
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Theorem 5.1 was known previously only for rank X = 1, see Michelson
[12]. The rank 1 result Theorem 5.4 was mentioned above.

The last two sections of this paper deal with the rank 2 space
SL(3, R)/SO(3). Theorem 6.1 gives a.e. admissible convergence of !Pof for
/ e Lp, p > 1. The proof of admissible convergence of ^ λ / , λ e α+, in
a general symmetric space from Sjόgren [17] does not apply to ^ 0 / , and
we use a method which is specific to SL(3, R)/SO(3).

Finally, Theorem 7.1 is an SL(3, R)/SO(3) analog of the weakly
tangential convergence result in the bidisk. With the N realization of the
boundary, we approach nλ e N by means of points

nιQxp(tH0)n > x, t -» +oo.

Here Ho e α+ is fixed and x e X stays in a compact set. Further, n
satisfies a size condition \n\ < Ctq, where q = q(H0) is positive, which
makes this convergence stronger than restricted convergence. We show
that ίPof converges to / a.e. in this sense, when / 6 L 1 . The proof is
rather calculatory and relies on the explicit expression for the Poisson
kernel. As a byproduct of the proof, we obtain a restricted convergence
result for &λf with λ Φ 0 on the boundary of α+.

The preparatory §2 describes the necessary symmetric space theory
and notation. Section 3 contains our main lemma and also an estimate for
the spherical function corresponding to λ = 0 previously obtained by
van den Ban.

The author has profited from a valuable conversation with T. Lyons.

2. Preliminaries about symmetric spaces. Let X be a Riemannian
symmetric space of the noncompact type, written as 1 = G/K in the
standard way. The action of G on X is written g x, and o = eK e X,
Take an Iwasawa decomposition KAN. Thus any g G G can be written
g = k(g) exp(H(g))n(g), with H(g) in the Lie algebra α of A. As usual,
the nilpotent group N is the image of N under the Cartan involution, and
M is the centralizer of A in K.

The (maximal distinguished) boundary of X is K/M, and n -» k(n)M
gives a diffeomorphism of N onto almost all of K/M. Here we refer to the
normalized invariant measure dkM in K/M. Let α + c α be the positive
Weyl chamber. By means of the Killing form ( , •), we identify α with
its dual. Then the (restricted) roots are in α, and p & a+ denotes the
half-sum of the positive roots, counted with multiplicity. Let Σ + be the set
of positive roots and Σ o the set of roots a for which a/2 is not a root. Put
Σ Q = Σ + Π Σ 0 . The Weyl group W consists of linear orthogonal maps
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α -» a which permute Σ o . For s G W, we write

C__i y = /_|\card(^(Σo)\2ί)

This expression has the same value for s and s"1.

Let jy vary in α. We shall say that H -> + 00 in α if (α, H) -» +00

for all α G Σ + , and similarly we speak of large H in α or α+. A function

φ: α -^ R is called increasing if H — H' G α+ implies φ(//) > <ρ(Hr). If

if G α and n G JV, we write n77 for exp(if)τiexp(-if). In terms of

canonical coordinates in TV, (see [17], Sec. 5), the map n -> nH is an

anisotropic dilation (jcy ) -> (e'^j^Xj), where αy G Σ + . The same applies

to N, except that there is no minus sign in front of (aj9 H).

For λ E α,the λ-Poisson integral of / G Lι(K/M) is

Pχf(g) = Pχf(g o) = f f(kM)e-<λ+>-Hl*-lk» dkM, g e G.
JK/M

Considered as a function in X, it is a joint eigenfunction of all G-invariant

differential operators in X. Since the Laplacian of X is G-invariant, we

have Harnack's inequality: Pλf(x) - Pxf(x') if x and x' stay in a

compact set in X, for / > 0. By G-invariance similarly

(2.1) PJ(g-x)~Pj{g-x'),

uniformly for g G G.

When / = 1, we get the spherical function P λ l, which is biinvariant,

i.e., defined on K\G/K. The normalized λ-Poisson integral of / is

&\f = pλf/pλl-In t h e c a s e λ = 0, we set for H G α

This function grows polynomially for large H.

The integral defining Pλf can be transformed to TV. For g o = nιaι

- 6>, nι G TV, ax G ̂ 4, this gives

(2.2) PJi^a,) = ί

Of course, dw is Haar measure in N. We often replace f(k(n)M) by f(n)

here, working with functions in TV.

Let aλ = expif, if G α+. To estimate Pol(«1expif), we write nι =

kan G ίC4TV. If wx stays in a compact subset of TV, also k, α, and « must

stay in compact sets. Then nλ expif = k exp(H)an~H, and n'H stays

bounded in TV for large H. Since Pol is biinvariant, (2.1) gives

(2.3) P o l ^ e x p t f ) = Pol(exp(if)an'H) - Pol(expif)
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The Poisson kernel in N is defined by

p(fl) = e-2(p,H(n))m

For any function F in N9 we write F(n) = F(n~1). Also, the normalized
contraction of F is defined by FH{n) = e2^H)F{n~H) for H <Ξ a. Then
j FHdn = j Fdn if F 6 L1. If / > 0 has compact support in TV, and Wj
stays in a compact set, it follows from (2.2) and (2.3) that

(2.4) 0>of(nλexpH) <
_
N

Here Pι

H

/2 means {(P)H.
From Knapp and Williamson [9], Prop. 5.1, we know that 1/P is a

finite sum of nonnegative homogeneous polynomials. This means that

(2.5)
0

and each Qv is a nonnegative polynomial function of the canonical
coordinates of n. Further, Qo = 1. The βv are linear combinations of
positive roots with nonnegative integer coefficients, and only β0 is 0.
Moreover, (2p - βy9 H) > 0 when F G Q + , for all v.

Given a fixed vector Ho e α+, we can find a smooth homogeneous
gauge I I in JV. This is a function JV -> {̂  > 0} which is smooth outside ̂
and vanishes only at e. It also satisfies |/t-1 | = \n\ and

| Λ ' "o | = e~r|«|, / e R.

This implies the quasinorm property

|mzΊ<

The ball {n: \n\ < r) is denoted by B{r), Its Haar measure \B(r)\ is
proportional to r2^pMo\

The gauge will be related to the canonical coordinates of n by

(2.6) C^maxlxyl <\n\< Cmax\xj\

for some C and a,β>0.
Finally, we write ek = e~2, k = 0,1,..., and it will be convenient to

let ek for /: < 0 denote large constants depending on the context.

3. Auxiliary results. We first give an N version of the method of
Λ>pieces from Sjδgren [14], cf. in particular Lemma 2. Let L c N be
compact, and extend any function in L by 0 to all of N.
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LEMMA 3.1. (a) Assume the sublinear operators (Tk)f are defined in
Lι{L), take values which are nonnegative measurable functions in L, and
satisfy the following for some Cx < oo.

(i) Each Tk is of weak type (1,1) with constant at most Cv

(ii) The value Tkf(n), n e L, depends only on the restriction of f to the
ball
nB(ek).

(iii) For some natural number N,

\f\dn.

Then the operator f -» sup kTkf is of weak type (1,1) with constant at most
CC N C = C( T λ

(b) The hypothesis (iii) in (a) can be replaced by the following:

(iii') Each Tk is given by

TJ(n) = sup\f\*Kι(n),
i^Ik

where Ik is an index set and the kernels Kι satisfy f K*(n) dn < Cv

Here, for i e Ik,

K?(n)= sup K^nn').

Proof of (a). We shall apply Lemma 1 of [14], recalled below. Small
values of k will cause minor complications, so we consider only k > A,
where A is a suitable large integer. This is enough, because of (i). For each
k > A, choose in N a lattice of cubes which are defined in terms of the
canonical coordinates and whose sides are equal and approximately ek_A.
These cubes are called /c-pieces. We also choose these lattices in such a
way that each /c-piece is the union of the (k + l)-pieces contained in it.
(Neglect the boundaries of the cubes.) Moreover, the ratio between the
sides of a /c-piece and a (k + l)-piece should be odd.

Lemma 1 of [14] says that the operator / -> sup^ Tkf is of weak type
(1,1) provided that

(a) the sublinear operators Tk are uniformly of weak type (1,1);
(β) the restriction of Tkf to a /c-piece P depends only on /1 P;
(y)\\Tkf\\Loo < CsuρlPΓYpl/1^, the supremum taken over all

(k + 7V')-pieces P, for some fixed Nf e {1,2,...}.
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From the proof in [14], it is immediately seen that the constant in the
conclusion is O(N').

Our Tk will be slight modifications of the Tk. Because of (2.6), the
variation of each coordinate in the ball B(ek) is at most ek_c, which is
much smaller than ek_A if A is suitably chosen. The same holds for any
ball nB(ek), n e L. Thus (ii) implies that Tkf(n) depends only on the
restriction of / to the λ>piece containing n, except when n is very close to
the boundary of some &-piece. In this last case, we let Tkf(n) = 0,
otherwise TJ{n) = Tkf(ή). Then (β) holds, and also (a).

To obtain (γ) from (iii), it is enough to estimate the mean of |/ | in
nB(ek+N) by C times the largest of the means of |/ | in those (k + N')-
pieces intersecting nB(ek+N). For this we need only verify that these
(k -f iV')-pieces have total measure at most C\B(ek+N)\, or that they are
all contained in nB(Cek+N). But any point nf in such a piece is obtained
by changing the coordinates of a point n" e nB(ek+N) by at most
Cek + N>_A. Since ri and n" stay in a compact set, the coordinates of
( Λ " ) - V are O(ek+N,_A). Then (2.6) implies |(w")~V| < ek+N>_A_c<

, if N' > N + A + C. It follows that

„' = „ " ( „ " ) * ' e nB(ek+N)B(ek+N) c nB(Cek+N)9

and (γ) is verified.
Thus sup^ Tk is of weak type (1,1), and the corresponding constant is

at most CN' < CN. To extend this to Tk9 we must recover those values of
Tkf which we lost when defining Tk. This is done as in the proof of
Lemma 2 in [14]. Indeed, one can repeat the argument just given with the
lattices translated half the side of an A -piece in one or more coordinate
directions. Here translation is taken in the Euclidean sense. Since the
ratios of the cube sides are odd, this will make us catch all of Tkf in 2 d i m ^
steps. Part (a) is proved.

Proof of (b). Assuming (iii')* we shall prove (iii). One can clearly
assume suppi^ c L~ιL. We consider the functions

* * * ( « ) = sup K,(n'n), ί ε / ,
\n'\<ek + N + c

Take nf e B(ek+N+C) and write nfn = nn~ιn'n. The coordinates of n~γnrn
are polynomials in the coordinates of n and n\ and vanish for n' = e.
They are thus bounded by const, times the largest coordinate of n' when
n and n' stay bounded. Then \n~ιnfn\ < ek+N because of (2.6), if C is
suitably chosen. Hence, Kt** < CK? and f K** dn < CCV
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With / e Ik and / > 0, we have

for any nf G B(ek+N+C). Thus,

Transforming n -» fl"1*?', we get

/ / ( )
JW\<ek + N+c

Since AΓ7** G L1, (iii) now follows, with JV 4- C instead of N. Lemma 3.1

is proved.

Next, we consider P(n)1/2 and

LEMMA 3.2. For each n ^ N the expression

/5 increasing as a function of H G α.

This is almost Lemma 3.5 of Sjogren [13]. For the proof, we need only

observe that all the terms in the sum in (2.5) become decreasing in H

when multiplied by e~4(pM\

Via an integration, this lemma implies the known fact that the

function ψ is increasing (Harish-Chandra [5], Lemma 36 p. 281). In [1],
Theorem 6.6, van den Ban determined its order of magnitude at + αo. We

shall do this again, without insisting on the value of the corresponding

constant. For the case X = SL(3, R)/SO(3), see also Herz [8]. Let π be

the polynomial

π(H)= Π (

With any H G α, we can associate the differential operator d(H) defined

in α as differentiation along the vector H. Then 3 can be extended to a

homomorphism, also denoted 3, from the ring of polynomials on α into

that of differential operators in α.

PROPOSITION 3.3. For large H G α + , one has ψ(H) - π(H).

Proof. When λ G α+, one can expand P λ l :

(3.1) P λ l ( e x p i / ) = Σ c(sλ)e<sλ-^H> Σ Tμ(sλ)e-<^H\
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see Helgason [7], Theorem IV.5.5 p. 430. Here c is Harish-Chandra's
ofunction, and Λ is the set of linear combinations of the simple positive
roots with nonnegative integer coefficients. The quantities Tμ(λ) are given
by Γ0(λ) = 1 and by the recursion formula (12) of [7], IV.5 p. 427. To
deal with the singularity of c at 0, we follow Harish-Chandra and write

Pol(exp#) = c1{3(77)(τr(λ)Pλl(expiί))}λ==0,

where the operator d(π) is taken with respect to λ and cx Φ 0 is a
constant. See also Exercise IV.B.l, p. 483 of [7]. Then (3.1) gives

Σ »(

Let s e W. At λ = 0, the function π(λ)c(sλ) is smooth and takes the
value c 2 (-l) s , c2 Φ 0, as seen from the explicit expression for c(λ)
(formula (43) of [7], IV.6 p. 447).

In the expansion of the derivative in (3.2), consider those terms
obtained by letting d(π) act only on ^<5λ//> and taking only μ = 0 in the
last sum. These terms will sum up to

Σ c2(-l)sπ{sH) = c2π(H).

We shall see that the remaining part of (3.2) is much smaller, for large H.
Let

the supremum taken over πf of type

- Π <a,

We claim that there exists C such that for all μ e Λ

(3.3) Qμ<Ce<^\

This is a simple extension of the estimate for Tμ given in Lemma IV.5.3 of
[7], where we have chosen H = p. The proof is similar: by differentiating
the recursion formula for Γμ, one obtains a recursive inequality for Qμ

which is like (14) of [7], IV.5.3. After that, Helgason's arguments can be
repeated and give (3.3).

Since now (3.3) allows us to sum in μ, it is not hard to see that the
remaining part of (3.2) is o(π(H)) as H -> + oc. The proposition follows.
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4. The bidisk. Whenever convenient, we consider T as R/2πZ rather
than (|z| = 1}. Define for (θv θ2) e T 2 the region of restricted weakly
tangential convergence by

( ) 2:®eιA = {(*i,*2) = ((1 - hW*, (1 " h)e^) e D 2

0 < t, ~ t2 < 1/2, |φ,. - θ,\ < O, log if1, / = 1,2}.

THEOREM 4.1. Let f (Ξ L\Ί2). Then for a.a. ( ^ Λ ) e T 2

as (z 1 ; 22) tends to (e'θ\ ew*) staying in Ωβi θi.

Proof. In the disk, the normalizing factor Pol behaves like
(1 - |z|)1/2log(l - |z|)"x, and in D 2 Uke a tensor product of two such
factors. Therefore, ^ / ( z j , z2) is given by a convolution in T 2 of / and a
kernel which is

log/ilog/2 tγ + \θx\ r 2 + | 0 2 | '

Define in T 2

If for simplicity we take C = 1 in the definition of Ω ^ , it follows that

(4.1) sup \@J\<C sup \f\*Kt{θl9θ2).

Since convergence holds for continuous /, we need only deduce a weak
type (1,1) estimate for the operator defined by the left-hand side here.

To do this, we divide Kt(θvθ2) into four parts. That part where
|0X|, \Θ2\ < 2/logr 1 leads to the mean value of |/ | in squares of side
4/log/"1, which is easy to control. For \θλ\, \Θ2\ > 2/log/"1, we can
estimate the kernel by

C _J i L_
(\ogtf t+\βx\ t+\θ2\'

This corresponds to restricted nontangential convergence and can be
controlled, see Theorem 4 of [14] or Theorem 5.1 below.

The third part of Kt is defined by \θλ\ < It log/"1 < |02|. (The fourth
part is analogous and not discussed.) We estimate the supremum in / of
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the convolution of |/ | with the kernel

Replacing It log Z"1 by /, we obtain the kernel

(4.2) M ^ ) _ , - ±

Assume ek < t < ek_v If ek_v < \Θ2\ < ek_v_1 with ^6{0,l,...,fc},
the last factor in (4.2) is of course dominated by C{ek_v + l^l)"1- This
gives

(4.3) Lt(θl9θ2) < Cr%^t Σ 2 "" ^ i ^ . ,

Here it is important that those factors which contain θ2 do not depend on
/. We must estimate

(4.4) f 2-sup sup l / μ ί r 1 ^ , r2fflX\s2l,ekϊ
v = 0 k>v ek<t<ek_x \ ek-v+\tj2\ j

For each v, we apply Lemma 2 of [14] to the supremum in k here.
To verify the hypotheses of this lemma, we estimate the supremum in

t in (4.4). By integrating first in θ2 and then in θl9 we see that this
supremum is essentially the standard maximal function taken in θx of a
convolution in θ2 of / and a function whose L1 norm is bounded.
Therefore, this supremum defines an operator of weak type (1,1), uni-
formly in k. Further, it depends only on the values of / in a rectangle of
sides ek_1 and ek_v_v centered at the point considered. Finally, we have
a stability condition like (iii') of our Lemma 3.1, where we can move at
most ek and ek_v in the first and second variables, respectively, when
defining the starred kernels.

Hence, Lemma 2 of [14] applies, with N = 1. This means that each
term of (4.4) gives a weak type (1,1) operator with a constant which is
O(2~v). We can then sum in weak L1 (cf. Stein [18], Sec. 6) and obtain an
operator of weak type (1,1). This takes care of the third part of our kernel
and completes the proof of Theorem 4.1.

Let d denote the hyperbolic distance in D, normalized by ds =
(1 — Izl 2)" 1 !^!, and D the corresponding bihyperbolic distance in D 2 . As
shown by J. Taylor (unpublished), the convergence condition for 0of in
D,

(4.5) | a r g z - t f | < C(l - |z |)log(l - |z I)"1
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is equivalent to

(4.6) d(z9r$)<ί±logd(z90) + C9

up to the values of C. Here rθ is the geodesic ray {reiθ: 0 < r < 1}, and

we similarly let Rθιθi = {{reiθ\ rei$2): 0 < r < 1} c D 2 . Inequality (4.6)

should of course be compared to the condition d(z,rθ)< C, which

defines nontangential convergence in D. In D 2 , restricted nontangential

convergence is similarly described by D((zl9 z2), R$ί9β2) < C.

A natural question is now whether the convergence condition of

Theorem 4.1 can be similarly described in terms of D. We shall prove

below that any domain Wθι02 containing Ω^ ^ which one can define by

means of an inequality D(z, Rθ θ) < ψ(Z)(z,0)), z e D 2 , for some func-

tion ψ, will be too large to allow a.e. convergence of ^ 0 / , / e L 1 . Here it

is assumed that Wθ ^ is obtained by rotating W = WOyθ9 which we

consider first.

If s0 is large and 0 = s0e~2s°, the point z = (eιθ tanhs0, eiθ t2inhs0)

belongs to Ωo o. Clearly D(z,0) = sQyJΐ. We shall estimate the distance Dλ

from z to Roo and start by observing that Dx = dxfϊ, where dx =

d(eιθ tanh^0, r0).

To estimate dl9 we let γ: [0, dλ] -» D be the shortest geodesic arc from

eιθ tanhs 0 to r0, parametrized by arc length. Then γ is a Euclidean circle

arc, orthogonal to r0 at y{dγ) = tanhs, and one has s < s0. Let γ(ί 0) be

the Euclidean midpoint of γ. Then argγ(ί0) > 0/2, and 1 — |γ( ί o ) | >

(1 — y(dι))/2 - e~2s. Considering the variation of |γ(OI i n [0? ̂ ol a n ^

that of argγ(/) in [/0, dλ\ we find that the length dx is at least s0 - s - C

+ 0/2 cosh2 s. Now insert the value of 0 and minimize with respect to s.

We find dλ > ^log^0 — C and thus

i o g * 0 C UogZ)(z,0) - C.
V2

Incidentally, this estimate for dx makes it easy to verify the equivalence of

(4.5) and (4.6). This will be done in greater generality in the proof of

Theorem 5.4.

This means that any candidate for W must contain the region

W={zE: Ό2:D(zy0) large and D(z9RQS>) < (l/τ/2)logD(z,0) - C}.

We need an observation about this W. If sx = s + λfΐ~ι\o%s — Cλ and Cx

is large enough, the point z = (tanhs, e^tanh^) belongs to W for

|0| < e~2ί and large s. This is seen by measuring a path from z to i ϊ 0 0

defined as follows. Keep the first coordinate constant at tanh s and move

the second coordinate first radially from eιθ tanh^ to eiθ tanh s and then
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along the circle \z2\ = tanhs to tanhs. One finds D(z, Roo) < sλ - s + C.

Since D(z,0) = S]fϊ 4- O(log^), it follows that z e W.

To disprove a.e. convergence of @>of, f <E Lι(T2), as z tends to

(elθ\ eiθl) staying in Wθιθi, we replace / by a point mass δ at (0,0) e T 2 .

Let θλ and #2 be small and positive, choose s so that e~2s = θ2, and let sλ

be as before. Then z = (V6'1 tanhs, t a n h ^ ) e W^ ^ by the above, and

For θ2 < θλ we get

sup

This is easily seen to disprove a weak type (1,1) estimate for the maximal

function corresponding to W. From general theorems, it now follows that

a.e. convergence does not hold for all L1 functions, see Chapter 2 of

de Guzman [4].

5. Results for general symmetric spaces. Take X as in §2, and let the

gauge in N be defined with Ho = p. We call V c α + a strict subcone of

α + if V is a cone, i.e., R+V = V, and the closure of V is contained in

α + U{0}.

THEOREM 5.1. Let f e L\K/M) and assume that D c X is compact

and V is a strict subcone of α + . Then

0>of(kexp(H) x) ->f(kM) as H -> +00, H e K,

uniformly for x e Z), /or a.α. /:M e AΓ/M. / / / ώ continuous, one has

admissible convergence, i.e., the condition H e Fcα« te deleted, uniformly

in K/M.

The result for continuous / here is also in van den Ban and

Schlichtkrull [2, Cor. 16.6]. Before proving the theorem, we give a lemma

about the behavior of P(n) for large n.

LEMMA 5.2. Given δ > 0, //zere ex/i'/s a constant B < 00

/or \n\> B and large H e α + .
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Proof. Because of (2.5), we must prove

Σ e-2<β-H>Qv(n) < 8 Σ Qv{n).

For v > 0, we have termwise inequalities when H is large, since βv Φ 0.

Term number 0 in the left-hand side is 1, and it remains to see that

1 < 8/P(n). But this holds for large n, see [9], Prop. 5.5. The lemma

follows.

Proof of Theorem 5.1. Consider first continuous / in K/M. We must

show that the operators which map / to the functions

kM ^ 0 > o f ( k e x p ( H ) - x )

form an approximate identity in K/M as H -> + oo, c e D. Since the

corresponding kernels are positive and constant functions are preserved, it

is enough to prove convergence at eM e K/M for / > 0 vanishing near

eM. Harnack's inequality (2.1) allows us to take D = {o}. Thus we must

verify that 0>of(expH) -> 0 as H -» +oo. Because of (2.2) and the

definition of ψ, this holds if

(5.1) ψ(H)-ιe2^H>( e-<p>H{n)>e-<^H(n~H»dn^0 a s i / - > + o o

for any ε > 0.

Let δ > 0 and take B as in Lemma 5.2. Write the integral in (5.1) as

f\n\>B + fε<\n\<B ^ ^ first t e r m here, we apply Lemma 5.2 and then

transform n -> n~H. This gives

( 5 . 2 ) ( y [
J\n\>B

n\>B

dn

< Cjδ,

where the last inequality holds for large H because of Proposition 3.3.

For the integral over R = {«: ε < |«| < Z?}, we first introduce the

regions Rm = {nmδH:n e R), m = 1,2,.... If H is large, the Rm will be

pairwise disjoint and contained in B(l). Estimating e"^p'H(n^ by 1 and
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transforming n -> n~m8H, we get

< ψ(/f)-1

β2(l + W.«)<p,i/> f e-<f>,H(n-^»))dn^

For 1 < m < [δ"1], Lemma 3.2 implies that this is at most

In this integral, we insert a factor e"^p / / ( w )\ which is bounded below in
B{\). Then we sum in m, getting

> ί
Jεε<\n\<B

f e-<P,H(n))e-<P,H(n-™)) ^
JB(1)

ψ ( ) / ψ ( ) C.
Dividing by [δ"1], we obtain an inequality which together with (5.2)

implies (5.1). This proves the last statement in Theorem 5.1.
Now consider / e L\K/M). The method of [15], §3 p. 49, shows that

it is enough to take / e Lι(N) with support contained in a compact set
L c jY, and prove a.e. convergence in L only. Modifying the gauge in N9

we can assume \n\ < 1 for n e L~ιL.
As usual, the conclusion follows if we show that the operator M

defined for nγ G L by

Mf(n1)= sup

is of weak type (1,1) in L. We now use (2.4). Lemma 3.3 implies that
φ(H) ~ \H\° for H e F, where |if|2 = (iί, i/> and σ = cardΣJ. As a
result, the operator

Mf= sup |//f|/l*^/2

//GK
//large

satisfies Mf < CMf in L.
The following lemma can be seen as a stronger form of (5.1).

L E M M A 5.3. IfH e α + w/ϊΛ H > 2kp, k G N , then for p = 09l9...,k

) ι / 2
P,H) f P(n-H)ι/2dn <

Jek_v<\n\<l
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Proof. For m = 1,..., 2\ we transform n -> n-
m2k~vp and obtain

p(n-H)ι/2dn
ek-V<\n\<\

P(n-2H)'1/2dn,

because of Lemma 3.2. Now we can sum in m and argue as when proving
(5.1). The lemma follows.

We estimate the operator M. Any large H e V is smaller than some
2kp, k G N, with \H\ ~ \2kp\. By Lemma 3.2, it is therefore enough to take
H = 2kp, k = 1,2,..., in the definition of Λf. For 0 < v < k, we set

except that ek is replaced by 0. Let

M"f= s u p I / I * * ; , r = 0 , l , . . . ,
k>v

so that
00

We shall apply Lemma 3.1 to each M". Fix *> and set Tkf =
\f\* Kv

k+v+ι ^ o r ^ = - l ? 0 9 Lemma 5.3 gives assumption (i) with
Cλ = C2'v. Further, (ii) is clear. To verify (in7) with iV = v + 1, we must
estimate (K£+y+ι)* and thus P((wn/)"2*+>'+lp)1/2 with |wr| < ek+v+ι. But
then !(«') 2 + + pl ^ 1? a n d we can apply Harnack's inequality (2.1) to P,
since P(n) = Pp8(n), where δ is a unit point mass at eM e .K/M. This
gives

Since also supp(^ + ί / + 1 )* c 5 ( C ^ ) \ 5 ( ^ + 1 / C ) , Lemma 5.3 implies

(Kv

k+v+ι)*dn < Cf K»k+v+1dn < C2~\

Lemma 3.1 now shows that Mv is of weak type (1,1), with constant at
most C(v + \)2~v. This means that the series in (5.3) can be summed in
weak L1, so that M and M are of weak type (1,1). Theorem 5.1 is proved.
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Next, let X be of rank 1. We let a and 2α be the positive roots and
ma > 0 and m2a > 0 their multiplicities. The root space decomposition of
n is n = g _ α θ g _ 2 α . l n l w e choose the invariant metric associated with
the Killing form in p and denote by d the corresponding distance. As
usual, p is the eigenspace of the Cartan involution in the Lie algebra of G
with eigenvalue - 1 . Fix Ho e α+ and choose an associated gauge in N.
Let rkM for k e K be the ray {kexp(tH0) o: t > 0}.

THEOREM 5.4. Let rank X = 1. Take f ^ L\K/M), and set q =
l/(2ρ,H0) and K = /2mtt 4- 8m 2 α /(m α + 2ra 2 J.
*! e TV

(5.4) tPjfaapitHjn x)

as t -* 4-00 α/id « 5/βyΛ JΛ /Λe 6fl// B(Ctq) and x in a compact subset of X,

for any fixed C. Equivalently, @*of(x) -* f(kλf) as x approaches K/M
while satisfying d(x, rkM) < κ\ogd(x, o) 4 C, for almost all kM e K/M.
This holds for no larger values of q and K.

As shown below, the two descriptions of the approach to the boundary
in this theorem are equivalent in the following sense. Fix nx e N. Given a
constant Cλ < oo and a compact set D e l , there exists C2 < oo such
that

(5.5) d(x,rk(ni)M) < κ\ogd(x,o) + C2

for all

(5.6) x = ^expitH^n x' with t large, \n\ < C1t
q, and x' e D.

Conversely, any point x far from o satisfying (5.5) can be written as (5.6),
where Cx is determined by C2 and D = {o).

When X is the disk D, Theorem 5.4 is equivalent to the result from
[16]. For this space K = ]/ΐ, which will agree with (4.6) if the hyperbolic
metric is properly normalized.

Proof of Theorem 5.4. We first prove (5.4) in a rather sketchy way,
since this is easy. One has

see Helgason [6], Theorem IX.3.8 p. 414, and ψ(i/) - \H\ for large H. As
in the preceding proof, we see that we need only take f ^ Lι(N) of
compact support. Then we must estimate the convolution of |/ | with the
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kernel

(5.8) n -> rιe2<fi>tH°> sup P{n-tH«n')1/2.
\ri\<Ctq

If \n~tH°\ > Cot
q and Co is large, one has \n~tH°\ ~ \n'tH°n'\. Because

of (5.7), the factor n' can then be deleted from (5.8). The preceding proof,
or Michelson [12], Theorem 2.2 (ii), now allows us to control the convolu-
tion with this part of the kernel.

For \n~tH°\< Cot
q, we estimate P by 1 in (5.8). These n belong to the

ball B{Cot
qe~t). We simply obtain means of |/ | in translates of this ball,

and thus a standard maximal function. This gives (5.4). To see that the
given value of q is sharp, one uses approximated point masses.

In order to prove the equivalence, we let nι G N. Write

where the last two factors stay in a compact set as t takes large values.
Thus the curve rnι: t -» nλ exp(tH0) o, t > 0, stays at a bounded
distance from rΛ( ) A / and conversely, so that \d(x, rnι) — d(x, rk^)M)\ <
C for any x. This means that we can use-rnι instead of rk^M in (5.5).
Translating everything by n^1, we may assume n1 = e since d(x,o) —
d(n{ιx,o) stays bounded. Further, we can take D = {o}, because the
point x in (5.6) will move a bounded distance if xf is replaced by o. We
can also normalize Ho so that a(H0) = 1. Notice that K = q\HQ\.

The geodesic A o contains re. We first estimate the distance to A o
from x = cxp(tHQ)n o or, equivalently, from n - o. Let β = log+|«|.

L E M M A 5.5. \d(n o,A o) -\HQ\β\ < C.

Proof. Consider first the path s -» nexp(-sHQ) o, 0 < s < β, start-
ing at n - o and of length \H0\β. The distance from its endpoint
exp(-βH0)nβH° - o to the point exp(-βH0) o e A - o is at most C,
because | n ^ ° | = 1. It follows that d(n - o,A o) < \HQ\β + C.

It remains to prove that any curve γ from n - o to A - o has length at
least \H0\β — C. We can write γ as

y(s) = n(s)exp(-t(s)H0) o, 0 < s < L,

where «(.$) and t(s) take values in N and R, respectively. Clearly
n(0) = H, ί(0) = 0, and n(L) = e. Since we need only consider geodesies,
we may assume that γ is C00 and that n\s) e n never vanishes. This is
because a geodesic parallel to the geodesic nxA o at some point would
coincide with nλA o.
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The lifted curve n(s)exp(-t(s)H0) in G has a tangent vector at s
given by the left-invariant field, i.e., the g vector,

-t'(s)H0 + ad{t(s)H0)n'(s).

If n'(s) = Y(s) + Z(s) G g _ α θ g_ 2 α, this vector equals

-t'(s)H0 + e-«s)Y(s) + e"2

The properties of the Killing form then imply that

(5.9) |γ ' (*) | 2 - t'(s)2\H0\
2 + e-W\Y(s)\2 +

Here the bars | | denote Euclidean norms in α, g_α, and g_2α> respec-
tively.

If t(s) > β for some s, the desired lower estimate for the length of γ
is clear from (5.9). Assume thus t < β in [0, L]. Then

|γ'(,)|2 > t'{sf\H0\
2 + e-^(\Y(s)\2 + e^\Z{s)\2).

Now reparametrize the curve so that |JΓ(S)|2 + e~2β\Z(s)\2
 Ξ= \HO\2 and

thus

\y'(s)\2 =\H0\
2(ί'(s)2 + e-2'^).

This parenthesis leads us to the curve τ(s) = s + ie~t(s\ 0 <
s < L, in the upper half-plane {y > 0} with the hyperbolic metric
y~2(dx2 + dy2). Indeed, |τ '(*) | 2 = t\s)2 + e~2t{s\ Now T connects
τ(0) = / to the line / = {x = L}. The shortest curve connecting / and / is
an arc of a Euclidean circle hitting / and the real axis at right angles. Its
hyperbolic length is greater than logL. The length of γ is thus greater
than \H0\ logL.

To estimate L, consider the curve s -> n(s)βH° 0, 0 < s < L, in X.
It goes from the point nβH° - o of the compact set [h - o: \h\ = 1} to o.
Therefore, its length is bounded below. But this length is by the above

jLe-β\HQ\ds=\HQ\e-βL.

It follows that L > ceβ/\H0\, c > 0, so that the length of γ is at least
\HQ\β — C. Lemma 5.5 is proved.

Roughly speaking, this lemma means the following. To reach A o
from n - 0, move first "upwards" (in the negative A direction) until the
"horizontal" distance (in N) to A o is at most 1. Then move horizon-
tally. Further, exp(-βHQ) o is a closest point in A 0, up to an additive
constant in the distance. A consequence is that

(5.10) \d(cxp(tH0)n - o,o)-\H0\ \t - β\\ <\H0\β + C,

as one sees by going via exp((r — β)H0) - o.
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To prove that (5.6) implies (5.5), let x = exp(tH0)n o with \n\< Ctq

and t > 0 large. Then β < qlogt + C, and (5.10) implies that logd(x,o)

> log/ — C. These inequalities and Lemma 5.5 yield (5.5).

Conversely, assume d(x,re) < κ\ogd(x,o) + C with d(x,o) large,

and write x = exp(tH0)n 0. Because of (5.10),

d(x,o)< C(\t\ + β) + C.

Combining this with the lower estimate of Lemma 5.5, we get

\H0\β<κlog+{\t\+β) + C-
If |/| is not large, this implies β < C and d(x,o) < C which is excluded.

If |; | > C, observe that β < \t\. When t > C, we obtain β < qlogt 4- C

so that \n\ < Ctq, and (5.6) follows. Finally if / < -C, then d{x, re) is at

least

d(cxp{(t - β)H0) o, re) - d{x, exp((ί - β)H0) o)

>\H0\(\t\ + β) -\H0\β - C = \H0\t - C.

This last quantity is not much smaller than d(x, o), a contradiction which

ends the proof of the equivalence.

Since the optimality of q implies that of /c, the proof of Theorem 5.4

is complete.

6. Admissible convergence in SL(3, R)/SO(3). In this section and the

next, X will be G/K = SL(3, R)/SO(3). As α we take the set of diagonal

matrices in g = {traceless 3 x 3 matrices}. Denoting

"*! 0 0 "

H= 0 h2 0 e α ,

0 0 h3

we define α + by the condition hλ> h2> h3. Any H e α is then de-

termined by the values of the two simple positive roots, a(H) = hλ — h2

and β(H) = h2- h3. The positive roots are α, β, and a + β. Thus if is

also determined by 8 = e~a{H) and ε = e'β{H\ and i/ -> + 00 corre-

sponds to δ, ε -> 0. The group N consists of the matrices

"1 0 0'

n = 1

y

x9y,z e R,

and we write simply n = (JC, y9 z). Then nH = (δx, εy, δεz). The Poisson

kernel in N is given by

~ , x 1

z2)(l+y2+(z-xy)2)
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This can be seen via a straightforward calculation and generalizes to
SL( Λ, R)/SO(/i), see Bhanu Murthy [3], By Lemma 3.3, or Herz [8],

(6.1) φ(H) ~ logl/δlogl/εlogl/δε

for small δ, ε. Observe finally that the map

(6.2) (x, y, z) -> (-y, -x, xy - z)

is an automorphism of N and preserves P(n).

THEOREM 6.1. Letp > 1. If X = SL(3, R)/SO(3) andfe LP{K/M)9

then @Qf converges admissibly tofa.e. in K/M.

The method of proof below is based on products of one-dimensional
maximal operators. In a simpler form, it also applies to ̂ λ / , λ e α+, and
gives a shorter proof of the main result in [17] for this X. However, it does
not generalize to an arbitrary symmetric space.

Proof. Theorem 5.1 gives the convergence of &>of for continuous /.
As in the proof of that theorem, we can therefore take / e Lι(N) with
support in a compact set L, and estimate the corresponding maximal
function

Mf = sup
//large

in L. Assume / > 0. Clearly, / * P]/1^) = j f(nιn
H)P(n)ι/1 dn, and for

nx e L we need only integrate over those n satisfying nH e L~ιL. Hence
with nλ = (xl9 yv zx),
(6.3) M/ίx^j ^ z J

C
logl/δlogl/εlogl/δε

4- δx, VΊ +
/

f(xx 4- δx, jμx 4- εy, zγ 4- δεz 4- δxyλ)—~ dx dy dz,X

the integral taken over {|x| < C/8, \y\ < C/ε, \z\ < C/δε). Write this
integral as

( + f + f = 1 + 11 + III.
J\z\<\xy\/2 J\z-xy\<\xy\/2 r̂emaining x,y,z

In I, we can estimate P(n)1/2 by C(l + \x\ + \z\y\l + \y\ + \xy\)~ι.
This expression is even in z and decreasing in \z\, and its integral with
respect to z in \z\ < \xy\/2 is at most

+\y\ +\xy\y1 < Clogl/ε(l + ( l + |
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Thus we can integrate with respect to z in I and estimate the result by

means of the standard one-dimensional maximal operator taken in the z

direction. This operator is denoted by M00Λ. This means that

I<Clogl/εf M^J{xι + 8x,yι + ey,zι + 8xy1) dχ

J\χ\*c/s l + ( l + | x | ) M\χ\<c/δ
\y\<c/ε

The y integral here can similarly be estimated by means of the

maximal operator M010, so that

logl/ε 4- log(l + \x\)
J\x\<C/8 1 + | x |

I<Clogl/εf

dχ

For the remaining integration, we use the maximal operator in the

direction (1,0, yλ)9 getting

/ < C log l/e(log 1/εlog 1/δ + (log 1/δ)2)

X M I ,O, Λ MU,O M O,O,I/( Λ : I> >Ί> z i )

The logarithmic factors here are controlled by those in (6.3).

We now claim that the operator M 1 0 is bounded on LP(R3).

Indeed, for each fixed value of yl9 we have a maximal operator along a

fixed direction in the xz plane. Thus,

// (Mι^y1g{xl9yl9zι))pdxιdzι^cfj \g(x9 yl9z)f dxdz

for g e LP(R3), uniformly in yv Integration in yλ now gives the claimed

boundedness. As a result, that part of M which corresponds to I is

bounded on Lp.

The term II can be treated like I after the transformation (6.2), which

interchanges 8 and ε.

In III, we have \z — xy\ > \xy\/2 and \z\ > \xy\/2. Therefore, the

argument used for I, and that of II, will apply. But in both arguments, the

z integration will now produce a factor logl/δε instead of logl/ε or

log 1/δ. Since log 1/δε - max(log 1/δ, log 1/ε), one argument or the other

will give the right estimate for III. We conclude that M is bounded on

Lp

9 and Theorem 6.1 is proved.

More algebraically, one could also have used the fact that the one-

dimensional maximal operators in this proof are associated with one-

parameter subgroups.
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7. Improved restricted convergence in SL(3, R)/SO(3). We use the
notation from §6. Fix Ho e α+ and write a and β for a(H0) and β(HQ),
which are positive numbers.

THEOREM 7.1. Let X= SL(3,R)/SO(3) and take f ^ L\K/M). Set
q = 2 / ( a + β + m a x ( α , β ) ) . Then for a . a . n λ ^ N

as t —» +oo? |«| < Ctq, and x e X stays in a compact set. This holds for no
larger value of q.

Formally, this result is like the first part of Theorem 5.4. Notice,
however, that the widening of the convergence region caused by the factor
n is now only in certain directions. Indeed, as t and n vary, the points
nx cxρ(tH0)n o describe a set whose dimension is smaller than that of X

For the proof of Theorem 7.1, we need a proposition of independent
interest. Consider for μ > 0 the kernel

pt ί\ ι ^
n

"' (1 + e«\x\ + e β ί + " |z | ) 1 + μ ( l + e*\y\ + eaί+^\z - xy\)

where t > 1 and n = (x, y9 z) G N. Similarly, P^μ will denote the kernel
obtained by interchanging the exponents 1 + μ and 1 of the two factors in
the denominator.

The automorphism (6.2) interchanges P^Q and P£φ. These kernels, or
rather Pμ'o and P^μ9 arise from normalized λ-Poisson integrals
@>\(n1 exp(tH0)) with a nonzero λ on the boundary of α+. This is why the
P^o, / > 0, form a family of normalized dilations of one function if the
factor t~ι is deleted. Also,

(7.1) PίM'n) - KM)
for nf e B{Ce~x) and any n. This is seen from Harnack's inequality or
directly from the definition of the kernel. Let

Mμfif= sup |/|*P;,0, fel}(N\
t large

and similarly for MOμ. These are the maximal functions corresponding to
restricted convergence of &>λf for λ e 3α+\{0). A recent result by
van den Ban and Schlichtkrull [2, Cor. 16.6] implies that this convergence
holds for continuous /.
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PROPOSITION 7.2. If L <z N is compact, Mμ0 and MOμ are of weak

type (1,1) in L.

This has the following consequence.

THEOREM 7.3. Let X= SL(3,R)/SO(3) and take λ e 3α+\{0} and

f e Lι(K/M). Then @λf converges restrictedly tofa.e. in K/M.

Proof of Proposition 12. Because of the map (6.2), we need only work

with Mμ0. The idea of the proof is to apply Lemma 3.1, after some

elementary reductions. Write temporarily jc, y, and z for eatx, eβty, and

eaΐ+βΐz, respectively.

First of all, it is enough to treat that part of Pμ0 defined by

(7.2) |jc| +\z\ < eηt

for any fixed η > 0. Indeed, if this inequality is false, (1 + |Jc| + \z\)μ >

t2/C. Then Pμ0 is dominated by the kernel defining ^ 0 / , which is

controlled by Theorem 5.1.

Similarly, we can restrict Pμ[0 by

(7.3) 10(1 +| jc | + | z | ) < 1 +\y\ +\z - xy\9

This is because that part of Pμ0 corresponding to the opposite inequality

can be estimated by

This is essentially the kernel obtained for &>λf with some λ e α + . But

such iPxf are controlled by the results of Stein [18] or Sjόgren [17], §7.

We next verify that it is enough to prove the proposition with Pμ0

replaced by the kernel

t - l 2at+2βt

(7 4)

for γ > 0.

In case |y\ < \z - jcy|, we see from (7.3) that \z\ < \z — xy\/2, which

implies \z - xy\ - \xy\. Hence, \x\ < \xy\ because of (7.3), so that \y\ > 1

and 1 + Iy\ + \z - xy\ - (1 + \x\)\y\. Then Pμ\0 is dominated by (7.4),

with γ = μ/2.

In the opposite case |^ | > \z - jcy|, (7.3) implies \z\ < \y\. Then |jcy|

< 2\y\, so that |jc| < 2 and (7.4) again dominates Pμ0.
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We are thus led to integrals of fi^n) against the kernel (7.4)
restricted by (7.2). Given a large t, choose an integer k so that 2k~ι < t <
2k. If η is small, (7.2) then implies |JC| < e%_2 and \z\ < e^ξ. Now we
make a decomposition of (7.4) like that of Lt in (4.3). We arrive at the
kernel

where χkv is the characteristic function of the set { |JC| < ek_2, \z\ < ek^ξ,
\y\ < e^__v__ι). Let K^{n) denote term number v here, n = (x, 7, z), and
set

Γ ; / ( « 1 ) = sup / | / ( « ! « ) K(n)dn, k>v.
2k-1<t<2k J

By means of Lemma 3.1, we shall prove that the operator

is for each v of weak type (1,1), with constant at most C{v + 1)2"". This
will allow summation in v and complete the proof.

Thus we must verify (i), (ii), (iii') and start with (i). Clearly,

Ttf{nx) < sup 2"'/
e2al+βtdxdz

zel^ e£_v+\y\

The inner integral here is a convolution of / and a measure which is
independent of / and of total mass at most C This integral thus defines a
bounded operator 1} -> Zλ The integration in JC and z amounts to
applying to / a one-parameter two-dimensional maximal operator. As an
operator in the plane, it is of weak type (1,1), with a uniform constant.
The fact that it acts here in the plane spanned by (1,0, yλ) and (0,0,1) in
R3 causes no problem, cf. the operator Ml0yι in §6. Thus T£ is of weak
type (1,1) with constant 0(2""), which is (i).

For (ii) we simply observe that T^f(nx) is determined by the restric-
tion of / to nιB(ek_v_2), if the gauge in N is suitably normalized.

Finally we must estimate

f (K?)*dn = f supK?(n'n)dn,
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the supremum taken over \n'\ < ek+c. If n e L and C is large, the
coordinates of rin and n here will differ by at most e", ef*9 and e%+β,
respectively. The denominator in the expression for Kv

t is then essentially
the same at n'n and n. The support of supKf(n'n) is only slightly larger
than that of K?(n). Thus, Kv

t and (K?)* have the same L1 bound C2~\
and (iii') is proved.

Now Lemma 3.1 applies with Cλ = 2~" and TV = p 4- C. Proposition
7.2 is proved.

Proof of Theorem 7.1. As when proving Theorem 5.1, we take 0 < / e
Lι(N) supported in a compact set L. Then we must estimate &>of at the
point nλ exp(tHQ)n, or equivalently at

for Λ1 G L, large ί, and \n\ < Ctg. One has g = w^'expίίί +
where \n'\ < Ce*. Then (2.4) implies

(7.5) 0>of(g) ^ cf f(nyn)t-3+2aq+2^e2at+2βΨ{n-^qλ^t)Ή^)ι/1 dn,

and here

(7.6) p(n-<' + «lo*t)"°)ι/2

1

^ (1 + ίΛ^α/| JC| + ta('+^ear+βt\z\)(l + tβ«eβt\y\ 4- r « ^ ^ α ί + ^ | z - xy|)

with n = (x, 7, z). By decomposing TV into several subsets, we shall divide
the integral in (7.5) into parts which are considered separately. The
decomposition will depend on the relative sizes of the terms in the
denominator of (7.6), with the powers of t deleted. Parts 1 and 2 will
mostly be handled by a method due to T. Lyons (oral communication).
The idea is to estimate tPof(g)9 or parts of it, by ^λf(gf), where λ may
be different from 0 and g' o is a point further from the boundary than
g o. We shall have gf = nxn

f exp(/i/0). For Part 3, we use more direct
estimates.

Part 1: max(l,ett'|;c|) < eat+βt\z\ and mzx(l,eβt\y\) < eat+βt\z - χy\.
The kernel in (7.5) is dominated by

1
r \z\\z - xy\

ea!\x\ + eai+β'\z\)(l + eβ'\y\ + ea!+β'\z -xy\)'
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The corresponding part of ^of(g) is thus dominated by

where n" stays in a compact set. This is controlled by Theorem 5.1.

Part 2: max(e"'|jc|, eat+βt\z\) < 1. This will also include the case
max(eβt\y\, eαt+βt\z - xy\) < 1, as seen via (6.2).

2a: eβt\y\ < 1. Now (JC, y, z) e B(Ce~% and this part of 0>Qf(g) is
majorized by

(7.7) r 3 + 2αq + 2βqe2αi + 2βt ί

Changing C, we have n^riBiCe'*) c n^Ce'*). Since

e-2αt-2βt a n ( j ^ e χ p 0 n e n t of / in (7.7) is negative, the expression (7.7) is
dominated by the mean value of / in ΠγB^Ce'1). This leads to the
standard maximal operator in N, which is of weak type (1,1).

2b: eβt\y\ > 1. Here eαt+βt\z - xy\ < 2eβt\y\, and we can estimate
the kernel of (7.5) by

eαt\x\

eat\x\ 4- eat+βt\z\f(l + eβt\y\ + eat+βt\z - xy\)

Again, the exponent of t is nonpositive. Proposition 7.2 gives the neces-
sary estimate, since (7.1) takes care of the factor nf of (7.5).

Part 3: max(l,ea i +^|z|) < eat\x\. This also takes care of the case
m2ix(l,eat+βt\z - xy\) < eβt\y\.

3a: eβt\y\ < 2. We can assume that eat+βt\z - xy\ > 1, since the
contrary case is covered by Part 2. For such n, (7.6) is at most
Crlaq-βqe-lat'βί\x\-ι\z - xy\~\ Let
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That part of (7.5) corresponding to 3a can be estimated by

j f{nιn)Kt({nrln)dn < / f(nin)K*(n) dn,

where

and the supremum is taken over nr e 2?(O~r). Comparing the coordi-
nates of (n')~ιn and n, we see that

Ct~3 + βqeβt

~

The automorphism (6.2) transforms K*(n) to

X | j e | < C e " " = L'(n)- ' - " + |z|)

say. We write

(7.8) sup f/(n^Lfi^dn < £ SUP ί f{nιn)LXn) dn

t J k 2*-1</<2* ^k

For2A~ 1 < ί < 2Λ,

Here we have no / dependence in the factors containing y and z. Thus we
can estimate /f(nxγι)Lt(γί)dn for 2k~ι < t < 2k by integrating first in
these variables. This means convolving / with a finite measure, which
preserves Zλ The integral in x can then be estimated by means of the
standard maximal function, taken in the direction (1,0, yx). Thus, term
number k in the sum in (7.8) defines an operator of weak type (1,1). The
associated constant is seen to be 0{2^k+βqk+k+k) = 0{2{βq~l)k). Since
βq < 1, the sum in (7.8) will be in weak L1, and we get an estimate which
ends Part 3a.

3b: eβt\y\ > 2. Now \z - xy\ - \xy\, and the expression in (7.6) is
bounded by Crlaq~βqe-lat~βt\x\~ι\xy\'1. We proceed as in 3a and obtain
kernels Kt and Kt* with

K*(n) < C - ^ ( )
( - \\)2(»
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χt being the characteristic function of {eat+βt\z\ < C{\ + eat\x\fi. As-
sume again that 2k~ι < t < 2k. Then

(7.9) K*(n) < CΣ 2 ^

j

where χ / y is the characteristic function of (| x\ < 2Je~a\ \z\ < C2je~at~βt)
and j ranges from 0 to an upper bound which is O(2k).

Let us estimate

(7.10) sup ί f{nyn)K^\ή)dn.
2k~ι<t<2k J

We integrate first in y and obtain a convolution of / with a finite
measure. As before, the integral in x and z is then estimated by means of
a one-parameter two-dimensional maximal operator. This gives a weak
type (1,1) estimate in R3 for the operator (7.10), and the associated
constant is seen to be 0{2{βq~1)k).

To sum in j9 we use the addition theorem for the weak L1 quasinorm
|| || from Stein [18], §6. It says that

N

Σf,
N

JV>2.

Thus the operator

/ - sup / f(nιn)K*(n)dn
2k-ι<t<2k J

is of weak type (1,1), with a constant which is O(k2(<βq~l)k). This allows
us to sum in k and finish Part 3b.

It only remains to verify that the value of q is sharp. Let m denote
Lebesgue measure in [-1,1] and set

μ = 8 ® m 0 δ.

Here δ is the Dirac measure at 0 G R, and the tensor product refers to the
coordinates (x, y9 z) of N. Take any q > 0. At a point n0 = (0, yo,O),
\y01 < 1, one has for large /

(7.11) «v(»
\y\<ι 1 + eβt\yo
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Let n1 = (xvyvz1) be a point with \xλ\ < taqe~a\ \yλ\ < 1, and
\zx - xλyλ\ < t

a(i+^e'at'βt. Then the point n' = (-xv0,x1yl - zλ) satis-
fies nxn

f = (0, ̂ ,0), and n = (n')-tH° stays in a ball B(Ctq). Because of
(7.11) we get

sup ^

for some c > 0. The set of such nλ has measure St2aq+βqe-2at~βt. When
2αg + βq > 2, this is enough to disprove the weak type (1,1) of the
maximal function associated to Ho and q. The symmetry in a and β
obtained from (6.2) now implies that the value of q in the theorem is
sharp for weak type (1,1).

The measure μ leads to a counterexample to a.e. convergence by a
rather standard method which we briefly describe. By approximating and
contracting μ, one constructs a sequence (fk) of nonnegative functions in
Lλ(N) supported near e such that Σ{fkdn < oo and for some tk -» 4- oo
and ωk -> 4- oo

sup % (
\n\<Ctl

on a set Ak. Moreover, Σ\Ak\ = + oo and the Ak are contained in a small
neighborhood of 0.

It is enough to take a small ball B centered at e and verify the
following: Given W ^ N, there exist k" > k' and points nk e B, kf < k
< k'\ such that the union of translates \J{nkAk: k' < k < k"} has
measure at least \B\/2. Indeed, then we can iterate this construction to
form segments of a sequence (nk)f such that the set of points belonging
to infinitely many sets nkAk has positive measure. The required counter-
example / will then be the sum of the corresponding translates of the fk.

To make this construction, assume nk has been chosen for k' < k < j
and that the set Mj_λ = \j{nkAk: kf < k <j) has measure smaller than
151/2. Considering the average of \MJ_1 Π nAj\ as n runs over B, we find
an nj with \Mj_λ n ΠJAJ\ < \Aj\/2. Thus K ^ Λ ^ I > \Aj\/2, and
the rest is easy.

Theorem 7.1 is proved.
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