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Let .# be a semifinite factor. For normal operators x and y in
A , introducing the spectral distance J(x,y), we show that 6(x,y) >
dist(Z (x),#Z (y)) > ¢~ '(x,y) with a universal constant ¢, where
dist(Z (x),Z (y)) denotes the distance between the unitary orbits
% (x) and Z (y). The equality dist(% (x), % (y)) = d(x,y) holds
in several cases. Submajorizations are established concerning the
spectral scales of 7-measurable selfadjoint operators affiliated with
A . Using these submajorizations, we obtain the formulas of L?-
distance and anti-L”-distance between unitary orbits of T-measurable
selfadjoint operators in terms of their spectral scales. Furthermore
the formulas of those distances in Haagerup L”-spaces are obtained
when .# is a type III, factor. The appendix by H. Kosaki is the
generalized Powers-Stermer inequality in Haagerup L”-spaces.

Introduction. It is an interesting problem in matrix theory to esti-
mate distances between unitary orbits of matrices by their eigenval-
ues. Let 4 and B be n x n normal matrices whose eigenvalues are
ay,...,on and By,..., B,, respectively, with multiplicities counted.
Let dist(%(A4), % (B)) denote the distance between the unitary orbits
% (A) and #Z(B). The optimal matching distance between the eigen-
values of 4 and B is given by

6(4, B) = minmax |a; — B,
/4 i

where 7 runs over all permutations of {1,...,n}. Then
dist(%(A),#(B)) < 6(4, B)
is immediate. Bhatia, Davis and McIntosh [9] proved that
dist(%(A),%(B)) > c"'6(4, B)

with a universal constant c¢. A difficult and still open conjecture is that
dist(Z(A),#Z(B)) = d(A, B) holds for every pair of normal matrices
A and B (i.e. ¢ = 1). But this equality was proved to hold for several
classes of normal matrices (see [7, 10, 21, 41, 45]). The analogous
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results were obtained also in the infinite dimensional case by intro-
ducing the spectral distance d(A, B) for normal operators 4 and B on
a Hilbert space (see [6, 14]).

From the viewpoint of von Neumann algebras, the results stated
above are concerned with the case of factors of type I. The aim of this
paper is to study distances between unitary orbits of operators in more
general von Neumann algebras. In most results of this paper except
85, # is a semifinite factor. Let .# be a semifinite von Neumann
algebra with a fixed faithful normal semifinite trace 7. Let Z be the
set of all unitaries in .# and %/(x) the unitary orbit {uxu*: u € %}
of x € #. In §1 of this paper, for normal operators x and y in .Z,
we introduce the spectral distance J(x,y) by comparing the traces
of spectral projections of x and y. This Jd(x,y) extends the optimal
matching distance given above for normal matrices. When .# is a
o-finite semifinite factor, we show that

d(x,y) > dist(# (x),%(y)) > ¢~ 'd(x,)

for all normal elements x,y € .# where c is a universal constant given
in [9]. As was shown in [14] for the type I case, this second inequality
is an immediate consequence of a powerful result of [9]. On the other
hand, we give a variant of the marriage theorem in order to prove the
first inequality. Section 1 contains also a result on distances between
unitary orbits in the type III case. In §2, we establish the equality
dist(Z(x), % (y)) = d(x,y) for several classes of x and y corresponding
to the known classes of matrices.

Several (sub)majorizations are known for the eigenvalues and the
singular values of matrices. The Lidskii-Wielandt theorem is espe-
cially famous and important, which gives a useful device in deriving
various norm inequalities for matrices. See [1, 31, 32] for majoriza-
tion theory on matrices and compact operators. The noncommutative
integration theory (in the semifinite case) was founded in [15, 39, 44].
The concept of 7-measurable operators introduced in [34] gives a nice
foundation of noncommutative L?-spaces L?(.#). The majorization
theory in semifinite von Neumann algebras was recently developed in
[22-24, 26, 27, 33] by using the notion of generalized s-numbers or
spectral scales of 7-measurable operators. In particular, we have gen-
eralized in [24] the Lidskii-Wielandt theorem to the majorizations for
the spectral scales of selfadjoint operators in the space L!(.#) when
7(1) < o0.

We denote by .Z,, the set of all t-measurable selfadjoint operators
affiliated with .#. When 7(1) < oo, for x € .#, with the spectral
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decomposition x = ff°°°sdes, the spectral scale A(x) of x is the func-
tion on (0,7(1)) defined by A,(x) = inf{s € R: 7(e*) < t} where
e;- = 1 —e;. When 7(1) = oo, we define the spectral scale of x € .Z,
in some modification. In §3, for x,y € .#, when 7(1) < oo, working
on the majorizations in [24] we show that |A(x) — A(y)| is subma-
jorized by |A(x — »)| and the latter is submajorized by |A(x) — A(y)]
where A(y) = —A(—y). In §4, by use of these submajorizations and
the notion of spectral equivalence, we obtain the following formulas
of LP-distance and anti-L”-distance between unitary orbits: when .#
is a finite factor, for x,y € #, and 1 < p < 00

;g; lx — uyu*||, = |A(x) = AW)llp,
sup [|x — uyu*(, = |A(x) — A()|l,-
UEwY

When .# is infinite semifinite, the analogous submajorizations and
LP-distances of unitary orbits are obtained for x and y in a certain
subclass of .4, with the modified spectral scales. Furthermore those
LP-distances for 7-measurable selfadjoint x and skew-adjoint y are
estimated in terms of their spectral scales by the majorization method
of [3].

Finally in §5, we discuss distances between unitary orbits in
Haagerup LP-spaces L?(.#) introduced in [19] (also [42]). When .# is
a factor of type III;, we exactly estimate the L”-distance and the anti-
LP-distance between unitary orbits of selfadjoint elements in L?(.#)
by using the homogeneity of type III; factors [13] and the general-
ized Powers-Stermer inequality by H. Kosaki. Also, when .# is an
arbitrary infinite factor, the formulas of LP-distances are obtained for
some special classes of elements in LP(.#).

This paper contains the appendix by H. Kosaki where the Powers-
Stermer inequality is generalized to positive elements in Haagerup
LP-spaces. For this sake, his appendix also generalizes an inequality
due to Ando [2] as follows:

/ Cui(f(@) - F(b))dt < / " uu(f(la - b)) de
0 0
- /0 flula—b)dt, s3>0,

for positive 7-measurable operators a, b affiliated with a semifinite von
Neumann algebra, where u;(-) denotes the generalized s-number and
f is any operator monotone function on [0, c0) with f(0) = 0. This
inequality is of considerable importance in majorization theory.
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1. Distance between unitary orbits of normal operators. Let .Z# be
a von Neumann algebra on a Hilbert space # and % the set of all
unitaries in .#. For each x € #, we denote by Z(x) the unitary orbit
{uxu*: u € %} of x and by o(x) the spectrum of x. For x,y € .#, let
dist(%(x), % (y)) be the distance between Z(x) and % (y), i.e.

dist(# (x), % (v)) = inf |lx —uyu’[,

and 4(o(x),o(y)) the Hausdorff distance between o (x) and (), i.e.

h(o(x),a(y)) =max{ sup dist(a,a(y)), sup dist(ﬂ,a(x))}.
a€o(x) Bea(y)
It is known (see [14, Proposition 2.1]) that if x and y are normal
operators in .#, then

dist(# (x),#(y)) 2 h(a(x),a(y)).

In what follows except in §5, unless otherwise stated, let .# be a
semifinite von Neumann algebra with a faithful normal semifinite
trace 7. For a normal operator x in .# and a Borel subset £ of C,
let ex(x) denote the spectral projection of x corresponding to E. Also
let E, = {a € C: dist(a,E) < r} for r > 0 (&, = &). Given two nor-
mal elements x,y € .#, we now define the spectral distance 6(x,y) as
follows: d(x,y) is the infimum of r > 0 such that 7(ey(x)) < t(ey,(y))
and 7(ey(y)) < t(ey,(x)) for every open subset V' of C. In particular
when .# is the algebra M,, of all n x n complex matrices, it follows
from the marriage theorem [20] that d(x, y) coincides with the optimal
matching distance, that is,

d(x,y) = min max loi = Br(i)l

where ay,...,a, and By,..., B, are the eigenvalues of x and y, respec-
tively, with multiplicities counted and n runs over all permutations of
{1,...,n}.

The purpose of this section is to estimate dist(%(x),#(y)) in terms
of 6(x,y) for normal elements x,y € .#. We begin with the following
theorem which can be shown as in the proof of [14, Theorem 2.4] by
appealing to [9, Theorem 4.2].

THEOREM 1.1. If x and y are normal operators in #, then

dist(% (x), % (v)) > ¢ 'd(x,)
where ¢ is a universal constant.
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For ¢ in the theorem, an upper bound given in [8] is
/4
(n/z)/ t~'sin tdt (< 2.91)
0

which is at present the best estimate even when .Z = M,,.
To obtain the converse estimation, we need the next lemma which
is a variant of the marriage theorem.

LeEmMA 1.2. Let{a,,...,am} and{by,..., by} be finite sets in [0, co]
and R a subset of {1,...,m} x {1,...,n}. Consider the following con-
ditions (1) and (2):

(1) Yjeqai < ZjeRA b; for every A C {1,...,m} where Ry =
U,‘eARi,Rz ={:(i,)) € R},

(2) Tjepbi < Yicroai for every B C {1,...,n} where RF =
Ujes R, R = {i: (i,j) € R}.

If both (1) and (2) hold, or if (1) holds and 3"72 a; = Y7 b;
< 0o, then there exist c;j € [0,00],1 <7< m, 1 <j < n, such that

(1) ¢;j = 0 unless (i,j) € R,
(11) ;-1:1 Cij = 4 for all i,

(lll) Z:’;[ Cij = bj for all]

Furthermore if all a; and b; are in {0,1,2,...,00}, then all c;; are
taken in {0,1,2,...,00}.

Proof. First assume (1) alone and show the existence of ¢;; € [0, 00]
satisfying (i), (i1) and

(111’) eril Cij < bj for all Jj-
For any i with a; = oo, there is a j; € R; with b;, = oo, so let ¢;j, = o
and ¢;; = 0 for j # j;. Moreover, for any / with a; = 0, let ¢;; = 0
for all j. Hence it suffices to consider the case when a; € (0,0)
for all i. In this case, removing b; = 0 and replacing b; = oo by a
number large enough, we may assume also that b; € (0,00) for all
J. For each sufficiently large natural number N, let k; (resp. /;) be
the largest (resp. smallest) natural number such that k;/N < a; (resp.
[;/N > bj). Take mutually disjoint sets .«4,...,%, and Z,,...,%,
with %] = k; and |%j| = [; where | - | denotes the cardinality. Let
o =UL, %, B = U]~ % and # be the set of all (o, f) € 4 x By
such that o € 4 and B € %; for some (i,j) € R. For every &/ C .,
letting A = {i: &/ N« # J}, we have

|M|SZki_<_NZa,-§NijSle‘—-lﬁ”{l

€A €A JERA JERA
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since #Y = Ujer+%j- Hence, by the usual marriage theorem [20],
there exists an injective map ®: o — %) such that (a, ®(a)) € # for
all o € o4. Define

eV =N"oes: (0, D) e xF}, 1<i<m,1<j<n

Then c,(JN) = 0 unless (i,j) € R,E}’zlcgv) = k;/N and 37, ¢V <

=16 =
lj/N. Since 3, ; cgv) < ¥, a; < oo, we can choose a cluster point
(cij) of a sequence {(c’g}v ))} in R™" which satisfies (i), (ii), and (iii’).
If /2, a;i = 3.1 bj < oo, then the above (c;;) automatically satis-
fies (iii) because Y°7_; (3512, ¢ij) = 2oj=1 b < co. Now assume (2) as
well. Let 4y = {i: a; < oo} and

By={j: bj < oo and a; < oo for all i € R'}.

Denote by T the set of all (d;;: i € Ag,1 < j < n) in RHel" such that
d,’j > O,dij = 0 unless (i,j) € Rst";l d,’j = q; for all i € Ay and
>iea, dij < bj forall 1 <j < n. Because I' is a bounded closed subset
of RMol” which is nonempty from the first argument, we can choose a
(cij) €T such that

> Zc;j=sup{z > dy: (d,,-)er}.

i€Ay jE€By i€Ay jEB

Suppose ) _;c 4, Cijo < bj, for some jo € By. Since RBo C 4, we get

n
DD o<y by a=313 ey
i€Ay jEBy Jj€By i€, i€, j=1
so that ¢;,;; > 0 for some iy € 4p and jy ¢ By. If ¢, = ¢jyj, + ¢ and
Ciyjy = Cigjy — ¢ With a sufficiently small ¢ > 0 and if ¢;; = ¢;; for other
(i,)), then (¢;) € I'. This is a contradiction, so that }_,., ¢;j = b;
for all j € By. For any i ¢ A, there is a j; € R; with b;, = oo, so let
¢ij, = oo. For any j ¢ By, there is an i} € R/\ 4y with a;, = oo, so let
Cijj = bj - Zier Cij- Finally let Cij = 0 for other (i,j) with i ¢ A4y and
1 < j < n. Thus we obtain ¢;; satisfying (i)-(iii).
The last part of the lemma is readily seen from the above proof. O

THEOREM 1.3. Assume that # is a finite factor or # is nonatomic
with t(1) < co. If x and y are normal operators in A, then d(x,y) is
equal to the infimum of r > 0 such that t(ey(x)) < t(ey,(y)) for every
open set V C C.
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Proof. For normal elements x,y € #, let dp(x,y) be the infimum
given in the theorem. Obviously dyg(x,y) < d(x,y). It is immediate
that dy(x, y) as well as d(x, ) satisfies the triangle inequality. For any
¢ > 0, take normal operators x’ and y’ in .# with finite spectra such
that |x' — x|| < ¢ and ||y’ — y|| < &. Then

do(x', ") < Jo(x', x) + do(x,¥) + o(¥,¥') < do(x,y) + 2ce
by Theorem 1.1, and similarly
O(x,y) <d(x',y") + 2ce.

Let r > do(x',y"). Writing x' = 37", e;p; and y' = 377, B;q; where

imiPi = >_1q; = 1, we define a; = 1(p;),b; = 1(¢g;) and R =
{(i,j): |a; — B;| < r}. Then (1) in Lemma 1.2 holds and } 7", a; =
Zj'-’zl bj < co. By Lemma 1.2, there are ¢;; € [0,00), 1 <i<m,1 <
J < n, satisfying (i)-(iii). When .# = M,, (with the usual trace 7),
all ¢;; are integers. Otherwise .# is nonatomic. In either case, p;
and g; are divided into mutually orthogonal projections as follows:
Di = Zj'-'zlp,j and g = Z;ilqij with ‘l'(p,'j) = T(q,'j) = Cjj. Hence
x'= 3, b,y = 3 Bjay and |a; — B;| < rif p; # 0. This
shows d(x’,y’) < r. Thus 6(x’',y') < dy(x',)'), so that d(x,y) <
do(x,y) + 4ce, implying d(x,y) = dp(x,p). m

THEOREM 1.4. Assume that # is a o-finite semifinite factor. Then
dist(% (x), % (y)) < d(x,»)
for every pair of normal operators x,y € #.

Proof. For any ¢ > 0, take x' = 3277, o;p; and y' = 3°7_, B;g; as
in the proof of Theorem 1.3. Let r > 6(x’,y’). Then (1) and (2) in
Lemma 1.2 hold for a; = t(p;), b; = ©(g;) and R = {(i,j): |a; — Bj| <
r}. Hence, using Lemma 1.2 and arguing as in the proof of Theorem
1.3, we can write x' =}, ;a;p;; and y' = 3, ; B;q;; where 7(p;;) =
7(q;;) and |a; — ;| < r if p;; # 0. It follows from the assumption of
# that p;; ~ g;; in the Murray-von Neumann sense for all (i,;). So
there exists a v € Z such that p;; = ug;;u* for all (i,;) and hence

> (i = By)pij
iy

implying dist(#(x'), #(y')) < d(x’,y'). Therefore
dist(Z (x),#(y)) < dist(Z(x"), % (")) + 2¢
<d(x",y)+2e<d(x,y)+2ce + 2
by Theorem 1.1, so that we get the desired inequality. O

Ix" = uy'u*|| = <r,
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In Theorem 1.4, the assumption of o-finiteness of .# cannot be
removed. For instance, let .# = B(#%), the algebra of all bounded
operators on #. When /# is not separable, there are projections p
and ¢ in .# such that d(p,q) = 0 but dist(Z(p),%(q)) = 1.

The next theorem asserts that the computation of dist(%(x), % (»))
is very simple in the purely infinite case. For normal elements x,y €
A , the Hausdorff distance #(o(x), o(y)) is nothing but d(x,y) where
7(0) = 0 and 7(e) = oo for each nonzero projection e in .Z.

THEOREM 1.5. Assume that # is a a-finite factor of type 111. Then
dist(# (x), % (y)) = h(a(x),0(y))

for every pair of normal operators x,y € #.

Proof. Since dist(Z(x),#(y)) > h(o(x),0(y)) as noted in the be-
ginning of this section, we need to show the converse inequality.
Given ¢ > 0, there are normal operators x’,)y’ € .# with finite spec-
tra such that ||x' — x|| < ¢,h(0(x"),0(x)) < &,y —y|| < ¢ and
h(a(y"),0(y)) < &. Writing x' = 37", a;p; and y' = 3°7_ | B;q; where

m\Di= Y i=19i = 1,p; # 0 and g; # 0, we choose k(1),...,k(m)
and /(1),...,I(n) so that

| = Byl = 12112 lo; = Bjl, 1<i<m,
loug) = Bl = min lay = fjl,  1<j<n,

and divide p; and g; into nonzero projections as follows:
=pi+ ) p,", 1<i<m,
J )=

+ ) 4, 1<jsn
i k()=j

Then
m n m n
=Y aipj+ Y appl, V=Y Bodl + ) Bid)-
i=1 j=1 i=1 j=1
From the assumption of ./Z, there exists a u € Z such that p} = uqj'u
for all i and p]’.’ = qu’.u* for all j. Hence

x' —uy'u*|| = max{ ma i — Brnl, m N — Bi
I = /) = ma { max o ~ B max leugy = B}

=h(o(x'),0(y"),
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so that
dist(# (x), % (y)) < dist(Z (x), % (y")) + 2¢
< h(a(x),a(y)) + 4e. ]
Besides dist(%(x),#(y)), the anti-distance sup,cy ||X — uyu*|| be-
tween Z(x) and Z(y) is of some interest. Concerning this, it was
shown in [4] that

sgg |x —uyu*|| < \/imax{la —Bl:aco(x), Bea(y)}

for every pair of normal operators x and y in .# = B(#) (hence in an
arbitrary von Neumann algebra .#). The constant v/2 is best possible
even for 2 x 2 unitary matrices.

2. dist(Z(x),#(y)) = d(x,y) for several classes. The equality
dist(#(x),#(y)) = d(x,y) is known to hold for several classes of
normal matrices, while it is still open as a long-standing conjecture
whether this remains true for all normal matrices. The equality for
Hermitian matrices is a classical result of Weyl [45]. See [41] for Her-
mitian and skew-Hermitian matrices. The equality was established
in [7] (also [21]) for unitary matrices and in [10] for scalar multiples
of unitary matrices. Furthermore the analogous equality holds for
corresponding classes of operators in case of .# = B(#) (see [6, 14]).

The next theorem extends the above results to the general semifinite
case. For a normal operator x in ./Z, let g(x) be the set of all a € g (x)
such that t(ep )(x)) < oo for some r > 0, where D,(«) is the open
disk of center o and radius r. When £ = B(#),0(x)\os(x) is the
essential spectrum of x.

THEOREM 2.1. Assume that # is a o-finite semifinite factor. Then
the equality

dist(% (x), % (y)) = d(x,¥)

holds for every pair of normal operators x,y € # satisfying one of the
Jollowing conditions:

(1) x and y are commuting,

(2) 0/(x) =@ or o,(y) = @,

(3) a(x) and o(y) are included in parallel straight lines Ly and Ly re-
spectively (in particular, x and y are selfadjoint operators plus scalars),

(4) o(x) and a(y) are included in perpendicular straight lines L, and
L, respectively (in particular, x is selfadjoint and y is skew-adjoint),
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(5) a(x) and a(y) are included in cocentric circles C and C), respec-
tively (in particular, x and y are scalar multiples of unitaries).

Proof. 1t suffices by Theorem 1.4 to prove the inequality ||x — y|| >
o(x,y). We may assume J(x,y) > 0. In the following proof of this
inequality, .# may be an arbitrary semifinite von Neumann algebra.

Case (1) can be shown as [14, Proposition 2.3].

Case (2). Assume o,(x) = @. Let 0 < r < J(x,y). Then there is
an open set V' C C such that either 7(ey(x)) > t(ey (y)) or t(ey(y)) >
7(ey(x)). When t(ey(x)) > t(ey,(y)), taking y € V' No(x) and € > 0
with Dg(y) € V, we have by g,(x) =2

T(ep, () (x)) = 00 > 1(ey,(y)) 2 ©ep,,,(»(¥))-

Hence ep,(,)(x) Aep,,,;)(¥)* # 0. Taking a unit vector ¢ in the range
of this nonzero projection, we get

lx =y =1y =2Xl=I(x=»)Xl=(E+r)—e=r

When t(ep(y)) > t(ey,(x)), since V Na(y) # @ and V,Nao(x) =
by o/(x) = @, it follows that ||x — y|| > h(a(x),a(y)) > r. Thus
|x = yll = d(x,p).

Case (3). Multiplying x and y by a nonzero scalar, we may assume
that L, and L, are parallel to the real line. For two points o and
o on Ly (or Ly), the open interval on Ly (or Ly) with end points «
and o' is denoted by (a,o’). Here let (a,a’) = & unless o is on the
right-side of a. We first show that d(x,y) is equal to the infimum of
r > 0 such that 7(e;(x)) < t(e; (y)) for every bounded open interval
I on Ly and 1(e;(y)) < t(ey,(x)) for every bounded open interval J
on L,. Let d be this infimum and dj, the distance between L, and
L,. Then it is immediately seen that dy < d < 6(x,y). So we need
to check that if r > dy and 1(e;(x)) < (e;(y)) for every bounded
open interval I on L,, then t(ey(x)) < t(ey,(y)) for every open set
V' C C. For any bounded open set V' C C, ¥, N L, is the disjoint
countable union of open intervals J, = (8n, f),). Let a, (resp. a},) be
the right-hand (resp. left-hand) point of two intersections of L, with
Ci(pn) (resp. C,(8;)), where C.(y) denotes the circle of center y and
radius . Define I, = (ay,a}). Then VNL, CJ, I,. In fact, for each
y€VNL,,let f and B’ be two intersections of L, with C,(y). Since
(B,B)CV,nLy,(B,p) is included in some J,, so y € I,. Moreover
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the I, are mutually disjoint and (1), N L, C J, by definition. Hence
z(ey(x)) <Y (e, (x) < Y tleq,), ()
n n

< 3 1(es, ) = Tlen, ).

Thus d(x,y) = d is verified.

Now suppose ||x — y|| < §(x,») on the contrary and let ||x — y|| <
r < é(x,y). By the fact shown above, we assume without loss of
generality that t(e;(x)) > 7(e; (y)) for some open interval I = (a, )
on L,. Since

do < h(a(x),0(»)) <|lx -yl <r,

I, N Ly is an open interval (8, B') and the length of af (also o/ ') is
r (af denotes the line segment joining o and #). When L, = Ly, let
y be the midpoint of ao/. Otherwise the lines aff and o/ 8’ meet at
some . Let s be the length of 7a (also yao/). Then

I C Dy(y), (Ly\Iy) N Dy, (y) = @.
Taking a unit vector & in the range of e;(x) A ey (y)*, we get

Ix =yl 21 =2XlIl=lI(x=2XIl=(+r)-s=r,
a contradiction.

Case (4). Transforming x and y by a linear function, we may as-
sume that x is selfadjoint and y is skew-adjoint. Let d be the infimum
of r > 0 such that forevery 0 <s<r

(1) t(egs,00)(1X1)) < (egg \m=53) (I¥]),

(if) (e o0 (VD) < (e, ey (XD).

Given r > 0, suppose that the above (i) holds for every 0 < s < r.
Letting s = r, we get 7(e, «)(|x|)) = 0. For any open set V' C C,
let s = inf{|¢t|]: t € VN R}. When s > r,t(ey(x)) = 0 < 1(ep,(»))-
Otherwise we have

7(ey (x)) < t(egs,00)(1X1))
< 1(9[0,\/r2_—52)(|y|)) < t(ey,(»))

since i(—Vr?2 —s2,V/r2—s2) C V,niR. Conversely suppose that
1(ey(x)) < 1(ey,(y)) for every open set ¥ C C. For each ¢t > r and
0 < s <t, there is an open set V' C C such that

VﬁRQ (—OO,—S]U[S,OO),
V,NiRCi(—V12 = s2, V12 — 52),
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and hence

7(€fs5,00)(|X])) < T(er (X))
< (e, (v) < (e, vz=s)(I¥])-

Together with the same argument where x and y are exchanged, we
obtain d(x,y) =d.

Now let 0 < r < d(x,y). Then there exists an s € [0, r] for which
either (i) or (ii) above is violated. If (i) is false, then a unit vector
¢ can be chosen in the range of ¢ ) (|x]) A € /7= .00)(IV]). So, as in
[41], we have by (x —y)*=x+y

o =12 = 4l = 1P + 1+ ¥I2)

> S {l0e = Y1 + llGx + Iy
= X1 + I8P 2 52+ (2 = 57) =12,
implying |x —y|| > 6(x,y).

Case (5). This will be proved in a manner analogous to the case
(3). Moreover it should be noted that the idea of proof is essentially
the same as that used in [21] for unitary matrices. For a,a’ € Cy
(or Cy), the open arc joining o and o' counter-clockwise on Cy (or
Cy) is denoted by (a,co’). Let d be the infimum of r > 0 such that
7(e;(x)) < t(er (y)) for every open arc I on Cy and 7(e;(y)) < t(e;.(x))
for every open arc J on C,. Alsoletdy = |rx —r|and dy =ry +71,
where r, and ry, are the radii of Cx and C), respectively. Then it
is immediate that dy < d < d(x,y) < d;. To show d(x,y) = d, it
suffices to check that if dy < r < d; and 7(e;(x)) < t(e; (¥)) for every
open arc I on Cy, then t(ey(x)) < t(ey,(y)) for every open set V' C C.
For any open set V' C C,V, N C, is the disjoint countable union of
open arcs J, = (B4, ;). Let a, (resp. o)) be the end point (resp.
start point) of the arc on C, which joins two intersections of C, with
Cy(By) (resp. C,(B;,)) and lies on the side near S, (resp. f3,). Define
I, = (an,a),) if the segments a,f, and o}, B!, do not intersect, and
I, = & if they do. Then, as in case (3), VN Cx C U, I (disjoint
union) and (I,), N Cy C Jp, so that we get 7(ey(x)) < 7(ey.(y)). Thus
o(x,y)=d.

Now suppose that ||x — || < r < d(x,y) and so t(e;(x)) > t(e; ()
for some open arc I = (a,a’) on Cy. Since

do < h(a(x),0(y)) < llx -yl <r,
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I, N C, is an open arc (B, f') and the length of af (also o/f') is r.
Assume that the lines aff _End o' B’ meet at some p, and let s be the
shorter length of ya and y 8. Then either

I C Dy(y), (Cy\Ir) N Dsy,(7) =D,

or

INDsyr(7) =9, Cy\Ir C Dy(y).

In either cases, as in (3) we get ||x — y|| > r, a contradiction. When
the lines aff and o’ B’ are parallel, we have a contradiction as well by
taking a point y far enough on the line af. O

In the above proof, various new expressions of d(x,y) have been
given for cases (3)-(5) of Theorem 2.1. Those may be useful in the
computation of dist(%(x),Z(y)).

3. Submajorizations for spectral scales. A densely defined closed
operator x affiliated with .# is said to be 7-measurable if there is,
for each ¢ > 0, a projection e in .# such that e# C 2(x) and
7(el) < &. We denote by .# the set of all t-measurable operators
affiliated with .#, which becomes a complete Hausdorff topological
s-algebra in the measure topology (see [34, 42]). For each x € ./
and 0 < p < oo, the LP-(quasi-)norm ||x||, (€ [0, 00]) of x is defined
by ||x|l, = =(|x|?)!/? when 0 < p < oo and x|l = ||x|. Then the
noncommutative LP-space LP(#) = LP(#;7) on (4 ,7) is given by
LP(#) = {x € #: ||x||, < c0}. When 1 < p < oo, LP(#) is a Ba-
nach space with the norm || - ||, (see [15, 34, 39, 46]). Moreover we
denote by & the set of all x € . such that 7(e; «)(|X])) < oo for
every s > 0. Then & is the closure of L?(.#) in the measure topology
where 0 < p < 0o. If 7(1) < o0, then & = .# which is the set of all
densely defined closed operators affiliated with .#. In particular when
M = B(#),LP(#) is the Schatten-von Neumann p-class and & is the
algebra of all compact operators on /#. For each subspace .# of .#,
the set of all selfadjoint (resp. positive selfadjoint) operators in . is
denoted by %, (resp. £ ).

For each x € .# and t > 0, the generalized s-number p;(x) is defined
by

s(x) = inf{s > 0: 1(e(5 00)(|X])) < 2}.
Denote simply by u(x) the function ¢ — u;(x) on (0, c0) into [0, c0).
A detailed exposition on generalized s-numbers is found in [17] (also
[35, 46]). When (1) < oo, for x € .#;, we define

A(x) = inf{s € R: 1(e(5,0)(X)) < 1}, O<t<t(l),
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and call it the spectral scale of x following [36]. Furthermore define
A(x) = —A(=x), i.e. A4(X) = Ayry—s—o(x) for 0 < ¢ < 7(1). The
function ¢ — A,(x) (resp. ¢ — A,/(x)) on (0, 7(1)) into R is denoted by
A(x) (resp. A(x)) which is non-increasing (resp. non-decreasing) and
right-continuous. Even when 7(1) is not necessarily finite, for x € .Z,
with the Jordan decomposition x = x; — x_, we define the functions
A(x) and A(x) on R into R as follows:

He(X4), t>0,
A(x)=<¢ 0, t=0,
—t(x2), t<O0,

— (x-), t>0,

A(x)=-4,(-x)={ 0, t=0,

U—i(xy), t<O.

An interval of R is considered as the measure space with Lebesgue
measure. For 0 < p < oo, we have ||x||, = ||u(x)||, for all x € .# and
Ixlly = Al (= A0l if (1) < oo) for all x € Azq (see [17, 24]).

In particular, let .# be commutative, that is, .# = L*°(Q) and
7(f) = [, fdm on a localizable measure space (2, m). Then M con-
sists of all measurable functions on Q bounded except on m-finite sets.
For a real measurable function f on Q, the decreasing rearrangement
f* of fis given by

fX(t) =inf{s e R: m({w € Q: f(w) > s}) <t}, 0<t<m(Q).

Then w,(f) = |f]*(¢) for every f € # and 0 < t < m(Q). When
m(Q) < 00, A(f) = f* for every real measurable function f on Q. In
this section, we shall discuss (sub)majorizations of functions relevant
to the spectral scales of 7-measurable selfadjoint operators. So we
define the notions of majorization and submajorization in the com-
mutative case (see [22-24] for the formulation and characterizations
of (sub)majorization in the noncommutative case). For nonnegative
measurable functions f and g on Q, fis said to be submajorized by
g, in notation f < g, if [J f*(¢)dt < fo &*(t)dt for all s € (0, m(Q)).

Furthermore, for real f,g € L!(Q) where m(Q) < oo, f is said to
be majorized by g, in notation f < g, if fo fr)de < fo g*(t)dt for
all x € (0,m(Q)) and [P ft)dt = [" g*(t) dt (ie. [, fdm =
Jo &dm). In the following discussions, (0 ‘C(l)) or R will be taken
as Q.
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Using the real interpolation method, we showed in [24] that if 7(1) <
oo and x,y € L1(#)s,, then

Ax) = A) < A(x =) < A(x) = A().

This is the extension of the Lidskii-Wielandt theorem on the eigenval-
ues of Hermitian matrices. By virtue of the above majorizations, we
shall establish the next theorem.

THEOREM 3.1. (1) If 1(1) < 00 and x,y € My,, then
A(x) = AW)| < 1A(x = »)| < JA(x) = A)].
(2) If t(1) = 00 and x,y € G, then
A(x) —A)| < A(x - )| < A(x) —AQ)].

We first give the following elementary lemma.

LemMMA 3.2. (1) If1(1) < oo and {x,} is a sequence in .#;, converging
to x € My in the measure topology, then A,(x) = limp_ A:(x,) for
every t € (0,7(1)) at which A(x) is continuous.

(2) For every x € Msa, u(x) = Ax)[* (= |A(x)[* if (1) < 00).

Proof. (1) It follows as [17, Lemma 2.5(v)] that if y, z € .#,, and
s,t,s+te(0,7(1)), then
Asyi(V + 2) S As(¥) + Ae(2).

Also A;(y) < u(p) for every y € 4, and t € (0,7(1)). Hence, for each
te€(0,7(1)) and ¢ > 0 with t £ ¢ € (0,7(1)), we have
Arye(X) < Ae(Xn) + He(X — Xn),
At(Xn) < Ar—e(X) + pe(x — Xn).
Since lim, o e(x — x,) = 0 (see [17, Lemma 3.1]), we get the asser-

tion letting n — oo and then & — 0 in the above.
(2) Denoting Lebesgue measure by m, we have for s > 0

m({t € R: A;(x)| > s})
=m({t > 0: py(xy) > s}) + m({t > 0: py(x-) > s})
= 7(e(s5,00)(1X]))

implying u(x) = |A(x)|*. When 7(1) < oo, also u(x) = |A(x)|* is easily
verified. O
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Proof of Theorem 3.1. (1) If x,y € L'(#);,, then the desired sub-
majorizations follow from the majorizations mentioned before Theo-
rem 3.1 and [11, Corollary 2.6]. Let x,y € .#,. We prove the first
submajorization. Unless A(x — y) € L'(0, (1)) or equivalently unless
x —y € L1(#), then there is nothing to do, because

S
/M(x—y)[*(t)dt:oo forall s > 0
0

(see [38, Lemma 2.2]). So assume x — y € L!(#) and choose
a sequence {x,} in L!(#);, converging to x in the measure topol-
ogy. Letting y, = x, — x + y, we have {y,} in L!(#),, converging
to y in the measure topology. Using Lemma 3.1(1) twice, we get
Ai(Xn) — Ayn) — Adx) — A(y) and hence |A(xp) — A(yn)|* (1) —
|A(x) — A(y)|*(¢) for almost every ¢ € (0, 7(1)). Since |A(x,) — A(yn)] <
|A(x — y)| for all n, the desired submajorization follows from Fatou’s
lemma.

To show the second submajorization, assume A(x) — A(y) €
L'(0,7(1)). Then both A(x) and A(y) are in L!(0, 7(1)), because A(x)
is non-increasing while A(y) is non-decreasing. Hence x,y € L!(.#),
so the conclusion is already verified.

(2) For n 2 1, let Xy = xe(1/n,00)(|X|) and yn = ye(1/n,00)(|y]). Note
that ||u(z1) — u(z2)|lo < |21 — 22||eo for all zy, z, € # (see the proof

of [17, Proposition 2.7]). By Lemma 3.2(2), we have
11A(xn = yu)I* = IA(x = ¥)I*llo
= l(xn = yn) = u(x = )lloo < 1(Xn = ¥n) = (x = ¥)lloo < 2/,
since ||x, — X||ooc < 1/n and ||y, — Y||ec < 1/n. Also
IA(xn) —AWn)|" — IA(x) —A)[*[|oo
< 1@(xn) —A(y ))—(1(X)—1(y))|loo <2/n,

since [|A(x,) —A(x)|loo < 1/n and |A(¥n) —4(¥)|lo < 1/n. Similarly

1A(xn) = A(yn)I* — A(xX) = A@)[*lloo < 2/n.
Because r(e(l/,,,oo)(|x|)) < oo and r(e(l/,,’oo)(lyl)) < oo from x,y € &,
we can choose a projection e (depending on ») in .# so that

€(1/n,00)(IX]) V €1 /n,00)(I¥]) < e,

27(e(1/n,00)(1X]) V €(1/n,00)(I¥])) < T(€) < 00.

Since x,,y, € (#.);,, the assertion (1) implies that

[A(xn) = A(¥n)l < |A(xn = yn)| < |A(xn) —Z(J"n)l
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where A(x,) and others are defined on (0, 7(e)). By Lemma 3.2(2),

A(xn — yn)|*(2) = te(Xn — yn)
{ [A(Xn —yu)l*(t), 0<t<1(e),

0, t> t(e).
Furthermore, noting that 4;(x,) = A:(y») = 0 at t = 7(e)/2, we have
[ A(Xn) = Ad(Vn), 0<t<1(e)/2,
Ai(xn) —2A:(yn) = | 'lr(e)—t—O(xn) —Are)-1—0(¥n), —1(€)/2<t<0,
. 0, otherwise,
( Ae(xn) = Ae(Vn), 0<t<1(e)/2,
A(xn) =Ai(Vn) = Ae(e)—1—0(Xn) = Aee)-1—0(n), —1(€)/2<t<0,
[ 0, otherwise,
so that

|A(xn) — Ayn)|* (1), 0<it<1(e),
0, t>1(e),
s o [ AGR) = An)*(), 0< i< 1(e),
W) - Aol = { N
These all together imply that
A(xn) —A(yn)| < 1Axn = yn)| < |A(Xn) —A(yn)|

for all n. Therefore we get the desired conclusion by passing to the
limit as n — oo. a

wM%anm={

REMARK 3.3. (1) In view of Lemma 3.2(2) and [40, p. 202], the
first submajorizations in (1) and (2) of Theorem 3.1 are described as
follows: for each Borel subset E of (0,7(1)),

m(E)
‘éuww—zdetsA w(x - y)dt,
and for each Borel subset £ and F of (0, 00),
/Eluz(m)—ﬂz(y+)ldt+/FI#z(X—)—ﬂz(y—)ldt

m(E)+m(F)
SA w(x — ) dt.

An analogous result was earlier given in [31, Theorem 5.1] for selfad-
joint compact operators in case of .# = B(%).
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(2) In [24], besides the majorizations before Theorem 3.1, we estab-
lished |u(x) — pu(y)| < u(x —y) forevery x € # and y € &. Restricted

to x,y € &, with 7(1) = oo, the first submajorization in Theorem
3.1(2) improves the above because

lu(x) = u)| = [Ax)" — RY)[|
< A(x) —A)[* < A(x = y)[* = u(x = p).

4. [P-distance between unitary orbits of selfadjoint operators. In this
section, we shall exactly estimate the L?-distance inf,cy ||x — uyu*||,
and the anti-L?-distance sup,cy ||x — uyu*||, for -measurable selfad-
joint operators x and y in terms of their spectral scales.

To state and prove our theorems on L?-distances, we here introduce
the notion of spectral equivalence between operators in &z,. Given
x,y € &,,, we say that x is spectrally equivalent to y, in notation x ~ y,
if 4,(x) = A4,(y) for all t € R. When (1) < oo, this is equivalent to
Ai(x) = A,(y) for all ¢ € (0, 7(1)).

LEMMA 4.1. Assume that # is a semifinite factor and x,y € Sy,. If
X = ), then there exists a sequence {u,} in % such that ||x —u,yu; |, —
Oforall1 <p< oo

Proof. For a countable partition A: 0 <---- <t , <t <ty<t; <
t < --- < oo of (0,00) where t_, — 0 and ¢, — oo as n — oo, define

* 00
A= Z tie(t'_"t’](x+)_ Z tie(t:—l,l:]('x—):

I=—00 I=—00
o0 o0
ya = Z tie(t,_,,t,](J’+)“ Z tie(t,_l,t,](y—)'
I=—00 I=—00

From x,y € &, it is easy to see that, for each ¢ > 0, there exists a
partition A as above for which ||xa — x||, < € and ||y, — »||, < &€ hold
for p=1,00. Let

pi=eq_ 1 1(X+)s  Pi =€ 11(X=),
q; = e(t,—l,l:](y+)s ql— = e(tl—l’t'](y—)'

Since x,y € &, and x ~ y, we have 7(p;) = 7(g;) < oo and 7(p;]) =
7(q¢;) < oo for all i. Therefore, since .# is a factor, p; ~ ¢; and
p; ~ q; in the Murray-von Neumann sense for all ;. First assume
that 7(e(g,00)(|X])) < 0co. Then ey (x) ~ ego3(¥) as well. So there exists
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a u € Z such that e;py(x) = uegoy(y)u*,p; = uq;u* and p; = ug; u*
for all i. Hence x; = uy,u*, implying

lx — uyu*|lp, < ||x — xallp + lya=»lp <26, p=1,00.

Next assume that 7(e( o) (]X|)) = co. We may assume without loss
of generahty that Z,__oo 7(p;) = co. Choose integers 0 > n; > m; >
ny > my > --- such that t,, < ¢&/2* and
1% Ry

Yoot <1< ), k=1

i=mi+1 i=my
Now we take projections p} and ¢q; in .# for i = —1,-2,... as follows.
Let p; =q;=0for n; <i<O0and ny <i<m,k>1. Letp,=p;
and g; = g; for my < i < my,k > 1. Then p), < ps, and q,, < gm,
can be taken so that

N ny

Yo=Y ta)=1, k=1

I=my I=my
This construction gives 7(p!) = 7(¢)), 7(Ci o 7)) = 1T o q)) =
00, || Zi’:‘_oo t;pillp < eand || Z;‘_oo tiqillp < € for p =1,00. Here note
that the above construction is valid in the type I case (i.e. # = B(#?)
with the canonical trace) as well as in the type II case. Defining

-1 -1

o0 o0
Xp=Xa— > tpj= Y ti(pi—p)+ Y _tipi— > tip;,

i=—00 i=—00 i=0 i=—00

-1 -1 () 00
Va=ya— Y tgi= Y, t(@i—d)+>_tgi— Y, tgq;,

i=—o00 i=—00 i=0 i=—o00

we get ||x} — x|, < 2¢ and ||y, — ||, < 2¢ forp = 1,00. Because
pi—-Pi~q —q fori=-1,-2,... and

-1
eqoy(x Z pi~eqy»)+ > 4,

i=—00 i=—00

there exists a u € # such that x, = uy,u* and hence ||x — uyu*|, <
4e,p = 1,00. The above assertion shows that there is a sequence {u,}
in Z such that ||x — u,yu}|, — 0,p = 1,00. Since

1-1 1
1 = unptil|lp < 1% = unyuslloo 7 |Ix — wnyuzll}/’? =0, 1<p<oo,

the lemma is proved. o
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REMARK 4.2. Let .# be a semifinite factor and x,y € &,,. Then
x ~ y if and only if x is in the closure of Z(y) in the measure topology.
In fact, if the latter holds, then it follows from [43] that x (resp. x_) is
in the closure of Z(y,) (resp. Z(y-)) in the measure topology. Hence
X ~ y by [22, Theorem 3.4(1)]. The converse is obvious from Lemma
4.1. Moreover, by [29, Theorem 4.4] (also [43]) and [22, Theorem
3.4(2)),if y € LP(#) where 1 < p < oo, then x ~ y if and only if x is
in the || - ||,-closure of Z ().

We are now in a position to obtain the theorems.
THEOREM 4.3. Assume that # is a finite factor. If x,y € My, then
for 1 <p<oo
inf lx = wya [l = 1A(x) = 20l
sup [|lx — uyu*||, = [|A(x) — AW)llp-
UE

Furthermore there exist y',y" € My, such that y' ~ y,y" ~ y,

Ix = ¥llp = IIA(x) = A)llp and ||lx = y"ll, = IA(x) = Al for all
1 <p<oo

Proof. For 1 < p < oo, because 4 — A? is an increasing convex
function on [0, 00), by Theorem 3.1(1) and [38, Theorem 3.1] we have

A(x) = AP < [A(x = )P < JAx) = )P,

so that
14(x) = AWl < lIx = yllp < 11A(X) = AW)lp-
The above inequalities are valid also for p = oo by Theorem 3.1(1).
Since A(y) = A(uyu*) and A(y) = A(uyu*) forue 7,
inf ix = w2 JA0x) = 20l
sup [lx — uyu*|l, < [A0x) — AW)llp-
UE?

In the following, assume that .# is a factor of type II; and 7(1) = 1
(the theorem is well known when .# = M,). Let x = [ sdes be
the spectral decomposition of x (i.€. &5 = ¢(_ (X)), and define X =
I3 t(e(s.00)(x)) des. Then X is an operator in .# with 0 <% < 1. Let

X = fol t dé, be the spectral decomposition of X. Since

é = e, x),0)(X),  0<I<1,
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we get x = fo Ai(x)dé; (the Schmidt decomposition [35]). Now let
r1,r2,... be an enumeration of all r € R with e;,3(x) # 0. Let f =
r(e(,k,oo)(x)) and 7} = (e[, o0)(x)). Then
~ t, te[O’ll\Uk[tk’t’)’
T(et) = { t’ t ' «
k» € [tk ’ tk)‘
For each k, we can choose an increasing family {p,(k): 0<t<t —t}
of projections such that pt(l,f‘_)tk = e(,)(x) and T(pt(k)) =tfor0<t<
— t;. Letting
— él’ te[o’l]\Uk[tk’t;()’
ér= (k) /
e(rk,oo)(x) + D te? te [tkatk),

we have an increasing famlly {€:: 0 < t < 1} such that 7(e;) =
for 0<t<land x = fo Ai(x)de;. Define y' = fol A(y)de, and

= Jo 4(v)de,. Since A(y) = A(y) and A(") = (A(»))* = A(y),
by Lemma 4.1 there are sequences {u,} and {v,} in ¥ such that
ly' — unyuy|l, — 0 and ||y” — vyyv;||, — 0 for 1 < p < co. Hence

: _ * < : : _ * < _ !
inf [lx — uyu’|l, < liminfllx — unyusllp < flx = 'lp,

sup [|x — uyu*||, > limsup [|x — vayvgllp =[x — ¥"|l,.
UEZ n—oo

Moreover it is immediate from definitions that
1% =l = 1A(x) =20, and |lx = ¥"ll, = [A(x) = AD)ll,-
These complete the proof. O
THEOREM 4.4. Assume that .# is an infinite semifinite factor. If

x,y € &gy, then for 1 <p < o0

inf lx — uyu'lly = IACE) =407,

sup ||lx — uyu*|l, = [IA(x) —A)llp-

ue?7

Furthermore there exist x',y',y" € &, such that X' ~ x,y' ~ y,y" ~

Y1 = V'llp = IA(x) —AW)llp and |Ix' = y"|l, = lIA(x) —AW)ll, for all
1 <p<oo

Proof. By Theorem 3.1(2) and [38, Theorem 3.1], we have for 1 <
p=soo 5
A(x) =AWy < llx = ylip < 11ACx) — AWl
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and thus .
;2?1; lx — uyu*|l, > [IA(x) —A)llp,

sup [|x — uyu*|l, < ACx) —A) |-
Uue?

Now assume that .# is a factor of type Il (the type I, case is anal-
ogously proved). We choose two increasing families {e;: ¢t > 0} and
{fi: t > 0} of projections such that t(e;) = 7(f;) = ¢t for ¢t > 0 and

Viso€r L V5o fi- Define
¥ = [T weede - [T e,
v = [T mvdec [ miv-yf,
y'= [T wndhi- [ de

Then |x' — /[, = |A(x) —=A(»)l, and [Ix' = "l = IA(x) = AD)llp,
1 < p < co. Since A(x') = Ax) and A(y') = A(") = A(y), by
Lemma 4.1 there are sequences {u,},{v,} and {w,} in Z such that
%" — wnxuzllp — 0, [y" — vayvzll, — 0 and ||y” — wpywy|l, — 0 for
1 < p < co. Therefore

inf |lx — uyu’l, < liminf |unxiz; — 0apvlly < %' = ¥/l

sup [|x — uyu*||, > limsup [|unxu;, — waywyllp > [1x" =",
11574 n—00
completing the proof. O

REMARK 4.5. (1) In particular when x,y € &,, the formulas in
Theorem 4.4 are written as follows: for 1 < p < oo

inf |lx —uyw*l, = [lu(x) = £,

sup [|x — uyu*|l, = (I xIl5 + [1yII5)"/7.
uey

Here and in Theorem 4.6 below, (||x||5 + [[¥[|5)!/? when p = co means
max{||x|lco, | lloo}-

(2) Under the assumption of Theorem 4.4, it is not difficult to see
that for each x,y € S;, there exists either x’ such tha} x' ~ x and
X" =yl = llA(x) —AW)ll1 (resp. [x" = yllo = lIA(x) = A(¥)lle0) OF '
such that y' ~ y and ||x — y'[|; = [|A(x) —A(y)|l1 (resp. [|x = ¥'[leo =
[A(x) — A(»)ll). However, for 1 < p < oo (resp. 1 < p < ),
there are x,y € G;, for which we obtain neither x’ such that x’ ~ x
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and X' -y, = llA(x) —A()l|p (resp. [IX" —yll, = [IA(x) —A(Y)[p)
nor y' such that ' ~ y and |x — )Y'|, = |lA(x) —A(»)|, (resp.
lx = ¥'|l, = |lA(x) — A(y)||,). For instance, for I < p < oo, let x
be strictly positive and y be strictly negative in L?(.#). Suppose that
x' ~ x and ||x' - yll, = JA(x) ~A()ll,. Then }x’ =yl = /|l + V[,
showing x'y = 0 by [29, Proposition 6.3], so we get x = 0, a contra-
diction. The argument for )’ is analogous.
(3) We note that 5(x y) = ||l(x) — AW)|loo for x,y € M#y, with
7(1) < 00 and d(x,y) = ||A(x) —A()|leo for x,y € &, with 7(1) = 00
(the definition of d(x,y) is available for x,y € .#,,). These equalities
follow from Theorem 2.1(3), 4.3 and 4.4 when x and y are bounded
and .# is a factor. But it is rather easy to check them directly without
the factor assumption.

Ando and Bhatia [3] obtained some inequalities on LP-distances for
Hermitian and skew-Hermitian matrices by a method of majorization
based on the Lidskii-Wielandt theorem. In the following theorem,
by the same method as [3], we estimate LP-distances between unitary
orbits of t-measurable selfadjoint and skew-adjoint operators. Here
the bounds for inf,cy || x — iuyu*||, in (1) and sup,cy||x — iuyu*||, in
(2) are best even for 2 x 2 matrices as noted in [3].

THEOREM 4.6. Assume that # is a semifinite factor and x,y € Gg,.
(1) ForO<p <2,

inf |lx — iuyw’|l, 2 2127 1P ) u(x)? + ()23,

u

sup ||x — iuyu*||p, = { ||{)'(|xl)2 + Z(IJ’|)2}1/2”1) if # is finite,
ue U IxNE + ) e if 4 is infinite.
(2) For 2 < p < o0,

I{A(XD? + A(Y)2Y2||,  if 4 is finite,
(x5 + lIylip) /e if # is infinite,

sup |lx — iuyu’|l, < 2V2VP ) {u(x)? + n(@) 232,
u

inf ||x — iuyu*||, =
inf lx = fuyuly = {

Proof. If either x or y is not in LP(.#), then the desired equalities
and inequalities hold with the both sides being co. So we assume
X,y € LP(A)y,. First let # be finite and z = x — iy. By the extension
[24] of the Lidskii-Wielandt theorem, we get

A(x1)* + A(ly !) < A +p%) < AMIxD? + Ay,
{12 + 4(12)*}/2 < A(x* + %) < A(|z])?,
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since x2+y2 = (z*z+zz*)/2 and A(z*z) = A(zz*) = A(|z])? (see [24]).
Hence
Alx)? + A(D)? < A(lz)?,
Alz1)* + A()zD)? < 2{A(Ix)? + A(ly])*}-

Because A — A?/2 on [0, 00) is concave when 0 < p < 2 and convex
when 2 < p < oo, by [11, Theorem 2.5] we have for 0 < p <2

Il{}(IXI)Z + 2D 21l 2 122Dl
A 2D + 40121221 > 212({AxxD? + 23y D21l

and for 2 < p < oo the reversed inequalities which are valid also for
p = co. Moreover we have for 0 < p <2

I{A(2D? + 402D 21l < {1A32DIE + 1A 2)lIE} /7,

and for 2 < p < oo the reversed inequality. Therefore, since ||A(|z])]|,
= |[A(|zDllp = lIzllp, the following inequalities are obtained: for 0 <
p<2

21272 1A D? + A D22 < Hlzllp < IAUXD + 20D} b
and for2<p < o0
IAGxD? + A D3 21 < Hlzllp < 21727 VPIHAxxD? + 239D 2.

On the other hand, it is readily seen that if x and y have finite spectra,
then there exist x’, )y’ € #;, such that x’ ~ x,y’ ~ y and

X" = iy'll, = IKAUXD® + Ay D72,
Hence, approximating x and y by operators with finite spectra, we get

inf |lx — iuyu*|l, < [{A(XD)? + Ay, < supllx — iuyu*|,,
uez ucz

so that the theorem in the finite case is proved.

Next let .# be infinite. For n > 1, let x,,y, and e be as in the
proof of Theorem 3.1(2). Since x,y € LP(#), we get ||x, — x||, — 0,
lyn — ¥llp — O, and hence by [24, Corollary 3]

Jm A% + 2(wa) 2} 21
= lim [{uxn)? + wa)?Y 2l = {00 + 1) 215,
Jim A% l)? + A(va )2} 15
= Jim (lxallp + Iallp) = (el + 1015)7
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where A(|x,|) and others are defined on (0,7(e)). Thus the desired
estimates are obtained by applying the assertions in the finite case to
Xn,Yn € LP(M,)sqa and then by passing to the limits as n — oo. O

5. LP-distance between unitary orbits in Haagerup L”-spaces. In this
section, we shall obtain some formulas of L”-distance and anti-L?-
distance between unitary orbits in Haagerup L?-spaces, i.e. noncom-
mutative LP-spaces over general von Neumann algebras introduced in
[19].

We begin with a very brief survey on Haagerup L?-spaces (see [42]
for details). Let .# be a general von Neumann algebra with a faith-
ful normal semifinite weight ¢o. Denote by .7 the crossed product
M g0 R which admits the canonical faithful normal semifinite trace
7 and the dual action 6;,s € R, satisfying 10 0; = e~7,5 € R. For
0 < p < oo, the Haagerup LP-space LP(#) = LP(A; ¢y) is defined by

IP(#)={xeN:0i(x)=e"*Px, seR}.

Here .# = L®(#). For each y € .#*, a unique h, € ./, is given by
¥ = 1(hy-) where ¥ is the dual weight of y. The mapping v — h,
is extended to a linear bijection from .# onto L!(.#), and so the
linear functional tr on L!(.#) is defined by tr(h,) = y(1),y € 4.
For 0 < p < oo, the Haagerup (quasi-)norm ||x||, of x € LP(#) is
defined by ||x||, = tr(}x|?)!/?. When 1 < p < 0o, LP(#) is a Banach
space with the norm || - ||, and its dual Banach space is L?(.#) where
1/p + 1/q = 1 by the following duality:

(x,y) =tr(xy) (=tr(yx)), x€LP(A),y€ LU A).

In particular, .#, = L!(.#) by the isometry y + h,,.

Let L?(#)s, (resp. LP(#).) denote LP(.#) N Ay (resp. LP(#) N
A4.). Note that the support projection s(x) of each x € LP(#), is
in .#. The unitary orbit Z(x) of x € LP(#) is given by #(x) =
{uxu*: u € Z} where Z is the unitaries in .##. Then Z(x) is included
in L?(#) if x € LP(#). The space L?(#), together with L?(#),,
is independent of the choice of ¢ up to isomorphism. Furthermore,
when . is semifinite with a faithful normal semifinite trace 7, the
Haagerup L?-space LP(4# ;9o = t) coincides with LP(.#;7) in the
previous sense.

The next lemma gives general bounds for the distance ||x — y||,
between x,y € LP(#)s,. The first inequality extends the inequality
established in [29, Lemma 3.3] (also [17, Lemma 5.1]).
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LEMMA 5.1. If 1 <p < oo and x,y € LP (M )s,, then

s llp = 1y llp P+ He-llp = =73 177
< = yllp < {Uxllp + 1=1p) + (x=llp + +1p)7 3177

Proof. First let 1 < p < co. Since L? (4 )5, C &5, where & is with
respect to (#/°, ), Theorem 3.1(2) shows that

/Il A dt</ A(x —»)|*(t)dt

< /0 AGx) — 301 (1) di.

By [17, Lemma 4.8],

t—l/p|”x+“p —v+llpls t>0,

() =4, )] = { i
‘ (=) 2 |Ix=llp = Iy=llpl, <0,
t_l/p(”x+|lp + ly=Ilp), t>0,

Ai(x) =4:(y) = { (=) (Ix-llp +Iy+llp), ¢ <O.

Hence, from an easy computation, we get

1
/0 Ax) —A)|*(1) dt

= el = Wl + - llp = -l P32,
l v
/0 A(x) — A" (1) d

= {Ulxallp + 1y-1p)" + (Ux=llp + v+ 11,37

Moreover [y |A(x — y)|*(t)dt = ||x — y||, by Lemma 3.2(2) and [17,
Lemma 4.8]. These imply the desired inequalities for 1 < p < co.
When p = 1, the second inequality is obvious. If ||x.|l; > |l¥+]:
and |Ix_|ly 2 ||y-|l:, then
el = 1l + 1llx=ll = ly=1ll = lxlh = vl < llx =yl

If fIxellr 2 1+l and flx-[}y < [ly-[1, then

ethe = v+ lhl =+ fllx=lh = ly-1h
= [l = lIx=lly = lly+lls + lly-lly = tr(x = y) < {lx = plli.
Hence the first inequality for p = 1 is proved. a

The next lemma is useful to estimate LP-distances between %/(x)
and Z(y) for x,y € L?(#)s, when .# is a type III; factor.
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LEMMA 5.2. Assume that # is a factor of type 1II;. Let e be a
projection in # and x,y € LP(#),, 0 < p < oo, with s(x) < e and
s(v) < e If Ixllp = |yllp, then

inf ||x — uyu*|, =0,
s I yu*|p
where %, is the unitaries in #,.

Proof. First assume 1 < p < co. By the generalized Powers-Stermer
inequality in the appendix, it follows that

* * 1 *1
I1x — wyu'lly < (1% — (uyu*)? (|17 = ||xP — uyPur|| /7

for all u € %,. Because .#, is a factor of type III; and ||x?||; = ||?|l1,
considering x?,y? € L!(#), as elements in (/£,)} we get

: P _ Pyt =

Inf [|x? — uy?u’lly =0
by [13, Theorem 4] which remains valid for any factor of type III;.
Hence the desired conclusion is verified when 1 < p < oco. Next

assume 0 < p < 1. By [17, Theorem 4.9(iii)] and Holder’s inequality
(see [17, Theorem 4.9(i)]), we get

2P|x - yli5
— ”(xl/Z +y1/2)(x1/2 _ y1/2) + (x1/2 _yl/Z)(xl/2 +yl/2)”5
<24y ) (x2 = p )5+ (|62 = ) (x4 y12) 15
< 2fx!2 4yl 2|8 (1x12 -y 2|
2
< 4llx[B2(x12 — 128 .
This implies that the validity of the conclusion for p follows from that
for 2p. Thus the lemma is proved. o

THEOREM 5.3. Assume that # is a factor of type I11;. If 1 < p < oo
and x,y € LP(M )sq, then

inf |Lx — uy*|lp = {{llxellp = W+ llol” + -l = -7} 77,

sup [lx — uyw’llp = {(lbesllp + y-ll)” + (lx-fl, + ly+l2) 3172

Proof. 1t suffices by Lemma 5.1 to show the following inequalities
(these are valid for all 0 < p < o0):
(i) infuez |1 — wptp < {1y = 194 lol? + x=llp = I—llp 7372,
(if) Supyer [ —uyaetllp = {1 llp + 1v=l1p)? + (- llp + Iy l1)} 2.
By approximation, we may assume that x,.,x_,y, and y_ are all
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nonzero. From the assumption of .#, there exists a v € % such that
s(xy) = vs(ys+)v* and s(x-) = vs(y-)v*. So we can assume in prov-
ing (i) that there are projections e and f in .# with e L f such that
s(x+) = s(y+) = e and s(x_) = s(y-) = f. For each u; € % and
uy €%, let u=uy +uy+(e+ f)-. Then u €% and
Ix = upu*|lp = tr(lx — uypu )
= tr(|xy — iy ui [P + [x- — wpy_us|F)
= [|x+ — wysuillf + l1x- — wpy-us||.

Hence, by Lemma 5.2,
i - *IIP < inf — uill® + inf ||lx_ — _us||P
inf |lx —uyw’|l; < inf |lx, —uiys 1I|p+u§€% llx- — way_u3 |15

11l y-lo . |I°

1%+ llx-Ilp
= x4y = ly+llplP + llx=llp = ly-llpl?,

so that we obtain (i). In proving (ii), we can assume as above that there
are projections e and f in .# with e L f such that s(x,)=s(y_)=e
and s(x_) = s(y+) = f. Then, by Lemma 5.2 again,

+ — X4 X—

p
# -
p p

sup ||x — uyu*||5 > sup ||xy +uy-uillh + sup [[x- +uy ui|lh
UE? uE€%, UE%r

p p
> llx, + ||y—||px+ + “x_ + v+l x_
1+l ) llx-1lp )
= (Ix+llp + 1y-11p)? + (lx=1lp + ¥+ 1l5)7
implying (ii). ]

Finally we obtain the formulas of LP-distances for some classes of
X,y € LP(#) in the general infinite case, which are partial extensions
of Theorems 4.4 (Remark 4.5(1)) and 4.6.

THEOREM 5.4. Assume that # is an arbitrary infinite factor.
(1) For every x,y € LP(#) where 0 <p < 1,

sup [|x — uyw*|l, = (x| + Iy [}5)"/7.
UE?

(2) For every x,y € LP(# ), where 1 <p < oo,
sup [|x — uyu*|l, = (IIx[I5 + [I¥115)"/,
ue

i 1, = p p\1/p
inf ||x + uywl, = (Ix1If + 1y l15)'/7-
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(3) For every x,y € LP(# )5, where 0 < p <2,
sup [|x — iuyu*|l, = (x5 + IylI5)"/7.
uez

(4) For every x,y € LP (M )5, where 2 < p < oo,

: i - p p\1/p
inf ||x — fuyw*|l, = (Ix[l + Ivli5) "
We give the next lemma to prove the theorem.

LEMMA 5.5. Assume that # is an arbitrary infinite factor. For every
X,y € LP(#) where 0 < p < oo, there exist x',y' € LP(#) such that x'
(resp. y') is in the || - ||p-closure of % (x) (resp. Z(y)) and ||x' — y'||, =
(1x 115 + 1y 115) /2.

Proof. Let 0 < p < o0 and x,y € L?(#). Defining two projections
e = s(|x|)vs(|x*|) and f = s(|y|) Vs(|y*|) in .#, we choose projections
e and f' in # such thate ~ ¢',f ~ f" and ¢ L f'. Then v*v =
e,vv* = ¢, w*w = f and ww* = f’ for some partial isometries
v,w € .#. Since

Ixllp 2 llvxv*(lp 2 llexell, = [|x]l»,

Jlvxv*ll, = llxll, and also wyw*|l, = [[¥ll,. Let x’' = vxv* and y' =
wyw*. Then
X" = y'llf = tr(Ix" = ¥'[F)
= tr(IX'PP + Y'1P) = IIx)If + w5
Thus it suffices to show that x’ (resp. »’) is in the || - || ,-closure of % (x)
(resp. Z(y)). A sequence {e,} of projections in .# can be chosen so
that e, e and ¢;- ~ e/, - where ¢, = ve,v*. For n > 1, let v/, be a
partial isometry in .# such that v},*v), = e;; and v} v)* = e/,. Letting
u, = vey + v, we get u, € % and by [17, Theorem 4.9(iii)]
llx" — unxu;“g < 2%{[lv(x - enxen)v*ug + [[un(enxen — x)u}‘,”ﬁ,’}

< 2P*H|x — exxen||?

< 2277 (||x — xen|lh + I — enx][5).
When 1 < p < o0, ||xen||p < ||x||, and xe, converges weakly to x since

(x —xen,z) =tr(zx(e —ey)) — 0

forevery z € L1(#) where 1/p+1/q = 1. Because L?(.#) is uniformly
convex (this is a consequence of Clarkson-McCarthy inequalities [17]),
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we have ||x —xep||, — 0. When 0 < p < 1, choosing § with 0 < 6 < p,
we have by Holder’s inequality

lx — xenll, < |l|lx|(e — en)llp
< x1* =211, -0y l1x1% (e = en)ll, /0
= [lx1301l1x1° — |x]€nll 0,

so that ||[x — xep||, — O since p/6 > 1. Furthermore ||x — e, x|, =
|x* — x*en||, — 0. Therefore x' is in the || - ||,-closure of #(x). The
assertion for )’ is analogously shown. O

Proof of Theorem 5.4. By Lemma 5.5, (1) and (2) follow from [17,
Theorem 4.9(iii)] and Lemma 5.1, respectively. Let x,y € LP (A )s,.
Since ||x + iy||, = ||x — iy||,, we have by Clarkson-McCarthy inequal-
ities [17]

Ix — iyl < (x5 + VD)7, 1<p<2,
I = ivllp = (x5 + IYI5)'/?, 2 <p < oo
These and Lemma 5.5 imply (3) and (4). O

When .# is a factor of type III;,0 < A < 1, we have another for-
mulation of Haagerup LP-spaces (discrete LP-spaces) associated with
the discrete decomposition of .# (see [19, 25]). We can exactly esti-
mate the LP-distance and the anti-L?”-distance between unitary orbits
of x,y € LP(#)s, by using their spectral scales defined in the discrete
LP-space. Consequently, the diameter of the closed unitary orbits
space in {x € LP(#),: || x|, = 1} can be computed, including [12]
as a special case. The details for the type III; case will be given in a
forthcoming paper by the second named author.

Acknowledgment. We would like to thank Professor H. Kosaki for
informing us of his generalization of the Powers-Stgrmer inequality
and kindly writing it as the appendix of this paper.

Appendix. Generalized Powers-Stermer inequality by Hideki Kosaki
(Department of Mathematics, College of General Education, Kyushu
University, Fukuoka 810, Japan).

For positive compact operators a, b, the inequality
1/2
la'/? = 12, < ||la - b}/

is known as the Powers-Stormer inequality, [37]. Here, |- ||; and || - ||;
denote the Hilbert-Schmidt norm and the trace norm respectively. The
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same inequality for a general von Neumann algebra was obtained in
[5] and [18], and it plays an important role in the theory of standard
form. Similar inequalities in various set-ups have been investigated
by many authors.

Let L?(#) be the Haagerup LP-space described in §5. In this
appendix we will prove the following generalization of the Powers-
Stermer inequality.

THEOREM. For positive a,b in LP(A), we have
lla® — b%,0 < lla — bll},

where 0 < 6 <1 and 6 < p < co.

In [2], Ando proved

k
d_si(f(4) ~ f(B) £ Y si(f(14~ BI))
j=1

k
j=1
k

Y fsi(4-B), k=1,2,...,
j=1
for positive matrices 4, B. Here, s; is the jth largest eigenvalue and f

is an operator monotone function on [0, co) satisfying f(0) = O (see
[16]). He began with the special case 4 > B > 0, that is,

k k
Y s(fB+C)-f(B) <Y s(f(C), k=1,2,...,

for positive matrices B, C. Replacing s; by the generalized s-number
us,t > 0 (see §3) and the partial sum by its continuous analogue
s -dt,s > 0, one can prove

(*) /0 Cpf(b+¢) — (b)) dt < /0 Cu(fe)dt,  s>0,

for positive operators b, ¢ in a semi-finite von Neumann algebra. Here
exactly the same argument as in [2] works so that details are left
to the reader. However, the following remark is in order: In [2],
it is pointed out that the two matrices (B + I)~1/2C(B + I)~!/? and
CY/2(B+1)~1C/? have the same lists of eigenvalues and consequently

Sj(l—‘ {(B+I)—1/2C(B+I)—l/2 +I}_1)
=Sj(1— {CI/Z(B+I)_IC1/2 +I}_l),
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In the present set-up, Lemma 2.5, [17], implies

(L ={b+ 1) 2e(b+ )72+ 1371 = w(fo(xx))
= foluu(xx™)) = folus(x*x)) = e (fo(x"x))
= (1= {2+ )72+ 137,

where x = (b+1)~1/2¢1/2 and f; is the increasing function 1—(A+1)~!
on [0, c0).

We then extend () to (not necessarily bounded) t-measurable op-
erators b,c. The original proof of this step was somewhat compli-
cated. However, Professor Tikhonov kindly informed the author of
his recent result saying that the map: a — g(a) from a set of cer-
tain 7-measurable operators is continuous with respect to the measure
topology for a function g in quite a wide class (Theorem 2.6, [43]).
Using the spectral decomposition theorem, we choose two sequences
{bn},{cn} of positive elements in the von Neumann algebra satisfying
b, <b,c, <c and b, — b, c, — ¢ in measure. We have already
known that

[ wsba+ - s@ydr < [ uds@nde, >0,
0 0

for each n. By Tikhonov’s result, f(b, + ¢,) — f(b,) converges to
f(b+c)— f(b) in measure so that

[ utso+e - fondr < [Mimintud s+ ) - f(bn)) dr
(Lemma 3.4, [17])

< liminf /O e (f (b + ) — f(b)) dt.

On the other hand, since ¢, < ¢ and f is operator monotone, we get

/ Cu(f(ea)) dt < / u(f(0)) dt.
0 0

Combining the above three estimates, we obtain (x) for positive 7-
measurable operators b, c.

Now assume that a and b are generic positive 7-measurable opera-
tors. Let a —b = (a — b)+ — (a — b)— be the Jordan decomposition.
Since a < b + (a — b)+ and f is operator monotone, we know

f(a) - f(b) < f(b+(a—-b)s)— f(b),
(f(a) - f(0))+ = (f(a) - f(b))e < e{f(b+ (a—b):)— f(D)}e,
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where e is the support projection of (f(a) — f(b))+. We hence get
/0 Cu(f(@) — f(b)))de < /0 (el f(b + (a—b).) — f(b)}e) dt
</ Cu(f(b + (a— b)) — (b)) dr < / Cu(f((a— b)) dt,
0 0

applying (*) to b and (a — b),. The inequality for the negative parts
can be obtained by changing the role of a and b in the preceding
argument. Also, we can easily check (see §3)

[O " u(f(@) - f(b)) dt
— sup { /0 " u((f(@) - £(b)).)dt + /0 T (f@) - £(B))-) dr} ,

0<r<s

/ " uf(la - bl))dt
— sup { [ wtra=srydes [ usia- b>_>>dz} .

0<r<s

Combining the above inequalities and equalities altogether, we obtain
S S
) [ wtr@ - fonar< [ wisia—eo)ar
)
- [ fwta-bpar,  s>o,
0

for positive T-measurable operators a, b.

If .# is semi-finite, the desired generalization of the Powers-Stermer
inequality follows from the above submajorization (*) as in [2]. How-
ever, we have to deal with a general von Neumann algebra and will
make use of the trick repeatedly used in [30], [17] (and §5 of the main
body of the article).

Finally let us prove the theorem. In the two extreme cases p = 0
(Proposition 7, [30]) and p = oo (Theorem 2.3, [28]), the result is
known. So let 0 < p < oco. Assume that a and b are positive elements
in L?(#). These are positive 7-measurable operators affiliated with
the crossed product .# x4+ R (7 is the canonical trace on the crossed
product). Applying (#) (with s = 1 and f(4) = A%) to the semi-finite
von Neumann algebra .Z x4+ R, we get

1 1
/ u(@® — b%)dt 5/ ula - b)Y dt,
0 0
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where u,(-) is relative to the canonical trace 7. Recall (Lemma 4.8,
[17]) that

wla—b)=1t""7la~b||,,
u(a® = b%) =170’ 8%, (a®,0% € LPV()),

where || - ||, denotes the Haagerup (quasi-)norm. Thanks to 6 < p, we
can explicitly evaluate the above two integrals and get

(1-6/p)"Mla® = b%)|p0 < (1~ 0/p)"Mla = b]],

which proves the theorem.
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