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LOCALIZATION OF A CERTAIN SUBGROUP
OF SELF-HOMOTOPY EQUIVALENCES

KEN-ICHI MARUYAMA

Let X be a simple, finite C.W. complex. The group <£§{X) is
known to be nilpotent. In this paper, we give a proof of the naturality
of localization on this group, &#{X){P) = ^(X{P)). The result is then
applied to study the group structures of <§#(ΛQ of rational Hopf spaces
and some Lie groups.

Introduction. Let X be a pointed topological space. We use the no-
tation &(X) to denote the group of based self-homotopy equivalences
of X. (For this group there are other notations, for example, AUT°(X)
in [2].) Throughout the paper our spaces X will be connected of finite
type and either finite dimensional or Postnikov pieces, namely, spaces
with finite number of non-trivial homotopy groups. Then we denote
by ^(X) the subgroup of &{X) which is the kernel of the obvious
map (cf. [1], [16]):

We simply denote 8#(X) when m = dimX, where

= max{/|π/(X) φ 0}

if X is a Postnikov piece.
E. Dror and A. Zabrodsky have proved that £#(Λf) is a nilpotent

group for an arbitrary finite dimensional C.W. complex or a Postnikov
piece ([2], Theorem A). If m > dimX, %™{X) is a subgroup of %#{X)
and thus also nilpotent. Hence these groups can be localized in a
natural way. For example, the reader may consult the book [5] which
provides basic matters on the theory of localization of nilpotent groups
(and spaces).

In this paper, our main result is the following.

THEOREM 0.1. Let X be a simple C. W. complex and P be an arbi-
trary collection of prime numbers. Assume that m > dim X. Then the
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natural map:

is the P-localization map, where X^P) is the localization at P.

In other words 8^m(X)(/>) = g^(X^). When a space is P-equivalent
to the simpler space, this theorem enables us to determine £#(X) ef-
fectively. For example, for 0-regular spaces we obtain the following
result which is concerned with the classical result of [1] (Theorem 5.4).

THEOREM 0.2. Let X be a simple finite rational H-space with βinι _ i -
rankβ(π2rt/-i(X)(2)(2) < \fori<k. Then %#{X)/torsion = Z® -®Z,
the free abelian group of

k

rank = ^ r a n k β ( π 2 r t / _ i ( X ) ® Q) (β2nι-ι ~ rankQ(π2 n /_i(X) ® β)),

where βj is the jth Betti number and H*(X, Q) = E{xx,...,xk) {the

exterior algebra) with degx z = 2« ; - 1.

In many cases %#(X) is an abelian group. We give the following
non-abelian example.

EXAMPLE (Example 3.1). g#(SO(6)) and g#(SU(4)) are not abelian.

This paper is organized as follows. In the first section we prove our
main theorem (Theorem 0.1). In the second section we prove Theorem
0.2. In the final section three we will show the above example.

1. Proof of the main theorem. Let Xn be an nth Postnikov stage of
X. Then there exist natural homomorphism J%:&(Xn) —• <g{Xn-{)
and its restriction, J\\%#{Xn) —• g#(Xn-\) which is denoted by the
same symbol. When m > dimX, ^{X) = %t(Xm) and we can prove
our theorem by induction on the Postnikov decomposition of X. The
following exact sequence is due to Y. Nomura [10] (cf. [6], [13] and
[16]).

0 - I{\Xn) - Hn{Xn^π

The localization map /: X —• X^ can be restricted to the Postnikov
stages and the following diagram is commutative.

0->/(ljrJ -> Hn(Xn-x\πn{X)) ±

H»(Xn_l{P);πn(XiP)) Λ %(XH{P)) -> lmJn

X{

U,-i#

{p) -
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In the above diagram,

l:Hn{Xn-X;nn(X)) = [Xn-{,K(πn(X),n)] - [Xn.lfK(πn(X(P))tn)]

obviously P-localizes. Since we can show by induction that 8#(J
is a P-local group for any n, it suffices to show that the restriction of
/Λ_i# to Im/£ and the restriction of / to I(lχn) are both localization
maps (Theorem 3.2 Ch. I, [5]).

(I) / n -i # :Im7| -+ Im/£ P-localizes.

First we recall that Im/f = {/ e ^(JΓΛ_i)|/*ikΛ+1 = A:"+1}, where
kn+ι is the λ -invariant of X (cf. Theorem 2.9 [10]). This group can
be identified with the isotropy subgroup at kn+x with respect to the
action of g#(ΛfΛ_i) on the cohomology group Hn+x(Xn-\\πn(X)).

Secondly we assert that this action is nilpotent (for the nilpotent
action see §4 of [5]). Let us consider the fibrations

K(πm(X), m)-+Xm^ Xmll9 m<n-\.

For m=l,X\= K(πχ(X)t 1) and %>(Xn-i) acts trivially on the co-
homology. There exists the g#(Xπ_!)-module spectral sequence con-
verging to H*(Xm).

E™ = HP(Xm^;HHπm(X)9 m)) =• H*(Xm).

If we assume that g#(Xn_{) acts on H*(Xm-χ) nilpotently, then so
does H*(Xm). Thus %#(Xn-ι) acts on H*(Xn-χ) nilpotently. By the
universal coefficient theorem, we obtain the assertion.

Let Q be a nilpotent group acting on a group N nilpotently. Then
the localizaton QP acts on Np compatibly in the sense of §1 of [3].

THEOREM. (P. Hilton [3], Theorem 1.1) Q{a)P = QP{ea)f where
e:N —> NP localizes and Q(a) denotes the isotropy subgroup of Q at
aeN.

By the hypothesis of induction, /M_i#:g#(Xrt_i) —• %#(Xn-\(P)) lo-
calizes and by the naturality of /Λ_i# it is compatible with the given
action of £#(JΓΛ_i) on the cohomology. Thus there is a commutative
diagram:

ϊ
AutH»+ι(Xn-HP);πn(Xp)).



296 KEN-ICHIMARUYAMA

Finally put Q = gftX^.N = H»+ι(Xn-uπn(X)) and a = kn+K
Then (I) is derived from the above Hilton's Theorem.

I(lχn), the kernel of the homomorphism Δ, is a subgroup of the group
Hn{Xn-X\πn{X)) and has the following form ([10]):

I{\Xn) = {xe H»(Xn_{;πn(X))\μ(x x \Xn)d = lXn},

where μ denotes the action of K(πn(X),n) on Xn, d is a diagonal
map. Hence I{\Xn) can be regarded as an isotropy subgroup at lXn

with respect to the action of Hn(Xn-\ 9πn(X)) on [Xn,Xn]. In this
case we cannot apply the argument like above because [Xn,Xn] is not
generally a group. But we can use the argument which is dual to that
of the proof of Theorem 2.5, Ch. II, [5]. We have a fibration:

Xn -^Xn-ι^> K(πn(X), n + l)(=K).

This gives rise to a fibration:

where F(, ) denotes the function space. Then we obtain the following
commutative diagram

I I
πx{F(Xn,Xn-X),pn) ± πx{F{Xn,Xn_ι{P)),lpn)

πι(F(Xn,K),O) -±> πx{F{Xn,K{P)),G)

i i
i.πQ{F{Xn,Xn),\Xn)

I I
It is well known that ImΨ (ImΨ') coincides with the iso-

tropy subgroup of the πx{F{Xn,K),0) = Hn(Xn,K(πn(X),n)
action {πι(F(Xtt,K(P)),0) = Hn{Xn,K(πn{X(P)),ή)) action) on
πo(F(Xn,Xn),lXn) (πo(F(Xn,Xn{P)),l)) at 1*. (/). We should note
that these actions can be regarded as to be induced from the actions
of K(πn(X),n) (K(πn(X{P)),n)) on Xn (Xn{P)). Thus if we restrict
these actions to Hn{Xn-\;πn(X)) (or Hn(Xn-ι;πn(X^)), we get ac-
tions mentioned earlier. Let i^'-Xn ~^ %n be the inclusion of N-
skeleton of Xn, with N sufficiently large. The space F{Xn,Xn-\) =
F(lim,X%+j,Xn_x) is homotopy equivalent to \\TΆ.F{X%+J,Xn-\)
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This gives rise to a homotopy equivalence of (F(Xn,Xn-χ),pn) and
limXF(Xn+j, Xn-\), PniN+j)- We have a cofibration

v -> vN+j

where V is a wedge ofN + 7-spheres, giving rise to a fibration

Since JV is sufficiently large, ( .F(K^-i) ,0) is weakly contractible,
thus the total space and fibre of this fibration are weakly homotopy
equivalent. As a result,

Thus these are nilpotent spaces by Theorem 2.5, Ch. II, [5] and more-
over the upper /* in the above diagram localizes (Theorem 3.11, Ch. II,
[5]) and so does the middle /*. Therefore, /*:ImΨ-^ ImΨ ; localizes.
We have the following.

= (ImΨ)(P) nHn(Xn-ι;πn(X){P)), by Theorem 1.2, [4],

This completes the proof of (II).

2. Proof of Theorem 0.2. In this section we prove Theorem 0.2.
Again we use the induction on the Postnikov decomposition. First we
introduce the following proposition.

PROPOSITION 2.1. Let X = K(Q,2nk - 1) x ••• x K(Qf2n{ - 1),
1 < nx < - < nk with βlni-\ - rankβ(π2 W /_i(X)) < 1 for i < k.
Then £#(X) = β Θ Θ Q, the direct sum ofrationals of the rank (over
Q) = Σ t i τmkQ(π2nι-ι(X)) (β2nι-i - rankβ(π2Λ/-i(JΓ))).

Proof On the first Postnikov stage, g#(X2nι-\) = l Assume that
«/_,-i) is an abelian group. By Theorem 2.10 of [11],
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where x means the semidirect product. Moreover the action of /

on ω (/ e ^(X2nι_ι-ι), ω e H2^-\X2nι_^π2nι.x{X))) is given by
/ . co = (f)*~ιω. Each element ω can be written as the sum,

where aHl(J) is the fundamental class of H2n^^(K(Qf2n^j) - 1);Q),
1 < i(j) < k, U means the cup product. Obviously, (/)*"* maps
ω into ω identically. It follows that / ω = ω. What we have just
proved is that g#(X2nι-\) is actually the direct product of S#(X2nι_^ι)
and the cohomology group. The rank (over Q) of £#(-¥) can be com-
puted as follows (cf. the proof of Theorem 5.4 [1]). Let pi stand for
the dimension of

Pi = r?iT±Q{H2n>-\X2nι_x_uπ2nι-X{X))) + Pι_x.

Therefore,

k

= pk = ^rank Q ( i/^- 1 (X2« / _ 1 -i;π 2 « / -i (X)))
1=2

k

(#>W/-i - rank e(π2 w /_i(X))).

Proof of the theorem. By the above proposition, %#(Xo) = the direct
sum of rationals. Thus g#(X)(0) = <§#(X(0)) is also an abelian group.
Recall that all torsion elements of a nilpotent subgroup form a normal
subgroup. Then the injectivity of rationalization,

r#(X)/torsion -+ (g#(X)/torsion)(0) = g#(X)i0),

implies that S#(X)/torsion is a free abelian group of the rank men-
tioned above (since we are assuming that X is of finite type, this group
is finitely genrated).

3. Further application.

EXAMPLE 3.1 Let Π be the collection of all primes. We see that
g#(SO(6))(Π-2) = £#(SU(4))(π_2). Let us denote this group by G. Then
G = Gτ(3) x Z5x Z5 and G^) has the following presentation (cf. [11]).

G(3) = (a, b, c\a9, b\ c\ [a, b], [a, c], [b, c]α"3).

Proof. SO(6) ~ p Spin(6) = SU(4) for an odd prime p, where ~p

denotes the p-equivalence. Due to this equivalence a half part of the
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Example 3.1 is obvious. To determine the group structure we recall
the following theorem.

THEOREM (SIERADSKI, THEOREM 4, COROLLARY 8, [14]). Let X and
Y be homotopy associative H-spaces. If the homotopy set [AvB,AΛB]
is trivial, then there is a short exact sequence of multiplicative groups.

(3.2) l^[XΛY,XxY]q-±l %{X x Y) - GL(2,Λ7/) -> 1,

where q:X xY —• X AY is the projection, for AJJ see [14].

The group structure. Let us denote Π - 2 by /. There is another
/-equivalence: SO(6) ~/ SO(5) x S5. We first investigate the group
<8?(SO(5)(/) xS(5/Λ As it is well known, SO(5)(/) is homotopy equivalent

to Sp(2)(/). (SO(5) Λ S5)(l) ~ (Sp(2) Λ S5){1) ~ (S 8 U en V S 1 5) ( / ),
the triviality of the attaching map of the top cell is due to Lemma
2.1, (ϋ), [7]. We use this cell structure to obtain (i) [(SO(5) v5 5 ) ( / ) )

(SO(5)ΛS5)(/)] = 0, (ii) [SO(5)(/),5(

5

/}] = 0 = [5(

5

/)f SO(5)(/)]. Therefore

(3.2) (X = SO(5)(/), Y = S^)9 its restriction, has the following form.

(3.3) 0 - [(S* Ue12) v515,Sp(2)(/) x Sfa -> «(SO(6)(/)) - g;(15)(Sp(2))) ( / ) - , 1.

The left-hand side term of this sequence is isomorphic to Z9 θ Z4 5.
Let us consider the 3-component. First we recall the result of [12].
Let λ be the map which is introduced in [12] (§1, 1.2):

λ:π lo(Sp(2))-+gr(Sp(2)).

Then a generator of g#(Sp(2))(3) (= g#(SO(5))(3)) = Z3 can be rep-
resented by A(/α2), where i:S3 —• Sp(2) is the inclusion and c*2 €
πio(5'3)(3) = Z3 is the generator [15]. Using the group structure of
Sp(2), λ(ia2) has the other description 1 + iaiP (Corollary 2.2, [8]),
where p is the collapsing map to the top cell. The only nontrivial
homotopy group π/(Sp(2))(3), 10 < z < 15, is πi4(Sp(2))(3) = Z3 and
its generator is zα3(3) [9], where α3(3) e 7ri4(*S3)(3) = Z3, is the gener-
ator. Since (1 + zα2p)(zα3(3)) = zα3(3) it follows that <r#

15(Sp(2))(3) =
%(Sp(2))(3). Similarly, ir#

15(Sp(2))(5) = %(Sp(2))(5).

A generator of the summand Z9 = (Z4 5)(3 ) on the left-hand side of
(3.3) may be given by:

S 8 ue12 VS15 - U 5 8 ue12 ^ S5 M SO(5) x S5,
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where r is the retraction and άi stands for the extension of αj G
πs(S5)(3) = Z$ is the generator, j is the natural inclusion. The com-
position,

(3.4) (λ(-α 2) x 1)(1 + q*(j&ir))(λ(a2) x 1) e r(Sp(2) x S5)

is homotopic to (λ(-α 2) x l)(λ(α2) x 1 + C/άir)0Wα2) x !))•
(yάir)^(λ(α2) x 1) can be easily seen to be (j&\r)(λ(a2) Λ 1). By

the definition of λ, λ(a2) Λ 1 is homotopic to 1 + Σ5(ia2p). Hence
{jά\r)(λ(a2) Λ 1) = jά\r + jaιΣ5(a2p). Hence (3.4) is equal to 1 +
q*U"\r + J(*iΣ5(<*2P)). At π 1 5 (5 5 ) , αi<*2 = —3^(5) [15], p. 180. The
analogous argument permits us to show that the (1 + ##)-image of the
other Z9-summand commutes with λ(a2) x 1.

Put c = λ(-α2) x 1, b = 1 + q*{j{-ax{r)\ α = 1 + q*jβ{(5)(Σ5p).
These imply the assertion on the group structure of G^y Since we
see easily that the 5-components have no non-trivial extensions, we
complete the proof.
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