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GENERIC PROPERTIES
OF THE ADJUNCTION MAPPING FOR

SINGULAR SURFACES AND APPLICATIONS

MARCO ANDREATTA, MAURO BELTRAMETTI,

AND ANDREW J. SOMMESE

In the last years many new results on the classical problem of
classifying smooth surfaces in the projective space in terms of their
extrinsic projective and intrinsic geometric invariants have been made
by using the adjunction mapping. In this paper we extend the ex-
istence theorem for the adjunction mapping to the case of singular
surfaces. Although the mapping is only meromorphic we obtain many
inequalities known previously only in the smooth case. As an illus-
tration of the results we given a very complete answer in the singular
case, parallel to the smooth result, to the question of when a singular
surface can "have a hyperelliptic hyperplane section".

Introduction. In modern times Sommese [SI] introduced the ad-
junction mapping to attack this problem. This line of attack led to a
complete solution of this question in [SI], [V], [S2], [E], [Se], [S-V].
The methods introduced have had wide applicability to the solution
of classification questions for projective manifolds; see [S5], [S-V] for
applications and references.

We are interested in how much of the smooth technique survives
when no smoothness assumptions are made. As a test we pose and
give a surprisingly complete answer to the following problem.

Problem. Let Σ be an irreducible complex surface embedded in some
complex projective space P r and η: S —• Σ be the normalization of Σ
with L the pullback of S under η of ^pr(l). If there is a smooth
hyperelliptic curve C e \L\, the linear system associated to L, then
describe (S,L).

The main tool we use is the meromorphic map associated to
T(KS ® L), which is called the adjunction map. In [A-Sl], the first
and last author showed that if π: Sf —• S is the minimal desingu-
larization of S, then Ks, ® Z/, V — π*L, is nef and big except when
(Sf

9 L
1) and (S, L) are of very restricted type. In the case when Ks> ®Z/

is nef, h°(Ks, ® L1) φ 0 (see (0.6), (0.7)). These results allow us to
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prove many inequalities between invariants which are standard con-
sequences of the adjunction mapping in the smooth case. The plan of
this paper is as follows.

In §0 we give background material and prove a few new results.
In §1 we use Reider's theorem ([B], [R]), following Beauville to show

that the adjunction map is birational if Ks> ® LJ is nef with either
Cι(L)2 > 10 or Cι(L)2 > 9 and V ~ 3D for some effective divisor D
such that D D = 1. The analogue of this for a smooth S goes back to
Van de Ven [V].

In §2 we prove a number of inequalities that are standard tools in
the smooth theory [SI]. E.g., if the Kodaira dimension of S" is non-
negative and c\(L)2 > 10, then (see 2.1)

cx{Ks,)
2 + 2g{L) >d + 2(pg(S') - q(S'))

where pg(S') = A2'°(S") and q(S') = h{>°(S') are the geometric genus
and the irregularity of Sf and g(L) is the sectional genus of L.

In §3 we give some simple applications. For the main one we derive
a result, on when \L\ contains even one smooth hyperelliptic curve,
that generalizes results of Sommese [SI] and Van de Van [V]. The
result is the following (see (3.1)).

THEOREM. With the notation as above, letL be an ample and spanned
line bundle on a normal surface S. Further assume that Γ(L) gives a
generically one-to-one map and either C\(L)2 > 10 or c\(L)2 > 9 and
L1 ~ 3D, D effective divisor with D D = 1. If there exists a smooth
hyperelliptic curve C e \L\ then pg(S') = 0, d = cx (L)2 > g(L) + 2 and
either

(i) q(S') > 0, h°(L) = 4, g(L) + 2> 3q(S') + d/3 and there exist
at most finitely many smooth hyperelliptic curves in \L\\

(ii) (S, L) is a cone or a scroll, or
(iii) (5", L!) is a conic bundle over a smooth curve.

0. Background material. We work over the complex number field C.
By variety we mean an irreducible and reduced projective scheme X of
dimension n. We denote its structure sheaf by &χ. For any coherent
sheaf y on X, h\y) denotes the complex dimension of W{X,y).

If X is normal, the canonical sheaf Kx is defined to be j*KReg(X)
where j : Reg(ΛQ —• X is the inclusion of the smooth points of X and
^Reg(X) is the canonical sheaf of the holomorphic n-forms. Note that
Kx is a line bundle if X is Gorenstein.
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Let 3* be a line bundle on X. 2? is said to be numerically effective,
nef for short, if Sf C > 0 for each irreducible curve C on S9 and in
this case S? is said to be big if Cι(J?)n > 0, where c\(&) is the first
Chern class of SP. We shall denote by \&\ the complete linear system
associated to S? and by T{S?) the space of its global sections. We say
that -S* is spanned if it is spanned by T(&).

(0.1) We fix some more notation.
~ (resp. «) the numerical (resp. linear) equivalence of divisors;

X{&) = Σ ί - 1 ) 1 ' * 1 ' ^ ) * t h e E u l e r characteristic of a line bundle S?\
κ(X)9 the Kodaira dimension of X, that is the Kodaira dimension

of a nonsingular model of X.

Abuses. Line bundles and divisors are used with little or no dis-
tinction. Hence we shall freely switch from the multiplicative to the
additive notation and vice versa.

(0.2) Throughout this paper, S always denotes an irreducible projec-
tive normal surface. Let π: S' —> S be the minimal desingularization
of *S, i.e. S' is the unique desingularization of S which is minimal in
the sense that the fibres of π contain no smooth rational curves C sat-
isfying C2 = — 1. If L is a line bundle on S we will denote by V the
inverse image, π*L. We shall briefly say that (S", L') is the minimal
desingularization of the pair (S9L). If D is a (Weil) divisor we will
denote by Df the proper transform of D. For every Weil divisor D
and line bundle L on S the intersection L 0siP) = L- D = L* - Df is
well defined.

(0.3) Let π: Sf —• 5 be the minimal resolution of the singularities
of S and let Δ = 7r~1(Irr(5')), where Irr(S) denotes the irrational locus
of S. We say that (S, L) is a-minimal if there are no smooth rational
curves E on S' - Δ, with E E = - 1 and π*L £ = 0. Note that the
pair (S',Lf) in (0.2) is clearly α-minimal if L is ample; this allows us
to apply to (S'9V) the results of [A-Sl].

(0.4) The genus formula. Let L be a nef and big line bundle on a
normal surface S. Then the sectional genus, g{L), of L is defined by
the equality 2g(L) -2 = {KS + L)-L.

It can be easily seen that g(L) is an integer. Furthermore if there
exists an irreducible reduced curve C in |L|, g(L) is simply the arith-
metic genus pa(C) = 1 - χ{0c) of C. Note also that g(L) = g(L')9

where (S',Lf) is the minimal desingularization of (S9L).
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(0.5) Let S be a normal surface and let L be a nef and big line
bundle on S. We say that the (generically) polarized pair (S,L) is
geometrically ruled if S is a P 1 -bundle, p: S -> R, over a nonsingular
curve R and the restriction Lf of L to a fibre / of p is ^/( l) . We say
that (£, L) is a scro// (resp. a conic bundle) over a nonsingular curve
R if there is a surjective morphism with connected fibres p: S -> R,
with the property that L is relatively ample with respect to p and there
exist some k > 0 and some very ample line bundle M on R such that
(Ks ® L2)^ « /?*M (resp. (J^ ® Z,)* « p*M); here * $ = (#f *)**. •

The following result will be used several times through the paper.

(0.6) LEMMA. Let She a nonsingular surface and let Lbea nef and
big line bundle on S. Assume (S,L) is a-minimal. Then the following
are equivalent

( (

(0.6.2) h°((Ks + L)N) φ 0 for some N > 0;
(0.6.3) Ks + L is nef;
(0.6.4) g(L) > 1 and {Ks + L)2 > 0.

Proof. The equivalence between (0.6.2) and (0.6.3) is proved in
[A-Sl], (2.5), while (0.6.1) =* (0.6.2) and (0.6.3) => (0.6.4) are clear.
So let us prove that (0.6.4) implies (0.6.1). Now we have

H°(KS + L) = χ(Ks + L) = g(L) - 1 + χ(0s).

Hence if (0.6.1) would be false, then χ{0s) < 0. Let g{L) = 1. There-
fore (Ks + L) L = 0 and the Hodge index theorem combined with
(Ks + L)1 > 0 gives Ks L, whence χ(^s) > 0, a contradiction. So
g(L) > 1 and χ(<?s) < 0 It thus follows that S is ruled; further we
claim that g(L) = q(S). Indeed, since pg(S) = 0, we have

0 = h°(Ks + L) = χ(Ks + L) = χ(L~ι) = g(L) - q{S).

Let d = L'L. Then the assumption (Ks + L)2 > 0 and genus formula
(0.4) yield

K2 + 4g(L) -4>d.

Therefore, since S is ruled and g(L) — q(S) > 1,

d < 8(1 - q(S)) + 4q(S) - 4 = 4 - 4q(S)

a contradiction. D
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(0.7) COROLLARY. Let S be a normal surface, L an ample line
bundle on S and let (Sf, L!) be the minimal desingularization of(S, L).
then Ks> + L! is nefifand only ifh°(Ks + L) > length(Ks/<%s)> where

denotes the Grauert-Rίemenschneider canonical sheaf.

Proof. Look at the exact sequence

and note Hι («^ ®L) = (0) by the Grauert-Riemenschneider vanishing
theorem and h°(S* ® L) = length(Xs/o%s). Now the statement is an
immediate consequence of Lemma (0.6). D

In Section 1 we shall use Reider's result for separating general points
in the following form

(0.8) THEOREM (Reider, [R]). Let L be a nefand big line bundle
on a smooth surface S. IfLL > 9 and the map associated to T{KS+L)
is not a birational morphism, then there exists an effective divisor D on
S such that

LD = 2, D2 = 0; or

L ~ 3 A D2=l.

(0.9) Castelnuovo's bound. Let X be an ̂ -dimensional normal vari-
ety and let L be a big and spanned line bundle on X. Further assume
that the map φ: X —> P^ associated to Γ(L) is generically one to one.
Let C be a smooth curve obtained as transversal intersection of n - 1
general members of \L\ and write d = Ln. Then

Indeed C is nothing but the normalization of C = φ(C), so deg C = d
and the inequality above is a consequence of the usual Castelnuovo's
bound for the embeddings C C φ(X) c P^. •

Finally, let us give the following general results we use in the sequel.

(0.10) LEMMA (Nefand big degree Lemma). Let X be a normal
variety of dimension n and let J? be a nefand big line bundle on X.
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Denote by φ the rational map associated to \Sf\ and let #s be the sheet
number of the Stein factorization ofφ. Then

(0.10.2) C\{S?)n > 2(h°(&) - n) ifκ(X) > 0 and dim φ{X) = n.

Proof. Look at a resolution of the fundamental locus of φ

X1

where & = h0^). Then 3" = π*£? « Jt + F where Jt is spanned
and φ' is the morphism associated to \Jt\. Further we can assume X1

to be nonsingular. Take the Remmert-Stein factorization so r: X' —•
Y -+ p/-i o f φ\ Therefore Jt « r*M for some ample line bundle M
on Y. Let #s be the degree of s and m = dim Y. Then

ι ( ) ι() and

If m = n,

(**) c^')" = (J? + F) - di^')"-1 >

and (*), (**) yield (0.10.1). If m < n,

(***) d (S?')n > cx {Jί)m ci (^O11

and (0.10.1) follows now from (*), (***).
As a consequence of (0.10.1) we get

Whenever #s > 2, (0.10.2) is proved. If #s = 1, p(ΛΓ) has a desin-
gularization of non-negative Kodaira dimension. It thus follows that
the general surface section S c P / + 1 ~" has a desingularization of non-
negative Kodaira dimension. Now a standard argument shows that
deg(S) > 2(N - 1) = 2(Λ°(^) - n) (see also [L-S], §0).

(0.11) LEMMA. Lei J2% L δe two line bundles on an irreducible va-
riety X. Assume that L is spanned and big and h°(&) > 2. Then,
given a general element D € \L\9 the restriction

has an image of dimension > 2.

Proof. Look at the exact sequence

0 - > ̂  ® L " 1 - > ̂  - > ̂ > -^ 0 .
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If the statement is not true, then there exists a non-zero element t e
L~ι). Consider the restriction map

Since L is spanned and big we can find non-trivial t\, t2 E h°(L)
whose restrictions on D are not multiples of one another. If δ(t) Φ 0,
then t\ ® t, t2 Θ ί are not multiples of one another on D and we are
done. Otherwise we would have δ(t) ® (ίi - 2̂)2) = 0 in Γ(//>) after
possibly multiplying the // by non-zero constants. Since (t\ - Ϊ2)D Φ 0
by the above, this leads to a contradiction; here we use that D is
irreducible since it is general. Hence δ is the zero-map and therefore
Γ ( ^ ® L" 2) = Γ(&®L~ι) Φ (0). By repeating the same argument we
find that Γ(-2* ® L~m) φ (0), m » 0, again a contradiction. D

For any further background material we refer to [A-Sl] and [A-S2],

1. The birationality theorem. Let L be an ample and spanned line
bundle on a normal surface S. Let (S'9 L!) denote the minimal desingu-
larization of (S, L) and let 3?$ = π*K$9 be the Grauert-Riemenschnei-
der canonical sheaf. Then the following which is essentially known
([B], [R]) can be proved.

(1.1) THEOREM (Beauville, Reider). Let (5, L), (S", LI) be as above
with Ks>+Ll nefand big. Further assume that Γ(L) gives a generically
one-to-one map. Ifc\(L)2 > 9 then T(3?s + L) gives a birational map
unless possibly L1 ~ 3D, for some effective divisor D with D D = 1.

Proof. From Lemma (0.6) we see that h°(Ks>+Lf) = hQ{3rs+L) > 0.
Hence looking at the meromorphic maps φ, ψ associated to
T(KS> + L') respectively and from the commutative diagram

S' — ^ S

pN

we see that it suffices to work with ψ on S1. To go on assume that ψ
is not birational. Then given a general point x of S1 there is a general
point y of Sf such that the morphism

Γ(KS< ® LI) -> KSi ® U ® (Cx Θ Cy)

is not onto, where Cx Θ Cy is the skyscraper sheaf ^ / / m x θ m y . By
Reider's theorem (0.8) there exists on Sf an effective divisor D passing
through x,y such that V D = 0,1 or 2 or U D = 3 and D D = 1.
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The case Z/ D = 0 can be easily ruled out. Indeed, if ΊJ D = 0, then
π(D) is a finite set. Therefore x, y belong to some positive dimensional
fibre of π, so that either x nor y is a general point; a contradiction.

The case I! D = 3 with D D = 1 gives (Z/ - 3D) - D = 0. Hence
Z/ ~ 3D or (Z/ - 3D)2 < 0 by the Hodge index theorem; since

(Z/ - 3D)2 = Z/2 - 6Z/ D + 9D D = Z/2 - 9 > 0

it has to be Z/ ~ 3D.
Finally, let Z/ D = 2 or 1. Since L is ample and spanned and

Γ(L) gives a generically one-to-one map, it thus follows that π(D) is
either a smooth line or a (possibly singular) conic. Then the proper
transform D' of π(D) (or of a reduced component of π(D)) under π is
a nonsingular rational curve. Since x, y are general points we find in
this way an uncountable set of distinct nonsingular rational curves, /,
on S1. Thus I2 > 0. Therefore KS>1< - 2 and hence (Ks> +L') / < 0.
Since K$> +L' is nef and big this leads to a contradiction by the Hodge
index theorem.

(1.2) REMARK. Note that Ks + L could also be considered to obtain
an analogous result to that of the theorem above. However, the exact
sequence

gives an inclusion Γ(3?s ® L) c T(K$ ® L), so that the birational re-
sults proved for 3£$ ® L imply birationality results for the adjunction
mapping associated to Γ(Ks + L).

2. Some inequalities. The first two theorems we prove below gener-
alize some results contained in [S4], §3.

The following is a consequence of Theorem 1.1.

(2.1) THEOREM. Let L be a nef and big line bundle on a normal
surface S and let (S',Lf) be the minimal desingularization of(S,L).
Suppose K$' + L! to be nef and big. Further assume κ(S) > 0 and
let cx{L)2 > 10 or cx(L)2 > 9 and U Φ 3D, D effective divisor with
D D = 1. Then

(KS. + L')2 > 2(g(L) - q(S') +pg(S') - 2)

or, equivalently,

K2,+2g(L)>2(pg(S')-q(S')) + d.
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Proof. Under the hypotheses made the map ψ associated to
T{KS> + L') is birational by Theorem (1.1). Then Lemma (0.10.2)
yields

(Ks,+L')2>2(h0(Ks,+Lf)-2).

Now
h\Ks + L1) = χ(Ks. + L') = g(L) - q(S') +pg(S')

so we are done.

(2.2) THEOREM. Let L be a nef and big line bundle on a normal
surface S and let (S',Lf) be the minimal desingularization of(S,L).
Assume K$> + L' to be nef and big. Then

(2.2.1) {KS. + U)1 > g(L) - q(S') +pg(S') - 2;
(2.2.2) (Ks. + Z/)2 > g(L) + q(S') - 2.

Proof Look at the map ψ associated to T{Ks> + L'). Then Lemma
(0.10.1) gives us

(Ks, + L1)2 > cod ^(5") + 1 = h°(Ks, +L')-2

and again h\Ks, + L') = χ{Ks, + V) = g{L) - q(S') + pg(S'), this
leading to (2.2.1).

To prove (2.2.2) note that there exists an effective member C €
\KS' +L'\ in view of Lemma (0.6) Then the exact sequence

0 -> Ks> -> 2KS* Θ H -+ ωc> -+ 0,

where ωo denotes the dualizing sheaf of C , gives a surjective mor-
phism

H°(C,coc>) - Hι(S',Ks>) = H\S',d?s>)

since Hι (5", 2KS> + L1) = (0) by the Kawamata-Viehweg vanishing
theorem. Now, hx(-L) = 0 since L is nef and big, so that Λ°(^c') =
h°(0s) = 1 a n d > h e n c e h°{ωc>) = hx{@c>) = g(Ks> + L'). Therefore

g(Ks< + L') > q(S')

so by the genus formula we find

2q{S') -2< 2g{Ks, +L')-2 = {2KS> + V) (Ks. + L1)

that is
(Ks,+L')2>g(L)
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(2.3) COROLLARY. Let (S,L), (S',Lf) be as in Theorem (2.2) and
let d = L' L. Further assume that q(Sf) > 0 andpg(Sf) = 0. Then

g(L) > d/3 + 3q(S') - 2.

Proof. From [SI], (0.8.2) we know that KS' KS,<S(1- q{Sr)) and
the genus formula reads

(Ks. + L')1 + d = Ks> Ks, + 4g(L) - 4.

Hence

8(1 - q(S')) > (Ks. + L1)1 + d- 4g(L) + 4.

By combining the inequality above with (2.2.2) we get the result.

(2.4) REMARK. Note that whenever Sf is birationally ruled and \L'\
contains a smooth curve C which meets a general fibre of the ruling
S' —• i?? R nonsingular curve, in t points, then the Hurwitz theorem
gives us

However, such an inequality is usually weaker than (2.3) for t
around 3.

(2.5) COROLLARY. Let (5, L), (S", U) be as in Corollary (2.3). Fur-
ther assume g(L) < 6. Then q(Sf) < 2. If q{Sf) = 2, then either
g(L) = 5 with d < 3 or g(L) = 6 with d < 6. Furthermore if L is
spanned and Γ(L) gives a generically one-to-one map then q{S') = 2
implies that h°(L) = 4, g(L) = 6 and d = 5 or 6.

Proof. Indeed q(Sf) > 3 implies g(L) > 7 by (2.3) above, so that
q(S') < 2. Again (2.3) and q(S') = 2 imply g{L) = 5 or 6 with the
stated bound for d.

If L is spanned and Γ(L) gives a generically one-to-one map then
the Castelnuovo's bound (0.9) shows d > 4 if g{L) = 5. Therefore
g(L) = 6. By combining (2.3) and (0.9) we find d = 5 or 6 and
h°(Lf) = h°(L) = 4. D

Finally let us give an easy but useful generalization of some of
Sommese's results contained in [S3].

(2.6) THEOREM. Let X be an irreducible variety of dimension n.
Let L be a spanned and big line bundle on X. Let S c X be a general
surface section obtained as transversal intersection ofn — 2 general
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members of\L\ and let (S\Lr) be the minimal desingularization of
(S,L). Ifκ(X) > 0 then one has

(2.6.1) Ks. - Ks> > (n - 3)KS, L ' s , + ( n - 2)L'S, L ' s ,
(2.6.2) Ks,.L's,>(n-2)L's,.L's,

Note. Ks - Ls = Ks, L's, and L's, L's, = Ls Ls. Furthermore if
either inequality is an equality then κ(X) = 0.

Proof. By using Bertini's type theorems and the fact that S is general
one sees that there exists a commutative diagram

h
/s' 1« V
π

\

S X
where α, β are desingularizations, S^ = β~ι(S), a = β\S~ and it
factorizes through some morphism h since π is the minimal desingu-
larization of S. Note that by hypothesis Kx~ is Q-effective. Note also
that κ(Sf) = 2 since κ{X) > 0, and hence Ks> + Lf is nef and big by
[A-Sl]. Let ZΛ = β*L. From the commutativity of the diagram it
thus follows that L£« « h*Lf

s,. Then we can compute:

0<h*(Ks> +L's,)

= (Ks, + L's.) KS. - (n - 2){KS, + L's,) L's,

= KSf Ks>-(n-2)Lt

s, L's,-(n-3)Ks, L's,

which leads to (2.6.1). Similarly one has

'S' = **'S' ' L'S* =z S" ' S~

Ls* > (n -

that is (2.6.2). To prove the last part of the statement, note that the
equality in (2.6.1) or (2.6.2) gives respectively

or
Kx^s- - L^ = 0.

Now if h°(K^) > 2 for some N > 1, then h°((KxΊs*)N) > 2 by
Lemma (0.11). Therefore since h*(KS' + L's,) and L's, are nef and big
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a straightforward check shows that the intersection numbers KX~\S~
h*(Ks> + L's,) and Kx^s- L^ must be positive. It thus follows that
h°{K$~) < 1 for all N > 0, whence κ{X) = 0. D

The following consequence of the theorem above is a slight gener-
alization of (0.5.1) in [L-S].

(2.7) COROLLARY. Let (X,L) be as in Theorem (2.6) and let d =
LN. Then

- n - 1
with equality only ifκ(X) = 0.

Proof. From (2.6.2) and the genus formula we get

2g(L) -2 = KS, Ks, + L f

s , L ' s , >(n- \)L'Sf L ' s , = (n - \)d.

3. An application to hyperelliptic hyperplane sections. First of all
note that it is equivalent to consider pairs (S, L) where S is a normal
surface with L an ample spanned line bundle such that Γ(L) gives a
generically one-to-one map and pairs (S9 L) where S is the normal-
ization η: S —• Σ of an irreducible surface Σ c P r and L « η*<?(l).
Indeed, η*#(l) is ample and spanned and Γ(η*&(l)) gives a generi-
cally one-to-one map.

Now let (Sf, V) be the minimal desingularization of a pair (S, L) as
above. The following is the analogue of a result of Sommese working
in the case when q(Sf) — 0 (see [SI], §4) and of a result of Van de
Ven where L has to verify the two extra conditions h°(L) > 7 and
LL> 10 (see [V], Cor. IV).

(3.1) THEOREM. With the notation as above, let L be an ample and
spanned line bundle on a normal surface S. Further assume that Γ(L)
gives a generically one-to-one map and Cχ(L)2 > 10 or C\(L)2 > 9 and
Lf ^ 3D, D effective divisor with D D = 1. If there exists a smooth
hyperelliptic curve C e \L\ then pg(Sf) = 0, d = cx(L)2 > g(L) + 2 and
either

(3.1.1) q(S') > 0, h°(L) = 4, g{L) + 2 > 3q(S') + d/3 and there exist
at most finitely many smooth hyperelliptic curves in \L\\

(3.1.2) (S9L) is a cone or a scroll; or
(3.1.3) (S',Lr) is a conic bundle over a smooth curve.

Proof. Let C be a nonsingular hyperelliptic curve belonging to \L\.
It should be noted that C = π~ι(C) is a nonsingular hyperelliptic
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curve in \L'\ since C does not pass through the singular points of S;
vice versa, given any smooth hyperelliptic curve C e \L'\, π(C) = C
is an hyperelliptic curve in \L\ since V = π*L.

From now on, we can assume that K$> +Lr is nef and big. Otherwise
in view of [A-Sl], (2.5), (2.7), (S',L') is either a conic bundle or a
scroll over a nonsingular curve or the minimal desingularization of a
quadric cone. Now an easy argument shows that if (S, L) Φ (S", LJ)
and (Sf,Lf) is a scroll then (S,L) is a cone. Thus we fall in one of
classes (3.1.2) or (3.1.3).

First, note the fact that there exist at most finitely many smooth
hyperelliptic curves C in \L\ is clear. Otherwise, if C — π~ι(C),
Kc> « (Ks' + L')\c and hence the map associated to Γ(Kst+Lf) would
be at least 2 to 1 on a dense set of curves, this contradicting Theorem
1.1. To go on, we need the following

Claim. Let x e C be a ramification point for the canonical map
associated to Γ(KC). If q(S') = 0 and a smooth C e \L' - x\ is
tangent to C at x or if q(Sr) > 0 and a smooth C e \L! - x\ is tangent
to C at x of the 2nd order, then C is hyperelliptic.

Proof of the Claim. Note that the proof in [S2], (4.2) works with
almost no change to give the q(S') > 0 result. We give here the proof
of the stronger statement when q(S') = 0. Take an element A e
\Ks* + Lf — x|. Then the local intersection multiplicity (A C)x at
x is nothing but the zero's order of a 1-form belonging to T{KC),
therefore {A C)x > 2. It thus follows that (A C)x > 2 also. Indeed,
if (A - C')x = 1 then A would be smooth at x and transverse to C at
x and hence to any smooth curve C tangent to C at x. Thus, since
the map

Γ(Ks,+Lf)->Γ(Kc>)-+0

is onto q(S') being zero, we see that any 1-form ω £ Γ(Kc>) which
vanishes at x, vanishes to the 2nd order at x. This means that C is
hyperelliptic (see again [S2]). D

From the claim we infer that ifq(S') = 0 and λ°(I/) = 4 or q(S') > 0
and h°(Lr) > 5 there is a pencil of smooth hyperelliptic curves C e \Lf\
on S'. Again, looking at the restriction (Ks> + L')\C> « Kc< the same
argument as above leads to a contradiction in view of Theorem 1.1.
Note h°(L) > 4 since h°(L) = 3 would imply (S,L) = (P 2 ,^( l)) , by
Zariski's Main Theorem, contradicting L L > 9. Thus it has to be
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q(S') > 0 and h°(L) = 4. To prove that pg(S') = 0 the same argument
as in [SI], (0.8.3) works.

Moreover, h°(Lc) > 3 because h°(L) > 4. Therefore χ(Lc) =
d - g(L) + 1 > 3 since h\Lc) = 0, which gives d > g(L) + 2.

Finally we apply Corollary (2.3) to get g(L) + 2 > d/3 + 3q(S')
whenever q{S') > 0 and this completes the proof.

(3.2) REMARK. It is worth noting that case (3.1.1) in Theorem (3.1)
above does not occur whenever S is smooth. Indeed, let C e \L\ be
a smooth hyperelliptic curve and p: C —> P 1 the associated 2 to 1
covering. For a general point z € P1, let p~ι(z) = P + Q. Then
φ{P) = φ(Q) where φ denotes the map associated to Γ(#s + L), so
that [R], §1 applies to say that there exists an effective divisor Dz on
S, Dz D p~ι{z) such that either L Dz = 1, Dz Dz = - 1 or 0 or
L - Dz = 2, Dz Dz = 0.

Let L Dz = 1. Note that the case Dz Dz = - 1 is ruled out since
the ZVs are parametrized by P 1, so Dz Z>z = 0, and (S,L) is a scroll
as in case (3.1.2).

If L Dz = 2, Dz Z)z = 0, either Z)z is irreducible or not. If it
is not irreducible, the general Dz consists of 2 lines, one of which,
say / , moves. Using the Hodge index theorem and the assumption
Ci(Z,)2 > 10 we conclude that / / = 0 on S, hence we fall again in the
scroll case. If Dz is irreducible, then DZι meets DZl for general z1 ? z2

in P 1 in DZι DZl = 0 points. Therefore since the parameter space P 1

is rational the two irreducible curves DZι, DZl are linearly equivalent.
Thus we have two disjoint divisors giving the same line bundle. So
the line bundle is spanned and by Bertini, the general Dz is smooth.
Furthermore, since L Dz = 2, either Dz is a rational curve, and (S, L)
is a conic bundle as in case (3.1.3), or the map, associated to Γ(L) is
2 to 1 on the Dz's. This contradicts the assumption that Γ(L) gives a
genetically 1-to-l map, and therefore we are done.
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