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Let / b e a semifinite factor. For normal operators x and y in
, introducing the spectral distance δ(x,y)9 we show that δ(x,y) >

dist(%f(x),%f(y)) > c~ιδ(x,y) with a universal constant c, where
^ ( ) ^ ( y ) ) denotes the distance between the unitary orbits

and W(y). The equality dist(W(x)9&(y)) = δ(x9y) holds
in several cases. Submajorizations are established concerning the
spectral scales of τ-measurable selfadjoint operators affiliated with
*/#. Using these submajorizations, we obtain the formulas of Lp-
distance and anti-Z/ -distance between unitary orbits of τ-measurable
selfadjoint operators in terms of their spectral scales. Furthermore
the formulas of those distances in Haagerup //-spaces are obtained
when «/# is a type IIIi factor. The appendix by H. Kosaki is the
generalized Powers-Stormer inequality in Haagerup LP -spaces.

Introduction. It is an interesting problem in matrix theory to esti-
mate distances between unitary orbits of matrices by their eigenval-
ues. Let A and B be n x n normal matrices whose eigenvalues arfe
OL\,...,an and β\9...9βn9 respectively, with multiplicities counted.
Let dist(&(A)9W(B)) denote the distance between the unitary orbits
W(A) and &(B). The optimal matching distance between the eigen-
values of A and B is given by

δ(A,B) = min max \at - βπ{i) \,

where π runs over all permutations of {1, . . . ,«} . Then

dis\(W(A)9W(B)) <δ{A9B)

is immediate. Bhatia, Davis and Mclntosh [9] proved that

> c~ιδ{A,B)

with a universal constant c. A difficult and still open conjecture is that
dist(^(A)^(B)) = δ(A9B) holds for every pair of normal matrices
A and B (i.e. c = 1). But this equality was proved to hold for several
classes of normal matrices (see [7, 10, 21, 41, 45]). The analogous
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results were obtained also in the infinite dimensional case by intro-
ducing the spectral distance δ(A, B) for normal operators A and B on
a Hubert space (see [6, 14]).

From the viewpoint of von Neumann algebras, the results stated
above are concerned with the case of factors of type I. The aim of this
paper is to study distances between unitary orbits of operators in more
general von Neumann algebras. In most results of this paper except
§5, Jt is a semifinite factor. Let Jt be a semifinite von Neumann
algebra with a fixed faithful normal semifinite trace τ. Let % be the
set of all unitaries in Jt and %f(x) the unitary orbit {uxu*: u e &}
of x G Jt. In § 1 of this paper, for normal operators x and y in Jt',
we introduce the spectral distance δ(x9y) by comparing the traces
of spectral projections of x and y. This δ{x9y) extends the optimal
matching distance given above for normal matrices. When Jt is a
σ-finite semifinite factor, we show that

δ(x,y) > άist(&(x),&(y)) > c~ιδ(x,y)

for all normal elements x j e / where c is a universal constant given
in [9]. As was shown in [14] for the type I case, this second inequality
is an immediate consequence of a powerful result of [9], On the other
hand, we give a variant of the marriage theorem in order to prove the
first inequality. Section 1 contains also a result on distances between
unitary orbits in the type III case. In §2, we establish the equality
dxst(2S(x)92f(y)) = δ(x9y) for several classes of x andy corresponding
to the known classes of matrices.

Several (sub)majorizations are known for the eigenvalues and the
singular values of matrices. The Lidskii-Wielandt theorem is espe-
cially famous and important, which gives a useful device in deriving
various norm inequalities for matrices. See [1, 31, 32] for majoriza-
tion theory on matrices and compact operators. The noncommutative
integration theory (in the semifinite case) was founded in [15, 39, 44].
The concept of τ-measurable operators introduced in [34] gives a nice
foundation of noncommutative LP-spaces LP{Jt). The majorization
theory in semifinite von Neumann algebras was recently developed in
[22-24, 26, 27, 33] by using the notion of generalized s-numbers or
spectral scales of τ-measurable operators. In particular, we have gen-
eralized in [24] the Lidskii-Wielandt theorem to the majorizations for
the spectral scales of self adjoint operators in the space Lι{Jt) when
τ(l)<oc.

We denote by Jtsa the set of all τ-measurable selfadjoint operators
affiliated with Jfm When τ(l) < oo, for x e Jϊsa with the spectral
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decomposition x = f^sdβs, the spectral scale λ(x) of x is the func-
tion on (0,τ(l)) defined by λt(x) = inΐ{s e R: τ(ej-) < t} where
e^ = 1 - es. When τ(l) = oo, we define the spectral scale of x e Jfsa

in some modification. In §3, for x,y £ Jίsa when τ(l) < oo, working
on the majorizations in [24] we show that \λ(x) - λ(y)\ is subma-
jorized by |A(JC - y)\ and the latter is submajorized by \λ(x) - λ(y)\
where λ{y) = -λ(-y). In §4, by use of these submajorizations and
the notion of spectral equivalence, we obtain the following formulas
of LP-distance and anti-Z/-distance between unitary orbits: when Jf
is a finite factor, for x,y e Jtsa and 1 < p < oo

= \\λ{x)-λ(y)\\P9\\

sup \\x - uyu*\\p = \\λ(x) -

When Jt is infinite semifinite, the analogous submajorizations and
LP -distances of unitary orbits are obtained for x and y in a certain
subclass of Jtsa with the modified spectral scales. Furthermore those
LP -distances for τ-measurable selfadjoint x and skew-adjoint y are
estimated in terms of their spectral scales by the majorization method
of [3].

Finally in §5, we discuss distances between unitary orbits in
Haagerup Lp-spaces LP(Jt) introduced in [19] (also [42]). When Jt is
a factor of type IΠi, we exactly estimate the LP -distance and the anti-
LP-distance between unitary orbits of selfadjoint elements in LP{Jt)
by using the homogeneity of type ΠIi factors [13] and the general-
ized Powers-Stormer inequality by H. Kosaki. Also, when Jΐ is an
arbitrary infinite factor, the formulas of II -distances are obtained for
some special classes of elements in LP{Jt).

This paper contains the appendix by H. Kosaki where the Powers-
St0rmer inequality is generalized to positive elements in Haagerup
LP -spaces. For this sake, his appendix also generalizes an inequality
due to Ando [2] as follows:

Γ Mf(a) - fφ)) dt < Γ μt(f(\a - b\)) dt
Jo Jo

= ΓfMa-b))dt9 s>0,
Joto

for positive τ-measurable operators a, b affiliated with a semifinite von
Neumann algebra, where μt{-) denotes the generalized s-number and
/ is any operator monotone function on [0,oo) with /(0) = 0. This
inequality is of considerable importance in majorization theory.
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1. Distance between unitary orbits of normal operators. Let Jΐ be
a von Neumann algebra on a Hubert space %? and % the set of all
unitaries in Jΐ. For each x e Jΐ9 we denote by V{x) the unitary orbit
{uxu*: ue%f} of x and by σ(x) the spectrum of x. For x,y e -#, let

be the distance between ^(x) and ^(y), i.e.

= inf ||JC - uyu*\\9

and h(σ(x),σ(y)) the Hausdorff distance between σ(x) and σ(y), i.e.

h(σ(x)9σ(y)) = max< sup dist(α,σ(y)), sup dist(/?,σ(x)) > .
[aeσ(x) βeσ{y) J

It is known (see [14, Proposition 2.1]) that if x and y are normal
operators in Jΐ, then

In what follows except in §5, unless otherwise stated, let Jΐ be a
semifinite von Neumann algebra with a faithful normal semifinite
trace τ. For a normal operator x in Λf and a Borel subset is of C,
let eε(x) denote the spectral projection of x corresponding to E. Also
let Er = {aeC: dist(α,£) < r} for r > 0 ( 0 r = 0) . Given two nor-
mal elements x,y e Jΐ, we now define the spectral distance δ(x,y) as
follows: δ(x,y) is the infimum of r > 0 such that τ(eκ(*)) < τ{eγr{y))
and τ ^ ί y ) ) < τ(^κΓ(

 x )) f°Γ every open subset V of C. In particular
when J? is the algebra Mn of all n x n complex matrices, it follows
from the marriage theorem [20] that δ(x,y) coincides with the optimal
matching distance, that is,

δ(x9y) = min max \at - βπ{i)\
7i \<ι<n

where a\9...9an and β\,..., βn are the eigenvalues of x and y, respec-
tively, with multiplicities counted and π runs over all permutations of
{l,...,/ι}.

The purpose of this section is to estimate dist(W(x),W(y)) in terms
ofδ(x,y) for normal elements X J G / . We begin with the following
theorem which can be shown as in the proof of [14, Theorem 2.4] by
appealing to [9, Theorem 4.2].

THEOREM 1.1. Ifx and y are normal operators in Jΐ, then

dist(^(x),^(y)) > c~ιδ(x,y)

where c is a universal constant.
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For c in the theorem, an upper bound given in [8] is

(π/2) Γ r 1 sin tdt (< 2.91)
Jo/o

which is at present the best estimate even when J? — MΠ.
To obtain the converse estimation, we need the next lemma which

is a variant of the marriage theorem.

LEMMA 1.2. Let {a\,..., am} and {b\9..., bn} definite sets in [0, oo]
and R a subset of{ 1 , . . . , m} x { 1 , . . . , n}. Consider the following con-
ditions (1) and (2):

(!) ΣieAai ^ ΣjeRA

bJ for every A £ { l , . . . , m } where RA =
U^ Λ /» Λ / = ί/:(ίJ)€iί},

(2) Σ/€iΛ ^ Σ, €^ f l/ /^ r wery B c {1,...,*}

(1) and (2) AoW, or / / ( I ) Λo/ώ and ΣT=ι^i = Σ "
< oo, //̂ ft ίA^re βxwί c// E [0,oo], 1 < / < m, I <j < n, such that

(i) Cij = 0 unless (ij) e R,

j
Furthermore if all at and bj are in {0,1,2,... ,oo}, then all cij are
taken in {0,1,2,... ,oo}.

Proof. First assume (1) alone and show the existence of c/; e [0, oo]
satisfying (i), (ii) and

For any / with α, = oo, there is a j \ G i?/ with bj{ = oo, so let c\jx = oo
and Cij = 0 for 7 ψ j \ . Moreover, for any / with αz = 0, let ctj — 0
for all j . Hence it suffices to consider the case when α, e (0,oo)
for all /. In this case, removing bj = 0 and replacing bj = 00 by a
number large enough, we may assume also that bj e (0,oo) for all
j . For each sufficiently large natural number N, let kj (resp. Ij) be
the largest (resp. smallest) natural number such that ki/N < aι (resp.
lj/N > bj). Take mutually disjoint sets £/\,...,sfm and 3S\,... ,3§n

with \s&i\ = /c/ and | ^ | = Ij where | | denotes the cardinality. Let
j / 0 = \y*lχ sfi,&0 = \Jj=χ 3§j and & be the set of all (α, β) e^ox &0

such that α G s/i and β ^ 3§j for some (/j) G i?. For every j / C ^5,
letting yί = {/: j / n Ĵ • φ 0}, we have

ieA ieA jeRΛ jeRA
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since ^ — \JjeRΛ&j. Hence, by the usual marriage theorem [20],
there exists an injective map Φ: $/$ —> 3B§ such that (α, Φ(α)) G & for
all a G S/Q. Define

Then c\P = 0 unless (ij) e R,Σ}=ι c\P = kt/N and £™i <#° <
lj/N. Since Σij^P < Σ J ^ <Z/ < oc, we can choose a cluster point

(Cij) of a sequence {(c j^)} in Rm π, which satisfies (i), (ii), and (iii').

If ΣT=\ ai = Σ/=i fy < ° ° > t h e n t h e above (cy) automatically satis-

fies (iii) because Σ%\iΣ?=\ cϋ) = Σ]=\ h < °° N o w assume (2) as

well. Let AQ = {i: a\ < oo} and

^Q = {j: bj < oo and α, < oo for all / e RJ}.

Denote by Γ the set of all (</#: i e Ao, 1 < j < n) in R^°lrt such that
dij > O,dij = 0 unless (ij) e R,Σj=\dij = ai f o r a 1 1 * G ^o and
Σ/€^o dij ^ !̂/ f ° r all 1 <j<n. Because Γ is a bounded closed subset
of RMO|« which is nonempty from the first argument, we can choose a
(cy) G Γ such that

ieAo jeB0

Suppose ΣieAo cϋo < K f o r s o m e i o ^ #o Since RB° c Ao, we get

n

Σ Σ cij < Σ ^ ̂  Σ ^ = Σ Σcθ'
ieAojeBo jeB0 ίeA0 ieAoj=ι

so that c/o7/ > 0 for some ι0 G ̂ 0 and ^ ^ Bo. If C/Q/O = c/o7o + c and
c/o/ί = ciojό ~ c w ^ ^ a sufficiently small c > 0 and if cy = cy for other
(ij)9 then (cy) G Γ. This is a contradiction, so that ΣieAQ

cϋ = ty
for all j G BQ. For any / ^ Ao, there is a Ji G i?/ with 67l = oo, so let
djx = oo. For any j $. BQ, there is an i\ G RJ\AQ with α/, = oo, so let
dj = bj - ΣieAo cϋ' Finally let C/, = 0 for other (ij) with / φ AQ and
1 <J < n. Thus we obtain cy satisfying (i)-(iii).

The last part of the lemma is readily seen from the above proof. D

THEOREM 1.3. Assume that Jt is a finite factor or Jt is nonatomic
with τ(l) < oo. Ifx and y are normal operators in Jt, then δ(x,y) is
equal to the infimum ofr > 0 such that τ(ev(x)) < τ{eVr(y)) for every
open set F C C .
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Proof. For normal elements xyy GJt9 let δo(x9y) be the infimum
given in the theorem. Obviously δo(x9y) < δ(x,y). It is immediate
that δo(x,y) as well as δ(x9y) satisfies the triangle inequality. For any
ε > 0, take normal operators x' and y1 in Jt with finite spectra such
that ||JC' -x\\<e and \\y' - y\\ < ε. Then

δo(x',yf) < δo(x',x) + δo(x,y) + δo(y,y') < δo(x,y) + 2cε

by Theorem 1.1, and similarly

δ(x,y)<δ(x',y') + 2cε.

Let r > δo(x',y'). Writing x1 = Σ?=i *iPi and / = Σ"=\ βjQj where
ΣJϊliPi = Σj=iQj = 1> we define α, = τ(pi)9bj = τ{qj) and R =
{(ij): \c*i - βj\ < r}. Then (1) in Lemma 1.2 holds and £ X i α/ =
Σj=\ fy < oo. By Lemma 1.2, there are cy e [O,cx)), 1 < / < w, 1 <
j < n, satisfying (i)-(iii). When Jί = Mn (with the usual trace τ),
all Cij are integers. Otherwise ^ is nonatomic. In either case, /?/
and qj are divided into mutually orthogonal projections as follows:
Pi = Σ!j=\Pij and qj - ΣOLiQij with τ(p//) = τ ( ^ ) = c^. Hence
x9 = Σij(*iPij>yf = ΣijβjQij and |α f - ^ | < r if p l 7 ^ 0. This
shows δ(x',y') < r. Thus δ(xf,yf) < δo(x'9y')9 so that <J(Jt,y) <
^o(^5y) + 4cε, implying δ(x9y) = 5o(x,^). •

THEOREM 1.4. Assume that Jt is a σ-finite semifinite factor. Then

for every pair of normal operators x,y e Jt.

Proof. For any ε > 0, take x1 = Σ?=\ aiPi and y' = Σ]=ι βjQj as
in the proof of Theorem 1.3. Let r > δ(xf

9y'). Then (1) and (2) in
Lemma 1.2 hold for <?/ = τ(pi)9bj = τ(qj) and R = {(i9j): |α/ - /?y| <
r}. Hence, using Lemma 1.2 and arguing as in the proof of Theorem
1.3, we can write x' = Σij<*iPij and yf = Σij βjQij where τfaj) =
τ(qij) and |α/ - βj\ < r if py φ 0. It follows from the assumption of
Jt that Pij ~ qij in the Murray-von Neumann sense for all (/,./). So
there exists a w E ^ such that Pij — uq^u* for all (i9j) and hence

implying dis t(^(x ' ) ? ^(/)) < ^(^'?}
;/) Therefore

< ί(jc ;,y) + 2ε < J(jc,y) + 2cε + 2ε

by Theorem 1.1, so that we get the desired inequality. D
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In Theorem 1.4, the assumption of σ-finiteness of Jf cannot be
removed. For instance, let Jί = B ( ^ ) , the algebra of all bounded
operators on ̂ . When %? is not separable, there are projections p
and q in Jt such that δ(p,q) = 0 but dist(&(p)9&(q)) = 1.

The next theorem asserts that the computation of dist(%f(x),%f(y))
is very simple in the purely infinite case. For normal elements x,y e
Λf, the Hausdorff distance h(σ(x)9σ(y)) is nothing but δ(x,y) where
τ(0) = 0 and τ(e) = oo for each nonzero projection e in Jΐ.

THEOREM 1.5. Assume that Jΐ is a σ-finite factor of type III. Then

dist(^(x)^(y)) = h(σ(x)yσ(y))

for every pair of normal operators X J G / .

Proof. Since dist(^(x),^(y)) > h(σ(x),σ(y)) as noted in the be-
ginning of this section, we need to show the converse inequality.
Given ε > 0, there are normal operators xf, yf e Jt with finite spec-
tra such that ||.x' - x\\ < ε,h{σ{x'),σ{x)) < ε,\\y' - y\\ < ε and
h{σ{y')9σ{y)) < ε. Writing x' = Σ?=ι <*iPi and / = Σ]=ι βjdj where
Σ?=ιPi = Σj=ι Qj = UPi φ 0 and qj φ 0, we choose fc(l),... ,k(m)
and /(l),...,/(fl) so that

l«/ - βk(i)\ = jinin |α/ - # | , 1 < / < m,

\ a i ϋ ) ~ βj\ = j ^ \<*i - β j \ > l < j < n ,

and divide pi and <?7 into nonzero projections as follows:

Pi=Pi+

Then
m « m n

* = Σ «/^+Σ w ;' '̂ = Σ Λ(o«?+Σ W
/=1 7=1 /=1 7 = 1

From the assumption of ̂ f, there exists a w G ̂  such that pj = uq"u*
for all / and p" = uqjU* for all j . Hence

\\x' - uyfu*\\ = max I max |α/ - βk{i)\, max |α / ( / ) - β | i
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so that

) + 2ε

< h(σ(x),σ(y)) + 4e. D

Besides dist(f/(x),2f(y))9 the anti-distance suρwG^ ||JC - uyu*\\ be-
tween 2f(x) and %ί(y) is of some interest. Concerning this, it was
shown in [4] that

-uyu*\\ < \/2max{|α: - β\: a e σ(x), β e σ(y)}

for every pair of normal operators x and y in Jt = B ( ^ ) (hence in an
arbitrary von Neumann algebra «/#). The constant Λ/2 is best possible
even for 2 x 2 unitary matrices.

2. dist(%f(x),%f(y)) = δ(x,y) for several classes. The equality
dist(^(x),^Cy)) = δ(x,y) is known to hold for several classes of
normal matrices, while it is still open as a long-standing conjecture
whether this remains true for all normal matrices. The equality for
Hermitian matrices is a classical result of Weyl [45]. See [41] for Her-
mitian and skew-Hermitian matrices. The equality was established
in [7] (also [21]) for unitary matrices and in [10] for scalar multiples
of unitary matrices. Furthermore the analogous equality holds for
corresponding classes of operators in case of jf = B(J^) (see [6, 14]).

The next theorem extends the above results to the general semifinite
case. For a normal operator x in ^#, let σ/(x) be the set of all aeσ(x)
such that τ(eDr(a)(x)) < oo for some r > 0, where Dr(a) is the open
disk of center a and radius r. When jf = B(β?),σ(x)\σf(x) is the
essential spectrum of x.

THEOREM 2.1. Assume that Jf is a a-finite semifinite factor. Then
the equality

holds for every pair of normal operators X J G / satisfying one of the
following conditions:

(1) x andy are commuting,
(2) σf(x) = 0or σf{y) = 0,
(3) σ(x) andσ(y) are included in parallel straight lines Lx andLy re-

spectively (in particular, x andy are self adjoint operators plus scalars)y

(4) σ(x) andσ(y) are included in perpendicular straight lines Lx and
Ly respectively (in particular, x is selfadjoint and y is skew-adjoint),
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(5) σ(x) and σ(y) are included in cocentric circles Cx and Cy respec-
tively {in particular, x and y are scalar multiples ofunitarίes).

Proof. It suffices by Theorem 1.4 to prove the inequality ||x — y\\ >
δ(x,y). We may assume δ(x,y) > 0. In the following proof of this
inequality, Jί may be an arbitrary semifinite von Neumann algebra.

Case (1) can be shown as [14, Proposition 2.3].

Case (2). Assume θf[x) — 0 . Let 0 < r < δ(x,y). Then there is
an open set V c C such that either τ(ey(x)) > τ(eVr(y)) or τ(ey(y)) >
τ{eVr(x)). When τ(ev(x)) > τ(eVr(y)), taking γ e V n σ(x) and ε > 0
with Dε(γ) c V, we have by θf(x) = 0

τ(eDε{γ)(x)) = oo > τ(eVr(y)) > τ{eDε+r[γ)(y)).

Hence eDε^(x) Λ eDc+r^y)(y)^ Φ 0. Taking a unit vector ξ in the range
of this nonzero projection, we get

II* - y I I > ||0> - y)ζII - | | ( * - v)ξ\\ > (* + r) - e = r.

When τ(ev(y)) > τ(eVr(x))y since V Dσ(y) φ 0 and VrΠσ(x) = 0
by σ/(x) = 0, it follows that ||x - y\\ > h(σ(x),σ(y)) > r. Thus
\\x-y\\ >δ(x,y).

Case (3). Multiplying x and y by a nonzero scalar, we may assume
that Lx and Ly are parallel to the real line. For two points a and
a' on Lx (or L y), the open interval on Lx (or Ly) with end points a
and α7 is denoted by (α,α'). Here let (α,α ;) = 0 unless α' is on the
right-side of a. We first show that δ(x,y) is equal to the infimum of
r > 0 such that τ(ej(x)) < τ(ejr(y)) for every bounded open interval
/ on Lx and τ(ej(y)) < τ(ejr(x)) for every bounded open interval /
on Ly. Let d be this infimum and do the distance between Lx and
Ly. Then it is immediately seen that do < d < δ(x,y). So we need
to check that if r > do and τ{ej{x)) < τ(eIr(y)) for every bounded
open interval / on Lx, then τ(βy(x)) < τ(eVr(y)) for every open set
V c C. For any bounded open set F C C , ί̂  n Ly is the disjoint
countable union of open intervals Jn = (βn,β'n). Let an (resp. a'n) be
the right-hand (resp. left-hand) point of two intersections of Lx with
Cr(βn) (resp. Cr(βf

n)), where Cr(γ) denotes the circle of center γ and
radius r. Define In = (an,a'n). Then VnLx C\JnIn. In fact, for each
γ eVC\LX, let β and β' be two intersections of Ly with Cr(y). Since
(β, β1) Q VrΓ\Ly, (β, β!) is included in some Jn, so γ G /«. Moreover
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the In are mutually disjoint and {In)r C\Ly cjn by definition. Hence

τ{ev{x)) <Στ{eIn{x)) <Στ{e{In)r{y))
n

Thus δ(x,y) = d is verified.
Now suppose \\x - y\\ < δ(x,y) on the contrary and let \\x - y\\ <

r < δ(x,y). By the fact shown above, we assume without loss of
generality that τ(e/(x)) > τ(ejr(y)) for some open interval / = {a,a')
on Lx. Since

do<h(σ(x),σ(y))<\\x-y\\<r,

Ir Π Ly is an open interval (/?,/?') and the length of aβ (also a1β1) is
r {aβ denotes the line segment joining a and β). When Lx = Ly, let
γ be the midpoint of αά7. Otherwise the lines aβ and a!β' meet at
some γ. Let s be the length of Ja (also γaf). Then

ICDs(γ), (Ly\Ir)nDs+r(γ) = 0.

Taking a unit vector ζ in the range of ej(x) Λ ej^y)1, we get

II* - yII > \\{y - y)€ll - IK* - y)ίII > (^ + r) - s = r,

a contradiction.

(4). Transforming Λ: and y by a linear function, we may as-
sume that x is selfadjoint and y is skew-adjoint. Let d be the infimum
of r > 0 such that for every 0 < s < r

(ϋ) τ(%, [ )

Given r > 0, suppose that the above (i) holds for every 0 < s < r.
Letting s = r, we get ?(%,<»)(M)) = 0 F° Γ anY ° P e n s e t ^ ^ C,
let 5 = inf{|ί|: t e V n R}'. When 5 > r,τ(ev(x)) = 0 <
Otherwise we have

since i(-Vr2 - s2,Vr2 - s2) C Vr Π /R. Conversely suppose that
τ(eκ(*)) ^ τ(^κΓ(};)) for every open set F C C . For each t > r and
0 < s < t, there is an open set V c C such that

Vr Π IR C i(-
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and hence

τ(^,oo)(M)) < τ(ev(x))

< τ(eVr(y)) < τ(e[0VΪT^-2)(\y\)).

Together with the same argument where x and y are exchanged, we
obtain δ(x,y) = d.

Now let 0 < r < δ(x,y). Then there exists an s e [0,r] for which
either (i) or (ii) above is violated. If (i) is false, then a unit vector
ξ can be chosen in the range of e[s^(\x\) Λ ̂ / ^ 2 5 θ O ) ( M ) SO, as in
[41], we have by (x - y)* = x + y

\\χ - y\\2 = ^{\\χ - y\\2 + \\χ + y\\2}

> ^{\\(χ -y)ξ\\2 + \\(χ + y)ξ\\2}

implying \\x-y\\ >δ(x,y).

Case (5). This will be proved in a manner analogous to the case
(3). Moreover it should be noted that the idea of proof is essentially
the same as that used in [21] for unitary matrices. For α,α' e Cx

(or Cy), the open arc joining a and a1 counter-clockwise on Cx (or
Cy) is denoted by (α,α'). Let d be the infimum of r > 0 such that
τ(βj(x)) < τ(ejr(y)) for every open arc / on Cx and τ(ej(y)) < τ(ejr(x))
for every open arc / on Cy. Also let do = \rx - ry\ and d\ = rx + ry

where rx and ry are the radii of Cx and Cy, respectively. Then it
is immediate that d0 < d < δ(x,y) < d\. To show δ(x,y) = d, it
suffices to check that if do < r < d\ and τ(ej(x)) < τ(eIr(y)) for every
open arc / on Cx, then τ(ey(x)) < τ(eγr(y)) for every open set V c C.
For any open set V C C, Vr Π Cy is the disjoint countable union of
open arcs Jn = (βn,β'n). Let an (resp. a!n) be the end point (resp.
start point) of the arc on Cx which joins two intersections of Cx with
Cr{βn) (resp. Cr(β'n)) and lies on the side near βn (resp. β'n). Define
In = (an,a'n) if the segments anβn and af

nβ'n do not intersect, and
In — 0 if they do. Then, as in case (3), V n Cx c \JnIn (disjoint
union) and (In)r ΠCy C Jn, so that we get τ(ev(x)) < τ(eyr(y)). Thus
δ{x,y) = d.

Now suppose that \\x -y\\ < r < δ(x,y) and so τ(ej(x)) > τ(eir(y))
for some open arc / = (α,α ;) on C x . Since

do<h(σ(x),σ(y))<\\x-y\\<r,
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Ir n Cy is an open arc (/?,/?') and the length of aβ (also a'β1) is r.
Assume that the lines aβ and oίβ1 meet at some y, and let s be the
shorter length of fa and y/?. Then either

ICDs(γ), (Cy\Ir)nDs+r(γ) = 0,

or
/n/)J+Γ(y) = 0, cy\/r cAOO

In either cases, as in (3) we get ||Λ: — y|| > r, a contradiction. When
the lines α/? and α'/?' are parallel, we have a contradiction as well by
taking a point γ far enough on the line aβ. π

In the above proof, various new expressions of δ(x9y) have been
given for cases (3)-(5) of Theorem 2.1. Those may be useful in the
computation of dist(V(jc),2f(y)).

3. Submajorizations for spectral scales. A densely defined closed
operator x affiliated with Jt is said to be τ-measurable if there is,
for each ε > 0, a projection e in Jt such that e^ Q 3f(χ) and
τ ^ ) < ε. We denote by ^f the set of all τ-measurable operators
affiliated with jf, which becomes a complete Hausdorff topological
*-algebra in the measure topology (see [34, 42]). For each x e J?
and 0 < p < oo, the ZA(quasi-)norm \\x\\p (e [0,cx)]) of x is defined
by \\χ\\p = τ(\xψ)χlP when 0 < p < oo and HxlU = ||x||. Then the
noncommutative Z/-space LP(J?) = LP{Jt\τ) on (Jf,r) is given by
i 7 ( ^ ) = {x e J\ \x\p < oo}. When 1 < p < oo, Z / ( ^ ) is a Ba-
nach space with the norm || \\p (see [15, 34, 39, 46]). Moreover we
denote by 6 the set of all x e J? such that τ(e(5 o o)(|x|)) < oo for
every s > 0. Then 6 is the closure of LP{Jt) in the measure topology
where 0 < p < oo. If τ(l) < oo, then 6 = Jt which is the set of all
densely defined closed operators affiliated with Jt. In particular when
Jt = B ( ^ ) , Lp{Jί) is the Schatten-von Neumann /?-class and 6 is the
algebra of all compact operators on ^ . For each subspace & of Λf,
the set of all selfadjoint (resp. positive selfadjoint) operators in S* is
denoted by S?sa (resp. -2^).

For each X G / and t > 0, the generalized s-number μt(x) is defined
by

/ι,(x) = inf{j > 0: τ(e ( j > o o )(|x|)) < t}.

Denote simply by μ(x) the function t \-> βt{x) on (0,oo) into [0,oo).
A detailed exposition on generalized s-numbers is found in [17] (also
[35, 46]). When τ(l) < oo, for x e ^sa we define

λ t ( x ) = i n f { s e R : τ ( e { S i O θ ) ( x ) ) < t } , 0 < t < τ ( l ) ,
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and call it the spectral scale of x following [36]. Furthermore define
λt(x) = -λt(-x), i.e. λt(x) = λτw-t-oίx) for 0 < t < τ(l). The
function t κ-> λt{x) (resp. t \-> λt(x)) on (0, τ(l)) into R is denoted by
λ(x) (resp. λ(x)) which is non-increasing (resp. non-decreasing) and
right-continuous. Even when τ(l) is not necessarily finite, for x e JtSa
with the Jordan decomposition x — x+ — x_, we define the functions
λ(x) and λ(x) on R into R as follows:

ί
μt(x+), t>0,

0, ί = 0,

-μ-t(x-), ί < 0 ,

ί -μt(x-)> t>0,

0, ί = 0,

//_,(*+), ί < 0 .
An interval of R is considered as the measure space with Lebesgue
measure. For 0 < p < oo, we have \\x\\p = \\μ(x)\\p for all x e Jί and
II^IIP = II*(*)IIP (= ll^Wlk i f τ ( ! ) < oo) for all x e Jtsa (see [17, 24]).

In particular, let Jΐ be commutative, that is, J! — L°°(Ω) and
τ(/) = jΩfdm on a localizable measure space (Ω, m). Then ^f con-
sists of all measurable functions on Ω bounded except on m-finite sets.
For a real measurable function / on Ω, the decreasing rearrangement
f* of / is given by

f * ( t ) = i n f { j e R : m ( { ω e Ω : f ( ω ) > s } ) < t } 9 0 < t < m ( Ω ) .
Then μt(f) = |/|*(ί) for every / e J and 0 < t < m(Ω). When
m(Ω) < oo,Λ(/) = /* for every real measurable function / on Ω. In
this section, we shall discuss (sub)majorizations of functions relevant
to the spectral scales of τ-measurable selfadjoint operators. So we
define the notions of majorization and submajorization in the com-
mutative case (see [22-24] for the formulation and characterizations
of (sub)majorization in the noncommutative case). For nonnegative
measurable functions / and g on Ω , / is said to be submajorized by
g, in notation / -< g, if /0

5 /*(ί) dt < jΓ0

5 g*(t) dt for all s e (0, m(Ω)).
Furthermore, for real f9gE Lι(Ω) where m(Ω) < oo,/ is said to
be majorized by g, in notation / -< g, if /0

5 /*(ί) rfί < /0

5 g*(t) dt for
all x e (0,m(Ω)) and 5™m f*{t)dt = f™{Q)g*(t)dt (i.e. /Ω/rfw =
fΩgdm). In the following discussions, (0,τ(l)) or R will be taken
asΩ.
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Using the real interpolation method, we showed in [24] that if τ( 1) <
oo and x,y e Lx(jr)sa, then

λ{x)-λ{y)<λ{x-y)<λ{x)-λ{y).

This is the extension of the Lidskii-Wielandt theorem on the eigenval-
ues of Hermitian matrices. By virtue of the above majorizations, we
shall establish the next theorem.

THEOREM 3.1. (1) Ifτ(l) < oo andx,y e ^ , then

\λ{x)-λ{y)\<\λ{x-y)\<\λ{x)-λ{y)\.

(2) Ifτ(l) = oo and x,y G 65fl, then

\λ(x) -λ(y)\ -< \λ(x -y)\ -< \λ(x) -λ(y)\.

We first give the following elementary lemma.

LEMMA 3.2. (1) Ifτ( 1) < oo and {xn} is a sequence in Jfsa converging
to x G Jtsa in the measure topology, then λt(x) = limn_oo λt(xn) for
every t e (0, τ(l)) at which λ(x) is continuous.

(2) For every xeJsa,μ{x) = \λ(x)\* (= |A(JC)|* ifτ(l) < oo).

Proof. (1) It follows as [17, L e m m a 2.5(v)] t h a t if y,z G Jfsa a n d
s,t,s + te ( O , τ ( l ) ) , t h e n

λs+t(y + z)<λs(y)+λt(z).

Also λt(y) < μt(y) for every y e Jtsa and t G (0, τ(l)). Hence, for each
t G (0,τ(l)) and ε > 0 with ί i β e ( O , τ ( l ) ) , we have

λt+e(x) < λt(xn) + Me(x - Xn)>

λt(Xn) < λί-ε(x) + με(x - Xn).

Since lim -̂̂ oo με(x - xn) = 0 (see [17, Lemma 3.1]), we get the asser-
tion letting n -» oo and then ε —• 0 in the above.

(2) Denoting Lebesgue measure by m, we have for s > 0

m({ ί€R: !*,(*)[>*})

= m({t > 0: μt(x+) > s}) + m({t > 0: μt(x-) > s})

= τ(e(S9θθ)(\x\))9

implying μ(x) = \λ(x)\*. When τ(l) < oo, also μ(x) = \λ(x)\* is easily
verified. α



274 FUMIO HIAI AND YOSHIHIRO NAKAMURA

Proof of Theorem 3.1. (1) If x9y G Lι(Jt)sa9 then the desired sub-
majorizations follow from the majorizations mentioned before Theo-
rem 3.1 and [11, Corollary 2.6]. Let x,y G Jtsa. We prove the first
submajorization. Unless λ(x -y)e Lι(0, τ(l)) or equivalently unless
x - y G Lι(Jf), then there is nothing to do, because

Γ \λ(x - y)\*(t) dt = oo for all s > 0
Jo

(see [38, Lemma 2.2]). So assume x - y G L ^ Λ Γ ) and choose
a sequence {xπ} in Lx(jr)sa converging to x in the measure topol-
ogy. Letting yn = xn - x + y, we have {>>„} in Lx(J?)sa converging
to y in the measure topology. Using Lemma 3.1(1) twice, we get
λt{Xn) - λt{yn) -> Λί(x) - λt(y) and hence |A(xπ) - λ{yn)\*(t) ->
μ(x) - λ(y)\*(ή for almost every ί G (0, τ(l)). Since μ(xw) - λ{yn)\ -<

|A(x — y)| for all «, the desired submajorization follows from Fatou's
lemma.

To show the second submajorization, assume λ(x) - λ(y) G
Lι(09 τ(l)). Then both λ(x) and λ(y) are in Lι(09 τ(l)), because λ(x)
is non-increasing while λ(y) is non-decreasing. Hence X J G L 1 ^ ) ,
so the conclusion is already verified.

(2) For n > 1, let xn = xe(ι/riyOo)(\x\) and yw = ye{ψ9θθ)(\y\). Note
that Hiu(zi) - μ(z2)\\oo < \\z\ - z2\\oo for all zuz2^Jί (see the proof
of [17, Proposition 2.7]). By Lemma 3.2(2), we have

= \\μ(χn-yn) - μ(χ-y)\\oo < \\(χn-yn) - (x -y)\\oo < 2/n,

since \\xn -x| |oo < 1/Λ and \\yn -y\\oo < l/n. Also

< \\(λ(xn) -λ(yn)) - (λ(x) -l(y))||oo < 2//ι,

since iμfo) -A(x)||oo < 1/n and \\λ(yn) -λ(y)\\oo < ί/n. Similarly

\\\λ(xn) -1(^)1* - ^ ) -l(y)IΊIoo < 2/n.

Because τ(e(1/Λ2?oo)(|x|)) < oo and τ(e{ι/niOθ)(\y\)) < oo from x,y e β,
we can choose a projection ^ (depending on n) in Λf so that

x|) V e(1/Λ7>oo)(|y|)) < τ(e) < oo.

Since xn,yn€ (^?e)7a> ^ e assertion (1) implies that

| -< |λ(xn - yπ) | < \λ(xn) -
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where λ(xn) and others are defined on (0,τ(e)). By Lemma 3.2(2),

\λ(xn-yn)\*(t), 0<t<τ(e),

0, t > τ(e).

Furthermore, noting that λt(xn) = λt(yn) = 0 at / = τ(e)/2, we have

λt(Xn)-λ,(y»), 0<t<τ(e)/2,

λt(xn) -λt(yn) = { λτ{e)-.t_0(xn) - λτ{e)-t-0(yn), - τ(e)/2 <t<0,

0, otherwise,

λt(Xn)-λt{yn), 0<t<τ(e)/2,

λt(Xn) -λt(yn) = { λiω-t-oiXn) - Xj^-t-otyn), ~ Φ)/2 < t < 0,

0, otherwise,

so that

nt), 0<t< r(e),
Wx ) -λ(v )\*(t) -

Xnt), 0<t< τ(e),

These all together imply that

\λ(xn) -λ(yn)\ < \λ(xn-yn)\ < \λ(xn) -λ(yn)\

for all n. Therefore we get the desired conclusion by passing to the
limit as n —• oo. D

REMARK 3.3. (1) In view of Lemma 3.2(2) and [40, p. 202], the
first submajorizations in (1) and (2) of Theorem 3.1 are described as
follows: for each Borel subset E of (0, τ(l)),

/ \λt{x)-λt{y)\dt< Γ{E μt(x-y)dt,
JE JO

and for each Borel subset E and F of (0, oo),

/ \μt(x+)-μt(y+)\dt+ ί \μt(x-)-μt{y-)\dt
JE JF

rm{E)+m{F)

< / μt(x-y)dt.
Jo

An analogous result was earlier given in [31, Theorem 5.1] for self ad-
joint compact operators in case of Jί -
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(2) In [24], besides the majorizations before Theorem 3.1, we estab-
lished \μ(x) - μ(y)\ -< μ(x-y) for every x E / and y e 6. Restricted

to x,y G &sa with τ ( l ) = °°> the first submajorization in Theorem
3.1(2) improves the above because

-< \λ(x) -λ(y)\* •< \l(x - y)\* = μ(x - y).

4. LP -distance between unitary orbits of self adjoint operators. In this
section, we shall exactly estimate the //-distance infwG^ ||x - uyu*\\p

and the anti-Z/-distance supue^ \\x — uyu*\\p for τ-measurable selfad-
joint operators x and y in terms of their spectral scales.

To state and prove our theorems on LP-distances, we here introduce
the notion of spectral equivalence between operators in &sa. Given
x,y e &sa, we say that x is spectrally equivalent to y9 in notation x « y,
if λt(x) =λt(y) for all/ e R. When τ(l) < oo, this is equivalent to
λt(x)=λt(y)fora\\te(0,τ(l)).

LEMMA 4.1. Assume that Jί is a semifinite factor and x,y e &sa- If
x « y, then there exists a sequence {un} in % such that \x — unyu*γ^p —>
0 for all 1 <p < oo.

Proof. For a countable partition Δ: 0 < < ί_2 < ί-i < to < t\ <
ti < < oo of (0, oo) where t-n —• 0 and tn —• oo as n —> oo, define

* Δ =

/=—oo /=—oo
oo oo

ι=-oo ι=-oo

From x,y e 65 Λ, it is easy to see that, for each ε > 0, there exists a
partition Δ as above for which ||xΔ - x\\p < ε and ||yΔ — y\\p < ε hold
for p = 1, oo. Let

Pi = *(*,-!,/,](*+)> Pi = e^Mix-),

Qi = e{ti_uti]{y+)9 q~ =e{ίι_ι>tι](y-).

Since x,y e Θsa and x « j ; , we have τ(/?/) = τ(ί/) < oo and τ(p~) =
τ(Qi) < °° f°Γ aH '• Therefore, since Jt is a factor, pz ~ /̂ and
/?;~ ~ q~ in the Murray-von Neumann sense for all /. First assume
that τ(e(oj00)(M)) < oo. Then e^y(x) ~ e^{y) as well. So there exists
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a w e ^ such that β{0}(x) = ue{0}(y)u*,Pi = w<?/W* and p~ = uq~u*
for all /. Hence xA = uyAu*, implying

II* - uyu*\\p < \\x - xA\\p + \\yA-y\\P <2e, /? = l,oo.

Next assume that τ(e^9θo^(\x\)) = oo. We may assume without loss

of generality that Σ/=Loo τ(P^ = °° Choose integers 0 > n\ > ni\ >

nι > m2 > such that tnk < ε/2k and

nk nk

i=rrik+l ί=mk

Now we take projections p\ and q\ in Jt for / = - 1 , - 2 , . . . as follows.
Let p\ = q\ = 0 for n\ < i < 0 and n^+ 1 < / < m^, A: > 1. Let /?• = /?/
and ήfί = Qi for mk < i < nk,k > 1. Then p ^ < pmk and ^ < ^ m ,
can be taken so that

nk nk

i=wik i—wιk

This construction gives τ{p[) = τ(^) ?τ(ΣΓ=-oo^) = τ(ΣΓ=-oo«/) =
00> II Σ/L-00 tiPiWp < ε a n d II Σ/L-00 ^ % < e forp = 1,00. Here note
that the above construction is valid in the type I case (i.e. Jf = B(β?)
with the canonical trace) as well as in the type II case. Defining

- 1 - 1 00 00

Δ̂ = ̂ Δ - Σ tiPi = Σ tfoi -Pi) + Σ *iPi ~ Σ liPi '
/=—00 /=—00 /=0 /=—00

— 1 — 1 00 00

^Λ = ^Δ ~ / tiQi = / ti\Qi — Qi) + / tiQi — / liQi 5/ Δ / f l Z—• '^ί Z—̂  ί V ^* ^ / y Z—/ ' ^ ' Z^/ * î '
/=—00 /=—00 /=0 /=—00

we get ||JC^ - x\p < 2ε and ||;ŷ  - y\\P < 2ε forp = l,oo. Because
Pi-p'i^Qi-q'i for/= -1,-2, . . . and

- 1 - 1

there exists a i i E ^ such that x^ = uyr

Au* and hence ||JC - uyu*\\p <
4ε,p = 1, oo. The above assertion shows that there is a sequence {un}
in ^ such that ||JC - unyu^\\p —• 05p = l ?oo. Since

\\x - unyu*n\\p < \\x - unyu*n\\^l/p\\x - unyu*n\\\/p - 0, 1 < p < oo,

the lemma is proved. D
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REMARK 4.2. Let Jΐ be a semifinite factor and x,y e &sa Then
x « y if and only if x is in the closure oϊ%{y) in the measure topology.
In fact, if the latter holds, then it follows from [43] that x+ (resp. X-) is
in the closure of %{y+) (resp. g^(y_)) in the measure topology. Hence
x « y by [22, Theorem 3.4(1)]. The converse is obvious from Lemma
4.1. Moreover, by [29, Theorem 4.4] (also [43]) and [22, Theorem
3.4(2)], if y G Lp{^) where 1 < p < oo, then x « y if and only if x is
in the || 1^-closure of

We are now in a position to obtain the theorems.

THEOREM 4.3. Assume that Jt is a finite factor. Ifx,y G J?sa, then
for 1 < p < oo

inf ||x - uyu*\\p = ||λ(x) - A(y)||^,

sup ||x - uyu*\\p = \\λ(x) - λ(y)\\p.

Furthermore there exist y'9y" G Jίsa such that y' « y9y" « y,

||x - / | | p = ||Λ(x) - λ(y)\\p and \\x - / ' | | p = ||Λ(x) - λ(y)\\p for all
1 < P < oo.

Proof. For 1 < /? < oo, because A i-> λp is an increasing convex
function on [0,oo), by Theorem 3.1(1) and [38, Theorem 3.1] we have

\λ{x)-λ{y)ψ < \λ(x-y)ψ < \λ{x)-λ{y)\P,

so that

\\λ(x) - λ(y)\\p < \\x-y\\p < \\λ(x)-λ(y)\\p.

The above inequalities are valid also for p = oo by Theorem 3.1(1).
Since λ(y) = λ(uyu*) and λ(y) = λ{uyu*) for ue%,

M\\x-uyu*\\p>\\λ{x)-λ{y)\\pt

svφ\\x-uyu*\\p<\\λ{x)-l{y)\\p.

In the following, assume that Jt is a factor of type IIi and τ(l) = 1
(the theorem is well known when Jt = Mn). Let x = f^sdβs be
the spectral decomposition of x (i.e. es = e^^^x)), and define x =
/ ^ τ(^(5 oo)(x)) ύfe5. Then x is an operator in J[ with 0 < x < 1. Let

j be the spectral decomposition of x. Since

έt = e[λί{xhoo)(x), 0<t< 1,
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we get x = JQ λt(x)det (the Schmidt decomposition [35]). Now let
r\, r2,... be an enumeration of all r e R with β{r}{x) Φ 0. Let t^ =
τ(<V*,oo)(*)) and t'k = τ(^ > o o ) (x) ) . Then

For each fc, we can choose an increasing family {p\ ^: 0 < t < t'k — t^}

of projections such that pfΊh = e{rk}{x) and τ(p^) = t for 0 < t <

t'k-tk. Letting

et,

we have an increasing family {et: 0 < t < 1} such that τ(^) = t
for 0 < ί < 1 and x = JjJ λ,(je) */?,. Define y' = fiλt(y)det and

Ĵ " = foUy)det. Since λ(/) = Λ(y) and Λ(y") = W;;))* = Λ(y),
by Lemma 4.1 there are sequences {un} and {vn} in ^ such that
11/ - unyu*n\\p -+ 0 and | |/' - vnyvl\\p -> 0 for 1 < p < oo. Hence

™l Wx ~ uyu*\\p < limmf \\x - unyu*n\\p < \\x -y'\\p,

sup \\x - uyu*\\p > limsup \\x - vnyv*\\p > \\x - y"\\p.imsu
n-*oo

Moreover it is immediate from definitions that

\\x-y'\\p = U(x)-λ(y)\\p and ||x -y% = \\λ(x) -λ(y)\\p.

These complete the proof. •

THEOREM 4.4. Assume that J! is an infinite semifinite factor. If
x,y € &sa> then for 1 < p < oo

mf.\\x-uyu*\\p = \\λ(x)-λ(y)\\p,

snp\\x-uyu*\\p = \\λ(x)-λ(y)\\p.

Furthermore there exist xi\y\y" € &sa such that xr « x9y' « yyy" «
y, ||x' - / | | p = \\λ(x) -λ(y)\\p and \\x' - y'% = \\λ(x) -λ(y)\\p for all
1 < P < oo.

Proof. By Theorem 3.1(2) and [38, Theorem 3.1], we have for 1 <
p < oo

< \\χ-y\\p < \Wχ)
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and thus
inf.\\x-uyu*\\p>\\λ(x)-λ(y)\\p,

sup\\x-uyu*\\p<\\λ(x)-λ(y)\\p.

Now assume that Jf is a factor of type 11^ (the type I ^ case is anal-
ogously proved). We choose two increasing families {et: t > 0} and
{ft* t > 0} of projections such that τ{et) = τ(ft) = t for t > 0 and

V^o/r Define

x
roo roo

1 = / μt(x+) det - / μ,(x_) dfu

roo roo

y1 = / μt(y+) det - / μt{yJ) dfu
Jo Jo

roo roo

y"= μ,(y+)dft- μt(y~)det.
Jo Jo

Then \\x'-y'\\p = \\λ(x) -λ(y)\\p and \\x' - y"\\p = \\λ(x) -λ(y)\\p,
1 < p < oo. Since A(x') = λ(x) and A(y') = λ(>;") = λ(y), by
Lemma 4.1 there are sequences {un},{υn} and {wn} in 2̂  such that
||x' - unxu*n\\p -> 0, | | / - ϋ,,yv*||p - 0 and \\y" - wnyw*n\\p - 0 for
1 < /? < oo. Therefore

inf | |* - uyu*\\p < liminf \\unxu*n - vnyv*\\p < \\x' - y'\\p,
n—>oo

sup||x - uyu*\\p > limsup \\unxu*n - wnyw*\\p > \\x'-y"\\P9

% n-^oo

completing the proof. D

REMARK 4.5. (1) In particular when x,y e 6 + , the formulas in
Theorem 4.4 are written as follows: for 1 < p < oo

inf ||x - uyu*\\p = \\μ(x) - μ{y)\\p,

Here and in Theorem 4.6 below, (||x||p + ||y||p)1///? whenp = oo means

max{||x||oc?||y||oo}.
(2) Under the assumption of Theorem 4.4, it is not difficult to see

that for each x,y e &Sa there exists either xf such that x1 « JC and
||x' - ylh = ||A(x) - iOOHi (resp. ||x' - yU = |^(x) - A(y)||oc) or /
such that y' « y and ||x - y'lli = ||A(^) - W i l l (resp. ||x - / I U =
||A(JC) -A(y)||oo). However, for 1 < p < oo (resp. 1 < /? < oo),
there are x,y e &sa for which we obtain neither x1 such that x' « x
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and \\x'-y\\p = \\λ(x) - λ(y)\\p (resp. \\x' - y\\p = \\λ(x) - λ(y)\\p)
nor y' such that y' « y and \\x - y'\\p = \\λ(x) - λ(y)\\p (resp.
\\x - y'\\p = \\λ(x) -λ(y)\\p). For instance, for 1 < p < oo, let x
be strictly positive and y be strictly negative in Lp(Jί). Suppose that
xΉx and \\x'-y\\p = \\λ(x) -λ(y)\\p. Then \\x> -yfp = \\x% + \\y\\p

p>

showing x'y = 0 by [29, Proposition 6.3], so we get x = 0, a contra-
diction. The argument for y' is analogous.

(3) We note that δ(x,y) = \\λ(x) - λ(y)\\oo for x,y e Jsa with
τ(l) < oo and δ(x,y) = \\λ(x) -A(y)||oo for x,y e&sa with τ(l) = oo
(the definition of δ{x,y) is available for x,y e J^sa)- These equalities
follow from Theorem 2.1(3), 4.3 and 4.4 when x and y are bounded
and Jf is a factor. But it is rather easy to check them directly without
the factor assumption.

Ando and Bhatia [3] obtained some inequalities on LP -distances for
Hermitian and skew-Hermitian matrices by a method of majorization
based on the Lidskii-Wielandt theorem. In the following theorem,
by the same method as [3], we estimate LP -distances between unitary
orbits of τ-measurable self adjoint and skew-adjoint operators. Here
the bounds for inΐue% \\x - iuyu*\\p in (1) and supwG^||x - iuyu*\\p in
(2) are best even for 2 x 2 matrices as noted in [3].

THEOREM 4.6. Assume that <£ is a semifinίte factor and x,y e 6 5 α.
(1) ForO<p <2,

mΐ\\x-iuyu*\\p>

\\{λ(\x\)2+λ(\y\)2y/2\\p if ̂  is finite,

\\p

p)
χlp ifJ? is infinite.

(2) For 2 < p < oo,

\\{λ(\x\)2 + λ(\y\)2}ι/2\\p if\£ is finite,

sup||,-/̂ Ί|p = { »

inf ||χ iuyu*\\p - ^ ( | | ^ ^ + ^ ) X j p .f^ & . ^ . ^

x - iuyu \\p <

Proof. If either x or y is not in Z/7 («,#), then the desired equalities
and inequalities hold with the both sides being oo. So we assume
x,y e LP(Jt)sa. First let ̂ # be finite and z = x - iy. By the extension
[24] of the Lidskii-Wielandt theorem, we get

λ(\x\)2 + λ(\y\)2 < λ(x2+y2) < λ(\x\)2 + λ(\y\)2,

{λ(\z\)2 + λ(\z\)2}/2 -< λ(x2 + y2) < λ(\z\)2,
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since x2+y2 = (z*z + zz*)/2 and λ(z*z) = λ(zz*) = λ([z\)2 (see [24]).
Hence

λ{\x\Ϋ+λ{\y\)2<λ(\z\)2,

Because λ *-* λpl2 on [0,oo) is concave when 0 < p < 2 and convex
when 2 < p < oo, by [11, Theorem 2.5] we have for 0 < p < 2

λ(\y\)2Ϋ/2\\P>U(\ z\ \\P,

and for 2 < p < oo the reversed inequalities which are valid also for
p = oo. Moreover we have for 0 < p < 2

\\{λ(\z\)2 + λ(\z\)ψ2\\p < {\\λ(\z\ψp + \\λ(\z\Wp}l/p,

and for 2 < p < oo the reversed inequality. Therefore, since ||A(|z|)||p

= P ( I Z I ) I I P = \\Z\\P>
 t n e following inequalities are obtained: for 0 <

P<2

2χl2-χl"\\{λ{\x\)2+λ{\y\)2γl2\\p < \\z\\p < \\{λ(\x\)2+λ(\y\)ψ2\\P,

and for 2 < p < oo

\\{λ(\x\)2+λ(\y\)ψ\ < \\z\\p <2ι/2-ι/η\{λ(\x\)2 +λ(\y\)2γ/2\\p.

On the other hand, it is readily seen that if x and y have finite spectra,
then there exist x\γ G J£sα such that x1« x9y' « y and

Hence, approximating x and y by operators with finite spectra, we get

inf ||x - iuyu'Wp < \\{λ(\x\)2+M\y\)2}ι/2\\p < ™P\\* ~ iuyu*\\p,

so that the theorem in the finite case is proved.
Next let J[ be infinite. For n > 1, let xn,yn and e be as in the

proof of Theorem 3.1(2). Since xyy e LP(J?)9 we get \\xn - x\\p —>• 0,
\\yn —y\\p-+ 0? a n < i hence by [24, Corollary 3]

= Urn \\{μ(xn)
2 + μ(yn)

2}l/2\\P = \\{μ(x)2 + μ(y)2}l/2\\P,

^i) 2 } 1 / 2 ! ! ! ,

\\yn\\p

p) = (\\χ\\p

p + \\y\\p

PΫ
lP,
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where A(|jcra|) and others are defined on (0,τ(e)). Thus the desired
estimates are obtained by applying the assertions in the finite case to
xn ,yn e Lp{jre)sa and then by passing to the limits as n -> oo. D

5. LP-distance between unitary orbits in Haagerup LP-spaces. In this
section, we shall obtain some formulas of LP -distance and anti-Z/-
distance between unitary orbits in Haagerup //-spaces, i.e. noncom-
mutative ZAspaces over general von Neumann algebras introduced in
[19].

We begin with a very brief survey on Haagerup LP -spaces (see [42]
for details). Let Jt be a general von Neumann algebra with a faith-
ful normal semifinite weight φ$. Denote by JV the crossed product
/ V o R which admits the canonical faithful normal semifinite trace
τ and the dual action 05,s G R, satisfying τ o θs = e~sτ,s eR. For
0 < p < oo, the Haagerup Lp-space LP(Jf) = LP{Jt\ φo) is defined by

LP(JT) = {xeJ": θs{x) = e~s'px, s e R}.

Here Jt = L°°(Jί). For each ψ G Λζ+, a unique hψ G JF+ is given by
ψ = τ(hψ') where ψ is the dual weight of ψ. The mapping ψ ι-> hψ

is extended to a linear bijection from Jί* onto Lλ{Jt)9 and so the
linear functional tr on Lx{Jί) is defined by Xr(hψ) = ψ(l)9 ψ G Jΐ*.
For 0 < p < oo, the Haagerup (quasi-)norm ||JC||P of x G LP(Jt) is
defined by \\x\\p = \x(\xψ)χlp. When 1 < p < oo,LP{Jt) is a Banach
space with the norm || | |p, and its dual Banach space is Lq(J£) where
\/p + \/q = 1 by the following duality:

(x,y) = tr(xy) (= tτ(yx))9 x G U>{JT),y G Iβ{JT).

In particular, Jt+ = Lx{Jί) by the isometry ψ\-+hψ.
Let LP{Jt)sa (resp. LP{JT)+) denote LP{Jt) nJ"sa (resp. LP{Jt) n

y^_). Note that the support projection s(x) of each x G LP{J?)+ is
in ΛT. The unitary orbit ίί{x) of JC G Z/(^f) is given by %{x) =
{wxw* : w € ^ } where % is the unitaries in Jt. Then 2 (̂jc) is included
in LP(JF) if JC G 2/(^f). The space LP(Jt)9 together with Lp{Jί)+,
is independent of the choice of φo up to isomorphism. Furthermore,
when Jt is semifinite with a faithful normal semifinite trace τ, the
Haagerup //-space LP(Jί\φ§ = τ) coincides with LP(Jί\τ) in the
previous sense.

The next lemma gives general bounds for the distance ||JC - y\p

between x,y e LP(^)sa. The first inequality extends the inequality
established in [29, Lemma 3.3] (also [17, Lemma 5.1]).
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LEMMA 5.1. If I <p<oo and x,y e Lp(^£)sa, then

{\\\χ+\\p-\\yΛP\
p + \\\χ-\\p-\\y-\\p\pΫlP

< \\χ-y\\p < {(\M\P + \\y-\\Pr + (\\χ-\\p + \\y+\\p)pΫ/p-

Proof. First let 1 < p < oo. Since LP{^)sa C &sa where 6 is with
respect to {JV ,τ), Theorem 3.1(2) shows that

f \λ(x) -λ(y)\*(t)dt < f \λ(x-y)\*(t)dt
Jo Jo

< [1\l(x)-λ(y)\*(t)dt.
Jo

By [17, Lemma 4.8],

\\p-\\y-\\p\, t < o ,

-\\p + \\y+\\p), t < o .

Hence, from an easy computation, we get

ίl\λ(x)-λ(y)\*(t)dt
Jo

/ '
Jo

\λ(x)-λ(y)\*(ήdt
Ό

= {(| |x+ | | p + \\y.\\py + (||*_||p + \\y+\\P)p}l/p-

Moreover fo

ι \λ{x - y)\*{t)dt = \\x - y\\p by Lemma 3.2(2) and [17,
Lemma 4.8]. These imply the desired inequalities for 1 < p < oo.

When p = 1, the second inequality is obvious. If ||x+||i > \\y+\\ι
and | |*_| | ,>| |3>-| | i , then

- ll^llil + Ill^-lli - \\y-h\ = W i - blli < II*-
If ll^+lh > II^+HJ and ||ΛΓ-||I < i|y-||i, then

- | |*_||, - ||y+ | |, + ||y_||i = tτ(x-y) < \\x-y\\ι.

Hence the first inequality for p — 1 is proved. D

The next lemma is useful to estimate LP-distances between
and %/(y) for x, y € Lp(J?)sa when Jί is a type IΠi factor.
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LEMMA 5.2. Assume that Jt is a factor of type \l\\. Let e be a
projection in Jt and x,y e Lp(Jί)+, 0 < p < oo, with s(x) < e and
s(y)<e. !f\\x\\p = \\y\\P,then

a£\\x-uyu*\\p = 0,

where %e is the unitaries in Jte.

Proof. First assume 1 < p < oo. By the generalized Powers-StΘrmer
inequality in the appendix, it follows that

II* - uyu*\\p < \\XP - (uyu*)p\\\/p = ||x* - uypu*\\\/p

for all u e %. Because Jte is a factor of type IIIx and \\xp\\\ = \\yp\\\,
considering xp,yp e LX(J?)+ as elements in (Jte)+ we get

inf 11^-1/^*111 = 0

by [13, Theorem 4] which remains valid for any factor of type IΠi.
Hence the desired conclusion is verified when 1 < p < oo. Next
assume 0 < p < 1. By [17, Theorem 4.9(iii)] and Holder's inequality
(see [17, Theorem 4.9(i)]), we get

2p\\χ-y\\p

p

yι/2)(χι/2-yι/2)\\p + \\(χι/2 -yι/2)(χι/2 +yι/2)\\p

This implies that the validity of the conclusion for p follows from that
for 2/7. Thus the lemma is proved. D

THEOREM 5.3. Assume that Jt is a factor of type l\l\. If \ <p <oo
and x,y e Lp{Jί)sai then

inf | | * - uyu*\\p = {|||x+||, - \\y+\\pf + \\\x-\\p - \\y-\\P\
pΫlP,|

sup||x - uyu*\\p = {(Hx+ll, + \\y-\\P)p + (\\x-\\p + \\y+\\P)pΫ/p.

Proof. It suffices by Lemma 5.1 to show the following inequalities
(these are valid for all 0 < p < oc):

(i) i n W ||* - uyu% < {\\\X+\\P - \\y+\\P\
p + \\\x-\\P ~ b - U * } 1 ^

(ii) mPverWx-uyu% > {(\\x4PHy-\\P)
p+ (\\x-\\PHyMp}l/p^

By approximation, we may assume that x+,jc_,y+ and y- are all
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nonzero. From the assumption of Jί, there exists a v E ^ such that
s(x+) = vs(y+)v* and s(x-) = υs(y-)v*. So we can assume in prov-
ing (i) that there are projections e and / in Jt with e _L / such that
s(x+) = s(y+) = e and $(.*_) = s(y~) = / . For each U\ e %e and
u 2 e %Sf, l e t w = u\ + u 2 + (e + f ) 1 . T h e n u e ^ a n d

= tr(\x+-uiy+u\^ +

= \\x+ - uxy+u\\\p

p + \\x- - u2y-u*2\\p

p

Hence, by Lemma 5.2,

inf \\x - uyu*\\ί < inf \\x+ — U\y+u*Ap

n + inf

HΛ X -

U-I

so that we obtain (i). In proving (ii), we can assume as above that there
are projections e and / in Jf with e _L / such that S(JC+) = j(y-) = ^
and s(x-) = j(y+) = / . Then, by Lemma 5.2 again,

%wv\x-uyu*Yp> sup uxy-u\\ψp + sup

II I
= (\\χ+\\p

j \

\\X-\

implying (ii). D

Finally we obtain the formulas of LP -distances for some classes of
X J G LP{Jί) in the general infinite case, which are partial extensions
of Theorems 4.4 (Remark 4.5(1)) and 4.6.

THEOREM 5.4. Assume thatJT is an arbitrary infinite factor.
(1) For every x9y e LP(Jt) where 0 < p < 1,

(2) For every x,y e Lp(Jί)+ where 1 < p < oo,
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(3) For every x,y e LP{Jt)sa where 0 < p < 2,

sup ||x-/iιyiι ||p = (11^ + 11^)^ .

(4) For every X J E LP{Jt)sa where 2 < p < oo,

M||x-iιιyiι | |p = (11^ + 1 1 ^ ) ^ .

We give the next lemma to prove the theorem.

LEMMA 5.5. Assume that Jΐ is an arbitrary infinite factor. For every
x,y e LP{J() where 0 < p < oo, there exist x',y' e LP{^) such that x1

(resp. y1) is in the || \\p-closure of%f(x) (resp. W(y)) and \\x' - y'\\p =

Proof. Let 0 < p < oo and x,y 6 LP{Jί). Defining two projections
e = s{\x\) V5(|JC*|) and / = s(|y|) V J(|J^*|) in Jt9 we choose projections
e1 and / ' in ^f such that e ~ e',f ~ f and e' _L / ' . Then v*v =
e,υv* = e',w*w = / and ww* = f for some partial isometries
v,w e^. Since

||ι;jπ;*||p = | |x | | p and also ||tyyty*||p = \\y\\p. Let x ' = i xt;* and y1 =
;*. Then

Thus it suffices to show that xf (resp. y1) is in the || ^-closure of 9/(x)
(resp. &(y)). A sequence {en} of projections in ^f can be chosen so
that en / e and e^ ~ e'n

L where e'n = venv*. For n > 1, let ^ be a
partial isometry in Jt such that vl

n*v'n= e^ and vf

nv'n* = e'n
±. Letting

WAZ = ven + υ'n, we get un e % and by [17, Theorem 4.9(iii)]

||x ; - unxu*χ < 2?{\\v(x - enxen)vψp + \\un(enxen - x)u'n\\>}

When 1 < p < oo, | | x^ | | p < \\x\\p and x^Λ converges weakly to x since

(x - xen, z) = tr(zx(e - en)) -> 0

for every z e Lq{Jί) where l/p+l/q = 1. Because LP(Jt) is uniformly
convex (this is a consequence of Clarkson-McCarthy inequalities [17]),
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we have ||JC -xen\\p -• 0. When 0 < p < 1, choosing θ with 0 < θ < p,
we have by Holder's inequality

\\χ - χen\\p < \\\x\(e - en)\\p

so that ||JC - xen\\p —> 0 since p/θ > 1. Furthermore ||JC - enx\\p =
\\x* - x*en\\p —• 0. Therefore xf is in the || ||p-closure of W(x). The
assertion for y' is analogously shown. D

Proof of Theorem 5.4. By Lemma 5.5, (1) and (2) follow from [17,
Theorem 4.9(iii)] and Lemma 5.1, respectively. Let x,y e Lp(^)sa.
Since ||JC + iy\\p = \\x - iy\\p, we have by Clarkson-McCarthy inequal-
ities [17]

These and Lemma 5.5 imply (3) and (4). D

When Jt is a factor of type 111 ,̂0 < λ < 1, we have another for-
mulation of Haagerup //-spaces (discrete Lp-spaces) associated with
the discrete decomposition of Jt (see [19, 25]). We can exactly esti-
mate the //-distance and the anti-Z/-distance between unitary orbits
of x,y € LP{J£)sa by using their spectral scales defined in the discrete
ZZ-space. Consequently, the diameter of the closed unitary orbits
space in {x e Lp(^)+: \\x\\p = 1} can be computed, including [12]
as a special case. The details for the type III^ case will be given in a
forthcoming paper by the second named author.

Acknowledgment. We would like to thank Professor H. Kosaki for
informing us of his generalization of the Powers-StΘrmer inequality
and kindly writing it as the appendix of this paper.

Appendix. Generalized Powers-Stermer inequality by Hideki Kosaki
(Department of Mathematics, College of General Education, Kyushu
University, Fukuoka 810, Japan).

For positive compact operators α,&, the inequality

is known as the Powers-StΘrmer inequality, [37]. Here, || H2 and || l̂
denote the Hilbert-Schmidt norm and the trace norm respectively. The
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same inequality for a general von Neumann algebra was obtained in
[5] and [18], and it plays an important role in the theory of standard
form. Similar inequalities in various set-ups have been investigated
by many authors.

Let LP{Jt) be the Haagerup ZAspace described in §5. In this
appendix we will prove the following generalization of the Powers-
StΘrmer inequality.

THEOREM. For positive a,b in LP(JT), we have

\\aθ-bθ\\p/θ<\\a-b\\θ

p,

where 0 < θ < 1 and θ < p < oo.

In [2], Ando proved

k k

Σsj{f{A) - f{B)) < Σsj{f{\A - B\))
7=1 7=1

k

7=1

for positive matrices A,B. Here, Sj is thejth largest eigenvalue and /
is an operator monotone function on [0,oo) satisfying /(0) = 0 (see
[16]). He began with the special case A > B > 0, that is,

k k

7=1 7=1

for positive matrices 2?, C. Replacing sy by the generalized ^-number
μt,t > 0 (see §3) and the partial sum by its continuous analogue
/Q dt,s> 0, one can prove

[ ( ) ) < [Sμt(f(c))dt, s > 0 ,
o Jo

for positive operators b, c in a semi-finite von Neumann algebra. Here
exactly the same argument as in [2] works so that details are left
to the reader. However, the following remark is in order: In [2],
it is pointed out that the two matrices (B + I)-χl2C(B + 7)" 1/ 2 and
C 1/2(2?+/)~ 1C 1/2 have the same lists of eigenvalues and consequently

sj(l - {(B + I)-χl2C{B +1)'1'2 +1}-1)

I}'1).
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In the present set-up, Lemma 2.5, [17], implies

μt{\ - {φ + \)-χl2cφ + I)-1'2 + I}"1) = μt(fo(xx*))

= MMxx*)) = Mμt(χ*χ)) = MMχ*χ))

= μt(l-{cι'2(b+l)-ιcι'2+l}-1),

where x = φ+ l)" 1 / 2 c 1 / 2 and f0 is the increasing function 1 - (λ+1)"1

on [0,oo).
We then extend (*) to (not necessarily bounded) τ-measurable op-

erators b,c. The original proof of this step was somewhat compli-
cated. However, Professor Tikhonov kindly informed the author of
his recent result saying that the map: a •-» g(a) from a set of cer-
tain τ-measurable operators is continuous with respect to the measure
topology for a function g in quite a wide class (Theorem 2.6, [43]).
Using the spectral decomposition theorem, we choose two sequences
{bn}Λcn} of positive elements in the von Neumann algebra satisfying
bn < b, cn < c, and bn —• b, cn —> c in measure. We have already
known that

Γ μt(fφn + cn) - fφn)) dt < Γ μt(f(cn)) dt, s > 0,
Jo Jo

for each n. By Tikhonov's result, fφn + cn) - fφn) converges to
fφ + c) - fφ) in measure so that

Γ μt(fφ + c)- fφ)) dt < Γ lim inf μt(fφn + cn) - fφn)) dt
Jo Jo n~^°°

(Lemma 3.4, [17])

< lim inf Γ μt(fφn + cn) - fφn)) dt.
J 0

On the other hand, since cn <c and / is operator monotone, we get

Γμt(f(cn))dt< f μt{f{c))dt.
Jo Jo

Combining the above three estimates, we obtain (*) for positive τ-
measurable operators b,c.

Now assume that a and b are generic positive τ-measurable opera-
tors. Let a - b = {a - b)+ - (a - b)- be the Jordan decomposition.
Since a <b + (a- Z>)+ and / is operator monotone, we know

f(a)-fφ)<fφ + (a
(f(a) - fφ))+ = (f(a) - fφ))e < e{fφ + {a- b)+) - f{b)}e,
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where e is the support projection of (f(a) - f(b))+. We hence get

f μt((f(a) - f(b)U) dt < f μt(e{f(b + (a- b)+) - f(b)}e) dt
Jo Jo

< fμt(f(b + (a-b)+)-f(b))dt< f μt(f((a-b)+))dt,
Jo Jo

applying (*) to b and (a - 6)+. The inequality for the negative parts
can be obtained by changing the role of a and b in the preceding
argument. Also, we can easily check (see §3)

fμt(f(a)-f(b))dt
Jo

= sup if μt{(f{a)-fφ))+)dt+f rμt((f(a)-f(b))-)dt),
0<r<s U 0 ^0 )

Γμt(f(\a-b\))dt
Jo

= sup if'μt(f((a-b)+))dt+ ΓT'μt{f{{a-b)-))dt\.

Combining the above inequalities and equalities altogether, we obtain

(**) Γ Mf(a) - /(*)) dt < f μt(f(\a - b\)) dt
Jo Jo

= ffMa-b))dt, 5>0,
./o

for positive τ-measurable operators a, b.
If ^ is semi-finite, the desired generalization of the Powers-St0rmer

inequality follows from the above submajorization (**) as in [2]. How-
ever, we have to deal with a general von Neumann algebra and will
make use of the trick repeatedly used in [30], [17] (and §5 of the main
body of the article).

Finally let us prove the theorem. In the two extreme cases p = θ
(Proposition 7, [30]) and p = oo (Theorem 2.3, [28]), the result is
known. So let θ < p < oo. Assume that a and b are positive elements
in LP(JT). These are positive τ-measurable operators affiliated with
the crossed product Jt xσ*> R (τ is the canonical trace on the crossed
product). Applying (**) (with s = 1 and f(λ) = λθ) to the semi-finite
von Neumann algebra Jt xvo R, we get

[lμt(aθ-bθ)dt< f μt(a-b)θdt,
Jo Jo
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where μt( ) is relative to the canonical trace τ. Recall (Lemma 4.8,
[17]) that

μt(a-b) = Γι"'\\a-b\\p,

μt(aθ - bθ) = Γθ'η\aθ - b%θ (aθ,bθ e V»\jί)),

where || [̂  denotes the Haagerup (quasi-)norm. Thanks to θ < p, we
can explicitly evaluate the above two integrals and get

(1 - Θ/Pyι\\aθ - bθ\\p/θ < (1 - θ/p)-ι\\a - b\\θ

p,

which proves the theorem.

REFERENCES

[I] T. Ando, Majorization, doubly stochastic matrices and comparison of eigenval-
ues, Lecture Notes, Hokkaido Univ., Sapporo, 1982; to appear in Linear Algebra
AppL, (1989).

[2] , Comparison of norms \\\f(A) - f(B)\\\ and \\\f(\A - B\)\\\, M a t h . Z . ,
197(1988), 403-409.

[3] T. Ando and R. Bhatia, Eigenvalue inequalities associated with the Cartesian
decomposition, Linear and Multilinear Algebra, 22 (1987), 133-147.

[4] T. Ando and Y. Nakamura, Anti-distance between unitary orbits of operators,
unpublished notes, 1986.

[5] H. Araki, Some properties of modular conjugation operator of von Neumann
algebras and a non-commutative Radon-Nikodym theorem with a chain rule,
Pacific J. Math., 50 (1974), 309-354.

[6] E. A. Azoff and C. Davis, On distances between unitary orbits of self adjoint
operators, Acta Sci. Math., 47 (1984), 419-439.

[7] R. Bhatia and C. Davis, A bound for the spectral variation of a unitary operator,
Linear and Multilinear Algebra, 15 (1984), 71-76.

[8] R. Bhatia, C. Davis and P. Koosis, An extremal problem in Fourier analysis
with applications to operator theory, J. Funct. Anal., 82 (1989), 138-150.

[9] R. Bhatia, C. Davis and A. Mclntosh, Perturbations of spectral subspaces and
solution of linear operator equations, Linear Algebra AppL, 52/53 (1983), 45-67.

[10] R. Bhatia and J. A. R. Holbrook, Short normal paths and spectral variation,
Proc. Amer. Math. Soα, 94 (1985), 377-382.

[II] K. M. Chong, Some extensions of a theorem of Hardy, Littlewood and Pόlya
and their applications, Canad. J. Math., 26 (1974), 1321-1340.

[12] A. Connes, U. Haagerup and E. Stormer, Diameters of state spaces of type III
factors, Operator Algebras and their Connections with Topology and Ergodic
Theory (H. Araki et al. eds.), Lecture Notes in Math., No. 1132, Springer-Verlag,
Berlin, 1985, pp. 91-116.

[13] A. Connes and E. Stormer, Homogeneity of the state space of factors of type IIIi,
J. Funct. Anal., 28 (1978), 187-196.

[14] K. R. Davidson, The distance between unitary orbits of normal operators, Acta
Sci. Math., 50 (1986), 213-223.

[15] J. Dixmier, Formes lineaires sur un anneau d'operateurs, Bull. Soc. Math. France,
81 (1953), 9-39.



DISTANCE BETWEEN UNITARY ORBITS 293

[16] W. Donoghue, Monotone Matrix Functions and Analytic Continuation, Springer-
Verlag, Berlin-Heidelberg-New York, 1974.

[17] T. Fack and H. Kosaki, Generalizeds-numbers ofτ-measurable operators, Pacific
J. Math., 123 (1986), 269-300.

[18] U. Haagerup, The standard form of von Neumann algebras, Math. Scand., 37
(1975), 271-283.

[19] , LP-spaces associated with an arbitrary von Neumann algebra, Colloq.
Internat. CNRS, No. 274, 1979, pp. 175-184.

[20] P. Hall, On representatives of subsets, J. London Math. Soc, 10 (1935), 26-30.
[21] R. H. Herman and A. Ocneanu, Spectral analysis for automorphisms oflJHF

C*-algebras, J. Funct. Anal., 66 (1986), 1-10.
[22] F. Hiai, Majorization and stochastic maps in von Neumann algebras, J. Math.

Anal. Appl., 127 (1987), 18-48.
[23] , Spectral relations and unitary mixing in semifinite von Neumann alge-

bras, Hokkaido Math. J., 17 (1988), 117-137.
[24] F. Hiai and Y. Nakamura, Majorizations for generalized s-numbers in semifinite

von Neumann algebras, Math. Z., 195 (1987), 17-27.
[25] V. Kaftal and R. Mercer, Spectral projections of Lι operators in type IIIA von

Neumann algebras, Integral Equations Operator Theory, 9 (1986), 679-693.
[26] E. Kamei, Double stochasticity in finite factors, Math. Japon., 29 (1984), 903-

907.
[27] , An order on statistical operators implicitly introduced by von Neumann,

Math. Japon., 30 (1985), 891-895.
[28] F. Kittaneh and H. Kosaki, Inequalities for the Schatten p-norm V, Publ. RIMS,

Kyoto Univ., 23 (1987), 433-443.
[29] H. Kosaki, Applications of uniform convexity of noncommutative LP-spaces,

Trans. Amer. Math. Soc, 283 (1984), 265-282.
[30] , On the continuity of the map φ —> \φ\from the predual of a W*-algebra,

J. Funct. Anal., 59 (1984), 123-131.
[31] A. S. Markus, The eigen- and singular values of the sum and product of linear

operators, Russian Math. Surveys, 19 (1964), 91-120.
[32] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Ap-

plications, Academic Press, New York, 1979.
[33] Y. Nakamura, An inequality for generalized s-numbers, Integral Equations Op-

erator Theory, 10 (1987), 140-145.
[34] E. Nelson, Notes on non-commutative integration, J. Funct. Anal., 15 (1974),

103-116.
[35] V. I. Ovchinnikov, s-numbers of measurable operators, Functional Anal. Appl.,

4(1970), 236-242.
[36] D. Petz, Spectral scale of self-adjoint operators and trace inequalities, J. Math.

Anal. Appl., 109 (1985), 74-82.
[37] R. T. Powers and E. Stormer, Free states of the canonical anticommutation

relations, Comm. Math. Phys., 16 (1970), 1-33.
[38] Y. Sakai, Weak spectral order of Hardy, Littlewood and Pόlya, J. Math. Anal.

Appl., 108(1985), 31-46.
[39] I. Segal, A non-commutative extension of abstract integration, Ann. of Math.,

57(1953), 401-457.
[40] E. M. Stein and G. Weiss, Introduction of Fourier Analysis on Euclidean Spaces,

Princeton Univ. Press, Princeton, 1971.
[41] V. S. Sunder, Distance between normal operators, Proc. Amer. Math. Soc, 84

(1982), 483-484.



294 FUMIO HIAI AND YOSHIHIRO NAKAMURA

[42] M. Terp, LP spaces associated with von Neumann algebras, Notes, Copenhagen
Univ., 1981.

[43] O. E. Tikhonov, Continuity of operator functions in topologies connected with a
trace on a von Neumann algebra (Russian), Izv. Vyssh. Uchebn. Zaved. Mat.,
1987, no. 1, 77-79; translated in Soviet Math. (Iz. VUZ), 31 (1987), 110-114.

[44] H. Umegaki, Conditional expectation in an operator algebra, I, II, III, IV,
Tόhoku Math. J., 6 (1954), 177-181; ibid., 8 (1956), 86-100; Kodai Math.
Sem. Rep., 11 (1959), 51-64; ibid., 14 (1962), 59-85.

[45] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller
Dijferentialgleichungen, Math. Ann., 71 (1912), 441-479.

[46] F. J. Yeadon, Non-commutative LP-spaces, Math. Proc. Cambridge Philos. Soc,
77 (1975), 91-102.

Received July 15, 1987 and in revised form July 6, 1988. The research by the authors
was supported, in part, by Grant-in-Aid for Scientific Research.

DIVISION OF APPLIED MATHEMATICS

RESEARCH INSTITUTE OF APPLIED ELECTRICITY

HOKKAIDO UNIVERSITY

SAPPORO 060, JAPAN




