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MASS OF RAYS ON COMPLETE OPEN SURFACES

K. SHioHAMA, T. SHIOYA, AND M. TANAKA

The total curvature of a complete open surface describes certain
properties of the Riemannian structure which defines it. We study
relationships between the total curvature and the mass of rays on
a finitely connected complete open surface and obtain some integral
formulas.

0. Introduction. Throughout this paper let M be a connected,
finitely connected, oriented, complete and noncompact Riemannian
2-manifold without boundary. The total curvature c(M) of M is
defined to be an improper integral over M of Gaussian curvature G
with respect to the area element dM of M. A well-known theorem
due to Cohn-Vossen [1] states that if M admits total curvature, then
2nx(M) —c(M) > 0, where x(M) is the Euler characteristic of M .
Clearly ¢(M) depends on the choice of Riemannian metric. This phe-
nomenon gives rise to the idea that the value 2ny (M) — c(M) should
describe certain properties of Riemannian metric which defines it.

A ray (respectively, a straight line) on M is by definition a unit
speed geodesic parametrized on [0, co) (respectively, on R) every
subarc of which realizes distance between its terminal points. For a
point p € M let S,(1) be the unit circle centered at the origin of the
tangent space M, to M at p. Let A(p) be the set of all unit vectors
tangent to rays emanating from p. A(p) is closed in S,(1). Let
9 be the natural measure on S,(1) induced from the Riemannian
metric. A relation between the mass of rays and the total curvature
was first investigated by Maeda in [6], [7]. He proved that if M is
homeomorphic to R? and if G >0, then Mo A4 > 2x—c(M), and in
particular infy; 9o A = 2n — ¢(M). These results were extended by
Shiga in [10], [11] to Riemannian planes whose Gaussian curvatures
change sign, and later by Oguchi [9] to finitely connected M with
one endpoint. In connection with an isoperimetric problem discussed
by Fiala [3] and Hartman [4], the first-named author proved in [14]
that if M has one end and if 2ny(M) — c¢(M) < 2n, then for every
monotone increasing sequence {K;} of compact sets with |JK; =M,
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f K, Mo A dM
The proof of this equation essentially depends on the fact that M ad-
mits no straight lines. This property is guaranteed by the assumptions
on the total curvature and the uniqueness of endpoint of M .

It should also be noted that all results mentioned above are obtained
under the assumption that A/ has one endpoint. In the case where
M has more than one endpoint (and this is the case where we are
interested in this paper), it will be natural to consider that each end-
point shares the value 2ny(M)—c(M) in the following sense. Let M
have k endpoints and let K C M be a compact set with the property
that M\ Int(K) consists of k tubes U, ..., Uy such that each U;
is homeomorphic to S! x [0, co) and that each AU; is a piecewise
smooth simply closed curve. Then the Gauss-Bonnet theorem states
that ¢(K) + ZfZIK(BU,-) = 2nx(M), where ¢(K) = [, GdM and
k(0U;) denotes the curvature integral over the boundary curve 9U;.
Foreach i=1, ..., k the value

si(M) :=k(0U;) —c(U))

is nonnegative and independent of the choice of tube. Moreover

Zs, =2y (M) — c(M).

For details see [15]. Thus one observes that each endpoint correspond-
ing to U; shares the value 2ny(M) — c(M).
With these notations our main results will be stated as follows.

THEOREM A. Assume that M admits total curvature and has k end-

points. If s;(M) < 2mn holds for each i = 1, ..., k, then for every
monotone increasing sequence {K;} of compact sets with | JK; = M,
fK Mo AdM
11![11<nk si(M) < jlir(no inf W
fK Mo AdM
S s = Mgt

THEOREM B. Assume that M admits total curvature and has k
endpoints. Let € be a simply closed smooth curve in M and let
B(t) ={xeM;dx,¢) <t} and S(t) ={xe M;d(x, ) =1t},
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where d is the distance function induced from Riemannian metric. If
si(M) <2m holds foreach i =1, ..., k, then

k
JpyPoAdM ={ D=1 SHM) if 2ny(M) — (M) >0,

lim
=00 fB(t) aM

2nx(M) — c(M)
0 if2rny(M)—c(M)=0.

REMARK 1. Shiohama first proved an inequality in Theorem B un-
der the stronger assumption that s;(M) < 2zm. But subsequent im-
provement on the asymptotic behavior of 97 o 4 was obtained by
Shioya and Tanaka. It turns out that the existence of straight lines on
M 1is no objection at all. Tanaka’s proof for the asymptotic behavior
of Mo A by assuming s;(M) = 2n will be provided in Lemma 1.1.
Shioya has extended this result to the case where +o0o0 > s5;(M) > 2m.
This result will be published independently because the proof is fas-
cinating and of independent interest in itself.

REMARK 2. Theorem B does not hold for any monotone increas-
ing sequence {K;} of compact sets with |JK; = M. For example,
consider a surface M of revolution in R3: Let f: R — (0, o) be
a positive smooth function satisfying f(z) = 1 for ¢t < -1, f(¢) =
(t-tan@ + 1) for ¢ > 1, where 0 is a constant in (0, n/2). M is
defined as

M={(x,y,z)eR )y’ +z?= f(x)?, x eR}.

Then s,(M) and s,(M) are 0 and 2zsin€ and 27ny (M) —c(M) =
2nsin @ . For any given & > 0 there exists a positive number ¢, such
that if p € M satisfies x(p) < —t,, then Mo A(p) < €, and such that
if x(p) > t;, then Mo A(p) € (s,(M)—¢, 55(M)+¢). For an arbitrary
fixed number a > 0 choose a monotone increasing sequence {K¢} of
compact sets of M with (J K ¢ = M such that

Area{p € K75 x(p) > 0}/ Area{p € K¢; x(p) < 0} = a.
Then, computation will show that

i Jig Mo AdM . 5\ (M) + asy(M) _ 2rx(M) — c(M))a
jmoo  [ga dAM a+1 a+1 ’

Since a > 0 is arbitrary, this example will suggest the validity of
Theorem A.
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1. Preliminaries. Let K C M be a compact set with the property
that M\ Int(K) consists of k tubes U, ..., Uy such that each dU;
is a piecewise smooth closed curve. For a point p € M\ Int(K) taken
sufficiently away from K, A(p) is divided into two subsets Ax(p)
and A% (p) as follows: For u € A(p) set y,(¢) :=exp,tu, t>0.

Ag(p):={u e A(p); 7u([0, 00)) N K # B},
Ax(p) :={u e A(p); ru([0, 00)) NInt(K) = }.

Both Ak (p) and A% (p) are closed in S,(1). It follows from minimiz-
ing property of rays emanating from p that Ag(p)N A% (p) consists
of at most two elements. Therefore

Mo A(p) = Mo Ak (p) + Mo A (p).

It was proved in §§2 and 3 in [14] that if 0 < s5;(M) < 27, then for
any given ¢ > 0 there exists an R(¢) such that for every p € U; with
d(p, K) > R(e)

(%) si(M) — & < Mo Ak (p) < 5i(M) +e.

A crucial step of the proof of Theorems A and B is to obtain the
asymptotic behavior of 9o A. What is left for this purpose is to
prove forall i=1,..., k and for all p € U; with d(p, K) > R(¢),

(%) Mo Ax(p) < ¢

and the following

LEMMA 1.1 (Tanaka). Assume that s;(M) = 2n. Then there exists
a compact set K with the property that for any ¢ > 0 there exists an
R;(¢) > 0 such that if p € U; satisfies d(p, K) > R;(¢), then

Mo Ay (p) > 21 —e.

Making use of a slightly extended version of an idea developed in the
proof of Theorem C in [12], (xx) is proved for a more general closed
subinterval S,(D(p)) of S,(1) which contains Ag(p). For p € U;
and for u, v € Ax(p) let D, ,(p) be the disk domain in U; bounded
by the subarcs of y, and y, between p = y,(0) = y,(0) and their first
intersections with K and a subarc of 90U, between them. Let D(p)
be the maximal disk domain among {D, ,(p): u, v € Ax(p)} and
Sp(D(p)) C Sp(1) the set of all unit vectors at p tangent to D(p).
Define an angle

Ok (p) := M(Sp(D(p)))-

Then the proof of (*x) is a direct consequence of the following.
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LEMMA 1.2 (Shioya). Let K C M be as above and assume that
si(M) < 400 holds forall i =1,...,k. Forany ¢ > 0 there exists
an R(e) > 0 such that if p € M\K satisfies d(p, K) > R(e), then

Ok(p) <e.

2. Proof of Theorems A and B by assuming Lemmas 1.1 and 1.2. First
of all consider the case where the total area of A is bounded. Then
a slight modification of Lemma 3.1 in [14] implies that there exist
k distinct Busemann functions on M , each of which corresponds to
an endpoint of M . A Busemann function is differentiable except a
set of measure zero since it is Lipschitz continuous. This fact means
that there exists a measure zero set £ on M such that A(p) for ev-
ery p € M\E consists of exactly k elements. Furthermore one has
2n (M) —c(M) = 0 if the total area of M is bounded (see Theorem
12 in [5] and Corollary of Theorem A in [13]). Therefore the proof
of theorems in this case is complete.

Assume that the total area of M is unbounded. Let

R(e) := lMSleg}c R;(e).
Let a be the area of closed R(¢)-ball around K and b the integral
of Mo A over this closed ball. It follows from (x), Lemmas 1.1 and
1.2 that for all sufficiently large j

b+ (Miny i<k 5:(M) — &) { [, aM - a}

Jx aMm
< ijﬂﬁoAdM < b+ (MaxlSiskSi(M)‘f's) {ij dM—a}
T g dM T Jx aM '

The proof of Theorem A is complete since ¢ is any and the total area
of M is unbounded.

For the proof of Theorem B one applies the Fiala-Hartman type
isoperimetric inequality which was refined by Shiohama in [12] and
[13]. Fix a compact set K containing € as in Lemmas 1.1 and 1.2.
Forevery i =1, ..., k and for sufficiently large ¢ > 0 let L;(¢) and
A;(t) be the length of S(z)NU; and the area of B(¢)NU;. Because M
admits total curvature S(¢) N U; is homeomorphic to a circle for all
large ¢ (see Theorem B in [13]), and is piecewise smooth for almost
all ¢. Note that A4,(¢) — 4;(¢) = [/ Ly(u)du. Forevery i=1, ...,k

tim 20 _ jim 2440 _ gy,

t—oo [ i—oo 2
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By choosing R(e) sufficiently large so as to fulfil

si(M)—¢e < £’t(—t) <si(M)+e¢

forall i=1,..., k and for all # > R(e), one obtains
b+ T (si(M) = 2)(si (M) — &) RO _ [p,) Mo AdM
Yk (S, )+ &)(*—R@)/2 4 g = JpyaM

b + Ez 1(8i(M) + 2¢e)(si(M) + g)(tz—R(e)z)/Z
E (8;(M) - 8)(’ —-R(e))/2 4 g ’

This completes the proof of Theorem B.

3. Proof of Lemmas. A general formula for the mass of rays ema-
nating from a point p € M is obtained by using an idea developed
by Shiga in [10]. This is stated as

(%) Mo A(p) = 2nx (M) — c(M\Fp),

where F, := {exp,fu;u € A(p),t > 0}. This formula plays an
essential role for the proof of Lemma 1.1.

For the proof of (x#x) fix a point p € M and let T > 0 be a
sufficiently large number such that S(p, T) := {x € M;d(p, x) =

T} consists of k piecewise smooth closed curves C;,..., C; in
Uy, ..., Ug and such that the break points X; i, ..., X; m@i) of C;
are joined to p by exactly two distinct minimizing geodesics o s
af sy o m(i) a;“m(l) with o; (0) = of ,(0) = p, o; (T) =
al’“,m(T) = X;,m and X; , 1S not conjugate to p along a, . and
a;’ . This is possible whenever 7 is taken to be a sufﬁc1ently large
non—exceptlonal value (see [4], [13]). Let F; (z =1,...,k,

1 < m < m(i)) be a disk domain surrounded by o] , ([0, T ]), the
smooth subarc of S(p, T') with terminal points X; ,, and Xi m+1 and

o; ,1(0,T]), and 6;, the angle between —a; ,(T) and
—dj” w(T). If ki, is the curvature integral of the subarc on

OF;, mNS(p, T), then
c(Fi,m) = M(Sp(Fi, m)) — Ki,m-
If B(p, T) is the closed T-ball around p, then

k
pTZ

i) k m(i)

Z Ki m—zzei,mzan(M)-

m(
1 m=1 i=1 m=1
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It follows from construction that J;|,, Sp(Fi,») is monotone de-

creasing with 7" and converges to A(p) as T — oo. The proof of
(¥%x) is complete since lim7_, Zﬁ;l EZ(__’)I 0;.m =0 (see Theorem

C, [12]) and lim7_o c(B(p, T)\U; U, Fi,m) = c(M\Fp).

Proof of Lemma 1.1. For a compact set C such that M\C consists
of k tubes, we choose a K containing C such that every minimiz-
ing geodesic joining points in C does not meet K. Let M; be a
complete open 2-manifold having one end with the properties that
there exists an isometric embedding : of K U U; into M; and that
M\1t(K U U;) consists of kK —1 disks. From construction it follows
that 2ny(M;) — c(M;) = s;(M) and x(M;) = x(M) + (k — 1). With-
out loss of generality one may identify points in U; with those images
in M; as well as other objects. For p € U; let A4;(p), Ak, i(p) and
Ay ;(p) be the set of all unit vectors tangent to rays on M; from p
with the same properties as defined in M. Then Ay ;(p) = Ak(p)
follows from the choice of K. There is no strict relationship between
Ak i(p) and Ag(p). But both of them will be estimated in Lemma
1.2. Since Mo A(p) = (Mo Ax(p) — Mo Ak i(p)) + Mo A;(p) and
the first term in the right-hand side turns out to be small by Lemma
1.2, one only needs to show that Mo A;(p) > 2n — ¢ if p is taken
sufficiently away from K in M;.

From now on one identifies M; with M . Forany ¢ >0 let K, Cc M
be a compact set containing K such that

/ G| dM < e.
M\K,

By means of (x*x) it suffices for the proof of Lemma 1.1 to show
c(M\F,) < ¢(M) + 5¢ for p e M with d(p, K) > R(¢). It follows
from finite connectivity of M that there are at most finitely many
non-overlapping sectors Vi(p), ..., Vj(p) in M with the following
properties: (1) Vi(p) N K, # &, (2) dVj(p) consists of two rays em-
anating from p, (3) Vj(p) is homeomorphic to a closed half-plane,
and (4) every ray emanating from p is contained in some Vj(p) if
it intersects K. V;(p) has the property that if Vj' (p) C Vi(p) is a
subsector such that there is no ray emanating from p and passing
through a point on Int(V(p)), then c(V;(p)) = M(S,(V/(p))). Let
{pn} be a divergent sequence of points in M\K, such that {V;(p,)}
foreach j=1,...,/ hasalimit V; as n — co. This Vj is a strip
if it has a nonempty interior. If I/}' C V; is a substrip such that there
exists no straight line contained entirely in Int(V7}), then c(Vj)=0.
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Set V.=V uU---uUV. oM\F,) < c(K) —c(KeNFp )+ e and
{c(KeNF, )}y tends to ¢(K:NV) as n — oco. Thus for all sufficiently
large numbers n, ¢(M\F,) < ¢(M\V) + 4¢. Since V; is a strip,
a result of Cohn-Vossen (see Satz 3, [2]) implies that ¢(V;) < 0 for
all j =1,...,/. This implies that ¢c(M\V;) < 2rnx(M\V,) —
But since x(M\V;) = x(M) + 1 the above inequality reduces to
c(M\V}) < 2rnx(M)—2n. It follows from the assumption for c(M)
that ¢(M\V,) < ¢(M), and in particular ¢(V;) = 0 for all j =
1,..., 1. Therefore ¢c(M\F,) < c(M\V) + 48 < ¢(M) + 5¢. This
together with (x%x) proves Lemma 1.1.

Proof of Lemma 1.2. A contradiction will be derived by suppos-
ing that there exists a divergent sequence {p,} of points such that
Ok (pn) > &y holds for all » and for some ¢y > 0. Without loss of
generality we may consider that {p,} is contained in a tube U .

To derive a contradiction consider the universal Riemannian cov-
ering U of U whose covering projection is denoted by n. Let
7: [0, 0c0) — M be a ray emanating from a point on U such that
7([0, 00)) is contained entirely in U. Cut open U along 7([0, o0))
and let U_;, Uy, Uj, ... be the fundamental domains of U lying
in this order in U. Let N [0, oo) - U be the lifted  ray of 7 such
that its image lies in 8U, 1 N 8U, and W := Uo U U1 u U2 Then
OW consists of two rays 79([0, 00)), 73([0, o0)) and a subarc of oU
whose terminal points are 7((0) and 73(0).

The intersection of the two minimizing segments on 0D(p,) with
oU will be denoted by Xn and y,. Set D, = D(p,) and let p, :=

2~ (p,)NU,; and D, c U the lift up of D, satisfying p, € oD, . Let
Xni=n"1(x,)N 8D, and y,:=7" Ty n 8D, . It follows from min-
imizing property of rays that the lifted minimizing geodesics joining
Pn to X, and p, to J, intersect 7~ !(r) at most at one point. This
fact means that these geodesics are in W , and in particular, %, and
Vn are on oW noaU. By choosing a subsequence, if necessary, one
may consider that {X,}, {y,} and {D,} convergeto X, y and to an
unbounded domain D in W . Two cases occur in the convergence of
{Dp} . In the first case, assume that {p,} is contained in the closure
of D. Then one may consider that {D } is monotone increasing and
UDn = D. A slight modification of Theorem C in [12] implies that
{0k (pn)} converges to 0, a contradiction. In the second case, assume
that {p,} is not contained in the closure of D. Without loss of gen-
erality one may consider that the lifted minimizing geodesic joining
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Pn to X%, intersects D at a point 7,. Set E, = 5n\5 and let

~

an € (0, m) be the angle at #, of the corner of D, N D. By construc-
tion, {7,} contains a divergent subsequence. Then Cohn-Vossen’s
argument (see §5, [2]) implies that {«,} has a limit 0. Let K, C M
be a compact set so as to satisfy

/ G, dM < e.
M\K,

Then the area of 7~ (K, N U) N Evn tends to zero as n — oo and
the curvature integral over En\n‘l(Kg N U) is bounded above by ¢.
These facts together with the Gauss-Bonnet theorem for E, imply
that {0k (p,)} contains a subsequence converging to 0 as n — oo, a
contradiction. This completes the proof of Lemma 1.2.
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