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DIAGONALIZING PROJECTIONS IN
MULTIPLIER ALGEBRAS AND IN MATRICES
OVER A C*-ALGEBRA

SHUANG ZHANG

Assume that &/ is a C*-algebra with the FS property ([3] and
[16]). We prove that every projection in M,(&) (n > 1) or in
L(#,) is homotopic to a projection whose diagonal entries are pro-
jections of ./ and off-diagonal entries are zeros. This yields partial
answers for Questions 7 and 8 raised by M. A. Rieffel in [18]. If .7 is
o-unital but non-unital, then every projection in the multiplier algebra
M (&) is unitarily equivalent to a diagonal projection, and homotopic
to a block-diagonal projection with respect to an approximate iden-
tity of &/ consisting of an increasing sequence of projections. The
unitary orbits of self-adjoint elements of %/ and M(&/) are also
considered.

0. Introduction. It is well known that a projection in A£,(C) or in
L(#) is homotopic to a diagonal projection whose diagonal entries
are either 1 or 0, where M,(C) is the algebra consisting of n x n
scalar matrices and L(/#) is the algebra consisting of bounded opera-
tors on a separable Hilbert space /# . The following natural question
comes up: if C is replaced by a C*-algebra &7 , is every projection in
M,(&/) or L(#,) homotopic to a diagonal projection whose diagonal
entries are projections of ./ and off-diagonal entries are zeros? Here
My, (&) is the C*-algebra of n x n matrices over & and L(#,) can
be regarded as bounded infinite matrices over & whose adjoints exist
(see §1 for a more precise description). Certainly, diagonalizing pro-
jections of M,(&) for n > 1 would yield information about Kjy(%)
(here diagonalizing projections in the sense of Murray-von Neumann
is enough for this purpose).

Concerning the matrix algebra M, (%), R. V. Kadison proved ([13]
and [14]) that if &/ is a von Neumann algebra, then every normal el-
ement in M, (%) is unitarily equivalent to a diagonal normal matrix
over &/ . Consequently, every projection in M, (&) is homotopic to
a diagonal projection, since the unitary group of a von Neumann al-
gebra is connected. In general, we certainly do not expect a positive
answer for the question if ./ is an arbitrary C*-algebra. K. Grove and
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G. K. Pedersen have pointed out ([11, 1.3]) that if o/ is the algebra
C(S?), the algebra of complex-valued continuous functions on 2,
then there exists a projection in M,(&/) which is not unitarily equiv-
alent to any diagonal projection. However, we do expect a positive
answer for a large class of C*-algebras.

The author has proved ([22]) that if &/ isa C*-algebra with FS, then
every projection in M,(&) or in L(%#,) is Murray-von Neumann
equivalent to a diagonal projection. In this note, we will strengthen the
previous results to unitary equivalence or homotopy. We prove that
if & is a C*-algebra with FS (not necessarily o-unital), and if p is a
projection of the multiplier algebra M (%), then every projection g of
& is homotopic to a projection g’ = p; +p,, where p; is a projection
of p#/p and p, is aprojection of (1—p)&/(1—p). As a special case, by
induction we conclude that every projection in M, (%) is homotopic
to a diagonal projection. This yields partial answers for Questions 7
and 8 raised by M. A. Rieffel in [18]. If &/ is o-unital and {e,} is
a fixed sequence of mutually orthogonal projections of ./ such that
Y mei1€en = 1, we prove that every projection in M (&) is unitarily
equivalent to a diagonal projection and homotopicto a block-diagonal
projection with respect to the decomposition 2 e, = 1. As a
consequence, every projection in L(#,) is unitarily equivalent (and
hence homotopic) to a diagonal projection. In addition, the unitary
orbits of self-adjoint elements of &/ or M(%/) are considered.

The class of C*-algebras with FS includes many interesting sub-
classes of C*-algebras. Obviously, AF algebras, the Calkin algebra,
von Neumann algebras and AW™*-algebras have FS. The Bunce-
Deddens algebras have FS ([2]). All purely infinite, simple C*-algebras
have FS ([24, Part I (1.3)] and [25]); in particular, the Cuntz algebras
@, and @,, where 2 < n < oo and A is an irreducible scalar matrix,
have FS. Certain irrational rotation C*-algebras have FS ([9]). Many
corona and multiplier algebras have FS ([5], [24, Part I] and [24, Part
IV]). L. G. Brown and G. K. Pedersen have recently proved ([5]) that
a C*-algebra & has FS if and only if M, (%) has FSforall n>1;
and & has FS if and only if &/ has real rank zero. In [21], [22], [23]
and [24] the author has investigated the multiplier and corona algebras
of C*-algebras with FS from various angles.

1. Notations. If & is a C*-algebra, we denote the Banach space
double dual of & by &/** and the multiplier algebra of &/ by M(«/);
where M(&) = {m e &/*:xm,mx € & Vx € &} ([1], [7], [15],
among others).
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Let #, = {{a;}: a; € & and )} 2, afa; converges in norm}. Then
#y becomes a Hilbert .&/-module with the 2/ -valued inner product

(Gaid, b)) =S atb; forall (), (b} € 7.

i=1

We denote by L(#,) the set of all bounded module maps with an
adjoint and by K(#,) a closed ideal of L(#,) called the “compact
maps”; more precisely, K(#,) is the norm closure of the set of all
“finite rank” module maps, {3 ], Ox.,y:Xi,yi € % and n € N}.
Here for any pair of elements x and y in #,, 6y, is defined by
Ox,y(a) = x{y, a) € #, for all a € %, ([15]). It was proved ([15])
that

LZ) =M %) and K(Z,) =¥ QX

as C*-algebras, where .%# is the algebra consisting of compact op-
erators on ## . The formulation of L(#,) and K(%,) are closely
analogous to those of L(#) and % .

If &/ is a unital C*-algebra, we will denote the unitary group of
M, (/) by U,(%) and the path component of U,(&) containing the
identity by UQ(«). In particular, we will denote UD(%) by Up(#).

If p and ¢ are projections in &, p ~ ¢ means that p and g are
equivalent in the sense of Murray-von Neumann, and p ~ ¢ means
that p and g are homotopic, i.e., in the same norm path component
of projections in &/ . It is well known that p = g if and only if there
exists a unitary element v in Uy(%/) such that vpv* = g. We denote
the matrix units of % by {e;;}.

2. Key Lemmas. The following technical lemmas are the key of this
paper:

2.1. LEMMA. Suppose that &/ is a C*-algebra with FS (not neces-
sarily og-unital) and p is a projection in M (/). If q is a projection
in &, then for any gy > O there exists a projection q' in & such that
both pq'p and (1 —p)q'(1 —p) have finite spectra and ||q — q'|| < & .
More precisely, the projection q' has the following form:

fo 0 O
q’ = 0 a b 0 ’
0 ba €0

where fo and the range of ay are mutually orthogonal subprojections
of p. Consequently q' ~q if g <1.
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Proof. Let q = ( e IC’ ) be the decomposition of g with respect to
p+(1—p) = 1. It follows that a—a? = bb*, c—c? = b*b, ab+bc=1b,
0<a<pand 0<c<1-p. (Actually these conditions are also
sufficient for ¢ to be a projection.) We will start with the idea in [6]
and then go further to construct a projection ¢’ = (2. %) such that
both ag(a’) and a(c’) are finite sets, and ¢’ is close to ¢ in norm.

Let 0 < J < 1 be a fixed positive number and ¢ be another positive
number such that 3¢ < 6. Since & has FS, there exists a positive

element ¢; in (1 — p)&/(1 — p) with a finite spectrum such that
(1) lle —all <e.

Set e = x(5,00)(C1 — c?). If §; is the smaller root of 2—t+6=0,
then e = x(5 ,1-5,)(c1) whichis a projection in (1 —p)/(1 —p).

Set ¢y = cje + x(l_gl,”(cl). Then o(cp) is a finite set, ¢y — cg =
e(c; —ce €ex/e and |cy — ¢ < Jy . It follows that

2) llco—cll <e+d) <e+ V0.

Set v = (eb*be)~'/%(eb*), of course where (eb*be)! is taken
in ex/e. Since e(c; — c¢?)e > de and hence eb*be > (J — 3e)e,
(eb*be)~1/2 exists. It is clear that vv* =e.

Set by = v*(co — c3)/2. Then biby = co — 3.

Set ag = v*(e — co)v. Then ag — a2 = boby and agbg + boco = by .

If we first fix & small enough, then we choose ¢ small enough and ¢,
satisfying (1) such that [lc—col|, ||b—bo|| and ||(a—a?)—(ap—a3)| are
all smaller than any preassigned positive number. However, |la — ao||
can be equal to one. Here we give details for further reference.

It is obvious that

(3) 15*b = (e = e}l < 3lle — e || < 3e.

Since ||(1 — e)b*b(1 —e) — (1 — e)(c; — ¢3)(1 —e)]| < 3¢ and
(1 —e)(c; —c?)(1 —e)|| <4, it is easily seen that

(4) Ib(1 - e)|| < V3 + 4.

Since eb*be > (J — 3¢)e, then

(5) lI(eb*be)™"|| < (6 — 3e)~".

By [12, 126] and (3), we can choose ¢ small enough such that
(6) |(eb*be)'/? — [e(c; — c3)elV/?|| < 6.
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By (4) and (6) we can choose ¢ small enough such that

(7)  llbo = bl < jv*(co— c3)'/* — v*(ebbe)' /|| + [|b(1 - &)
< |lfe(cr — c})el'/? — (eb*be)'/?| + V/3e + 6
<d+V3e+3.

Consequently,
(8) I(a — a*) = (a0 — ag)|l = ||bb* — bobg||
< 2||lbp — b|| < 26 +2v/3e+ 9.

It is clear from construction that g, = (Z? f‘)) is a projection. By
Lemma (2.4) of [21], a(ag)\{0, 1} = a(1 — c)\{0, 1}, and hence
a(ap) is also a finite set. The idea of constructing the projection gy
is due L. G. Brown ([6]) for different purpose.

We will go further to adjust gq to a projection ¢’ = ( 1? lc’f ) so that
lla —a'|| is small, too. Set f =v*v. Then f is a subprojection of p
and fap = apf = ap. We claim that ||faf — ag|| can be arbitrarily
small if 6, ¢ and c¢; are properly chosen. To prove this claim, we
need the following estimates.

9)  lle(d*b)!/*(1 —e)|| = |le[(b*D)/* = (c1 — c)'/*1(1 —e)]|
< |(B*B)2 = (e = D).
Then by [12, 126] and
[(eb*be)'/?}? = eb*be = [e(b*b)'/?e]? + e(b*b)'/2(1 — e)(b*D)?e,

for a fixed d > 0 we can choose ¢ small enough (by (3)) such that

2
(10) (B*B)/? = (c; — cH)V?|| < % and
(11) (eb*be)!/? — e(b*b)/?e| < 5\@.
Since

fla—ap)f =v*ev(a—ap)v*ev
=v*e(vav* —vaygv*)ev
= v*[ecope — v(p — a)v*]v,
then
(12) 1/ (a = ao) f1l < llecoe — ece|| + |lece —v(p — a)v”||
<ée+|ece —v(p —a)v’|.
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Since (1 —a)b = bc, p(l — a)b = bp(c) for any polynomial p(z).
Approximating by polynomials, we obtain that /1 —ab = b\/c, and
hence
b*(1 —a)b = c? — 3 = (b*b)/?c(b*b) /2.
It follows that
v(p — a)v* = (eb*be)~/?eb*(p — a)be(eb*be) /2
= (eb*be)~ /2 e[b*b b*able(eb*be)~1/?
= (eb*be)'?[e(b*b)/?c(b*b)!/?e](eb*be) /2
= (eb*be)"2[hy + hy)(eb*be) /2,
where
hy = e(b*b)!?ece(b*b)/%e
= (eb*be)/%c(eb*be)'/? + [e(b*Db)'/%e — (eb*be)/?|c(eb*be)!/?
+ (eb*be)!*cle(b*b)!/%e — (eb*be)'/?]
+[e(b*b)!/?e — (eb*be)'/*|cle(b*b)!/?e — (eb*be)'/?],
hy = e(b*b)!/?(1 — e)ce(b*b)'/%e
+e(b*b)%ec(1 — e)(b*b)'%e
+e(b*b)'2(1 — e)c(1 — e)(b*b)"/?e.
If ¢ is first fixed small enough, and ¢ and c¢; can be chosen such
that 6¢ < ¢ and

(13)  ||(eb*be)~'/2h;(eb*be)~1/? — ece||
< 2||(eb*be)™'72|| |le(b*b)' /e — (eb*be)' | ||c]|
+||(eb*be)™/?|1*|le(b*b)'/%e — (eb*be)' /2|2 |c]|
5\/3 53721
\/S/_/% [\/(\5/:73—8] < %420,
(where using (5), (10) and (11)) and
(14)  |/(eb*be)~2hy(eb*be)~ /||
< 2||(eb*be) ' 2| |le(b*b 1/2(1 =)l llell (B*b)'/|
+ [|[(eb*be) ™ /2|1?[le(*b) /2 (1 — )|?|Ic|

< (6 —3¢)7! [52+§4—] <20+6%,

where we used J — 3¢ > d/2. Consequently,

lv(p — a)v* —ece|| < 46 +26%, and so
If(a—ap)f| <e+46+25% by (12).
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If J is fixed small enough and ¢ is chosen small enough, then ||faf—
ap|| can be arbitrarily small if ¢, satisfies (1).

Moreover, by properly choosing d > 0, ¢ and ¢; in a similar way
we can require that ||(p — f)af]|| is less than any preassigned positive
number. This can be done as follows.

Since a — a?> = bb* and the spectral mapping theorem, it is clear
IIbll < 1/2. Since (1 —a)b = bc, we have

—(1 = fav* = (1 — f)(1 — a)be(eb*be)~'/?

= bce(eb*be)™1/? — be(eb*be)~eb*bce(eb*be)™!/?
= bce(eb*be)~1/? — be(eb*be) 'eb*bece(eb*be) /2
— be(eb*be)"leb*b(1 — e)ce(eb*be)™!/?
= b(1 — e)ce(eb*be)™!/?
— be(eb*be)"leb*b(1 — e)ce(eb*be)™ /2.
It follows that
(15) I(1 = Nafll < II(1 = fav*|
< 1Bl [I(1 = e)cell [[(eb*be)~ /2|
+[|b]l (eb*be) ™" || le(b*b)(1 — e)|l ic]| li(eb*be) /2|
<& [___1_] + 1 [__1_} (3¢) [_1____]
2(V6-3e] 2|[6-3¢ Vo -3¢

<[ \E L [3] 21
21V 6 211|6 ’
where we use (1), (3), (5) and the facts:

(1 —e)cel| = [|(1 —e)(c—ci)el| < |lc —cif|, and
leb*b(1 — e)|| = lle[b*b — (c1 — )I(1 = e)|| < [|b*D = (c1 = D).

As a consequence of the last estimate and (8), forany 0 <A< 1/2,
we can fix 6 small enough and then choose ¢ small enough such that
o((p—falp—f)) C [0, AJU[1—-4, 1]. This is because of the following
estimates:

(- Nla—a*) - (a-a)lw-f)=w@-Na-a*)p-1
=@-Naw-N-1lw-Naw-NF-@-Nafap- 1),

(o= Nap - )= - NHap - NP
<llp = Nlta - a*) — (ao — ad)lp = NI + I(1 = NHafI?
< |l(a-a?) — (a0 - a})ll + ll(p — Nafl*
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Set fo = xuy2,uy((p — flalp — f)). Then fy is a projection in
(p—f) (p—f) suchthat foap = aofo =0 and ||fo—(p—fla(p-f)| <
A. Set @ =ag+ fo, b = by and ¢’ = co. Then ¢’ = (3. ’C’) is a
projection in ./ such that

(16) llg" = gll < I(fo + ao) — all + 2[lbo — bl| + llco — ]|
< ||f(a —ao) Sl + 2l falp = /)|
+ /o= (2 = Nalp — Nl + 2l1bo = bll + llco = .

Combining all above estimates, we first fix 4 small enough, then fix
0 small enough, and then choose ¢ small enough and c¢; satisfying
(1) so that each term on the right-hand side of (16) is small. Then
llg — q'|| is small. It is clear that o(pq’'p) = a(fo + ap) is a finite set.
The last sentence in the statement of this lemma is well known. O

2.2. LEMMA. Suppose that &/ is a C*-algebra (not necessarily o-
unital) and p is a projection in M(/). If q is a projection in
such that o(pqp) # [0, 1], then there exist two projections q, and q
in & suchthat ¢ <p, <1—-p and q~q,+ q>.

Proof. Let q = (2 IC’) be the composition of g with respect to
p+(l-p)=1.Then a=pqp, c=(1-p)q(1-p) and b = pq(1-p).
By [21, 2.4], d(a)\{0, 1} =a(1 —c)\{0, 1}.

If b =0, then q; = a and ¢, = ¢ are as desired. Assume that
b#0. If 1 ¢ ag(c), then |c|| < 1. By the argument of [8, 1],
g 1is path connected to a subprojection g; of p. We can assume
that 1 € g(c). Since o(c) # [0, 1] and O is always in a(c), there
isa A in (0, 1)\o(c). Then there exists a positive number & such
that (A—¢e,A+¢)Na(c) = . Since b # 0, we can assume that
o(c)N(A+e¢,1)# D (Otherwise, g(a)N(A+¢, 1) # D, we consider
a instead.) We will use a variation of [8, 1] to construct a path of
projections for our purpose.

Define a family of continuous positive functions {fi};c0,1) from
[0, 1] to [0, 1] with the following properties:

(1) lim ||fi = fi,lloo = O for any ¢ in [0, 1];

(2) fi(s)=s forall s in [0, 1];

(3)

1, ifA<s<l1,
Jo(s) = ¢ linear, ifi-e<s<Ai,
0, if0<s<i-eg;
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(4) Forall ¢t in (0,1), fi(s)<s if s€[0,A—¢] and fi(s) > s if
s€[4, 1].

Since g is a projection, bc = (1 — a)b. Approximating by polyno-
mials, we obtain that bg(c) = g(1 —a)b for any continuous function
g on [0, 1]. Set

Ct = ﬁ(c) s
b b [fz(c‘) - ft(c)z] v

c—c? ’
a;=p— filp - a).

Then b, and c¢; are well defined elements in ./ by the properties of
fi. Although p—a isnotin po/p if p isin M(&)\& , p— fi(p—a)
isin p&p for t € [0, 1]. To see this, first, f;(p —a) is well defined
for each ¢ € [0, 1] since o(p — a)\{0, 1} = a(c)\{0, 1}. Second, if
we denote by 7 the canonical map from (p&/p)* to (p&p)*/p/p,
where (p&/p)* is the C*-algebra obtained by joining an identity to
p/p, then p — fi(p — a) € p/p, since n(p — fi(p — a)) = n(p) -
fi(r(p)) = 0. It is easily verified that

a; — atz = btb;k ,
ab; = b(1-¢),
Ct — C'tz = b:bt

Thus ¢(7) = (Z‘ ?‘) is a projection in ./ for each ¢ in [0, 1]. By
the property (15 of {1}, {a(®)}:p0,17 is contained in the same path
component of projections in . Then ¢(0) ~ ¢(1) = g. Since
(A—¢e,A)na(c) = D, ¢ = folc) = xp,15(c) is a projection of

(1-p)&Z (1 —p). It is obvious that
0b0 — 0 0
90 = (2 2)=(Te,)-

Consequently, ag is a projection of po/p. Set q; =ag and ¢, = ¢y,
as desired. O

Roughly speaking, with respect to a fixed sequential increasing ap-
proximate identity of ./ a block-diagonal projection of M (/) whose
blocks are with the same size is homotopic to a diagonal projection.
More precisely, we have the following lemma:

2.3. LEMMA. Suppose that <&/ is a g-unital, non-unital C*-algebra
with FS and > 72 (si1+Si2+---+Sin) =1, where {s;;:i>1,1<j<
n} are mutually orthogonal projections in & and the sum converges
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in the strict topology. If p is a projection in M(/) with the form
Y i1 Dpi, where p; is a projection in (s;; + S+ -+ Sin)¥ (Si1 + Sip +
o 8ip) for i>1, then p~3Y 2, (pi1 +pi2+ - +Din), Where p;; is
a projection in s;;./s;j for i >1 and 1 <j<n.

Proof. 1t suffices to prove the case if n = 2. If n > 2, we simply
employ the same proof recursively # — 1 times by induction to reach

the conclusion.
_ (4 bz‘)
bi <b1* Ci

We write
with respect to §;; +5;2. By Lemma (2.1), for each i > 1 we can find
a projection

fi 0.0
r=[0 a ¥
0 b% ¢

in (s;1+5,2)% (s;1+S5;2) such that ||p}—p;|| < 1/4, and both 4} and ¢!
have finite spectra. Here we use the proof of Lemma (2.1) to properly
choose a positive number J; and a positive element ¢}; in 5,95
with a finite spectrum, then we have that

e = 2.1-6)(C1i) s ¢ = cyei + X1-s ,1)(€1i)
Vi = (e,-b}‘bie,-)“‘/z(eib}‘), b: = ’U;(C; —C"I?'l-)l/z,
aj = v} (e; — ¢};)v;
and f; is a projection of s;,.%/5;; orthogonal to the range projection
of aj.
Let p' =372, p;. Then |p' — p|| < 1/4, and hence p~ p’.
Let o(c}) = {41, A2, -+, Ay} foreach i > 1. It follows from the
construction or [21, 2.4] that o(a}) = {1-4;;, 1-4i2, ..., 1=4;}. We

can write ¢} = Zﬁ!zl Aijrij, where {r;;: 1 < j <[;} is a set of mutually
orthogonal projections in §;,.%s;5. Let A be any number in the open
interval (4, 2) but not in UP, a(c}). Let ¢ = min{A — {1, 3 — A}.
For i > 1,if A;; is in the open interval (A —e¢, 4), we replace 4;; by
A’l-j =A—¢,andif 4;; isin (4, A+¢), wereplace 4;; by 4}, = A+e. If

. . !
Aij isnotin (A—¢, A+e¢), then we let A;j =A;j. Set ¢ = Ejle /lﬁ»jrij
for i > 1, and correspondingly set b = vi(c! — c/?)!/? and a! =
v;(e; —c})v;. Then
lai — ail| < lle; = ¢fll <& and

16 = b1l < ll(ef =)' = (ef = )2l < 3
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i 0 0
p'=10 a b
©\o e
l

l

is a projection in (s;;+5;2)% (s;1+5;2) such that ||p;—p/| < 28+§ <1.
Define p” = Y2, p/. Then ||p’ — p"|| < 1, and hence p’ ~ p”. The
remaining job is to prove that p” is homotopic to a desired diagonal
projection.

Let {fi}:cj0,17 be the family of continuous functions defined in the
proof of Lemma (2.2). Since o(c/) does not intersect with the open
interval (A —¢,A+¢) for i > 1, we can define

ci(t) = filc)),

| St NG
bi(t) —b l t(CCl) /l(zc ) ] s

l
ai(t) =p - flp — aj - fi).
Then a;(t), b;(t) and c;(¢t) are well defined elements in (s;; + 5;2)/
(s;1 + 8;2) for each ¢ in [0, 1] and i > 1 by the properties of f;.
Thus for each ¢ in [0, 1]

a;(t) bi(?)
pitt) = (b O
is a projection in (s;; + $;2) (i1 + 8;2) . It is easily seen that
. — ) _ a,~(0) 0 )
pl(l)—pl and pl(O)"‘ ( 0 Ci(O) ’

where a;(0) is a projection of s;%s;; and c¢;(0) is a projection
of s;ps;y. Define p(¢) = Y72 lp, ) for each ¢ in [0, 1]. Then
{p(t)}+ep0,17 1s a path of projection in M (#). It is obvious that

= [a;(0) 0
" _ i
P =7 and p(0)=3 (% o))
Since the choice of {f;}:cf0,1] does not depend on i, the path {p(z):
t € [0, 1]} is continuous in the norm topology.
Set p;1 = a(0), pn =¢;(0) for i > 1. Then
prp ~p"~p0)=> (pi+pp), asdesired. O
i=1
3. Diagonalizing projections in «/ and in M, (&). Since we will
frequently employ the following well-known fact in this paper, we
state it as a lemma.

It follows that
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3.1. LeEMMA. If &/ is a C*-algebra, and if p and q are two mu-
tually orthogonal projections in &/ , then p ~q ifandonly if p~gq.

Proof. Let v be a partial isometry in ./ such that vv* = p and
v*v = gq. Define w = v+v*+ (1 -—p—-gq). Then w is a self-
adjoint unitary in M (&) such that w*pw = g . It is well known that
w € Uy(«/). It follows that p~ q. O

3.2. THEOREM. Suppose that </ is a C*-algebra with FS and p,,
D2, ...,Dn (n > 1) are mutually orthogonal projections in M(/)
such that 3! ,p; = 1. If p is a projection in &/, then p ~ > 7, q;,
where q; is a projection in &/ such that q; <p; for 1 <i<n.

Proof. Recursively using Lemma (2.1) and Lemma (2.2), we reach
the conclusion. m]

The following theorem can be regarded as an analogue of the well-
known fact: Every projection in M, (C) is homotopic to a diagonal
projection whose entries are either 1 or 0.

3.3. THEOREM. Assume that &/ is a C*-algebra with FS and n >
1. If p is a projection in M,(/), then p ~ > ", p;®e;;, where {p;}
is a set of projections in &/ such that

P1<p2 < <pp_1 <Pn

Proof. It has been recently proved ([5]) that &/ ® .# has FS if and
only if &/ has FS. By Theorem (3.2) we have p ~ Y7 | p'®e;; , where
{pi} is a set of projections in %/ . The remaining work is to adjust
{p!}. We use induction on n.

If n=2, p~p|®e +p)Qey, where p| and p) are projections
in /. Combining Lemma (2.1) and Lemma (2.2), we obtain that
Py~ q1+4q; in &, where ¢g; and g, are two projections in %/ such
that ¢; < p} and g, < 1—p}. It follows that p ~ (¢, + ¢2) ® e + D5 ®
ey;. Working in the hereditary C*-subalgebra of M, (&) generated
by (1-q1)®e11+1®ex, wehave @ ®ey1 +p), ®exn ~ (p5+q2) ®exn
by Lemma (3.1). It follows that p ~ ¢, ® ey + (p5 + ¢2) ® €3. Let
pr=¢q and p, = g2 +pj.

Assume that p ~ Y 7 pi ® e¢; such that p)} < p} < --- < p;.
Applying Lemma (2.1) and Lemma (2.2) to p|, and p,, we have
P| ~ qn + q, , where g, and g, are projections in ./ such that g, <
1 —p, and g, < p,. By the same argument as in the last paragraph
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we have that p ~ g, Qe + 2?2—21 pi®eii+ (py, + qn) ® enn . Repeating
this argument to g, and p;_,, we have that g, ~ q,_, +q,_, where
q,_, and g,_; are two projections in &/ such that g, < p, —p,_,
and ¢,_, < p,_,. It follows that p ~ ¢g,_, ® e;; + ?z_zzpf ® e +
(p;_l + gn-1) ® €p_1 n—1+ (p;: + qn) ® enn .

Proceeding in this way, we write p| = 1., 4i,where {q;} isasetof
mutually orthogonal projections in .« such that ¢; < p§ +1 —p, for 2 <
i<n (where p,,,=1), ¢ <p),and p~ qiQe1;+) 1, (Di+4q;)De; .
Let p; = ¢, and p; =p;+¢q; for 2<i<n. Then py <p; < < py
and p%2?=1p,-®e,-,~. O

M. A. Rieffel raised a question in [18, 7]: If &/ is a unital C*-
algebra with cancellation, and if two projections p and g in M, (%)
represent the same class in Ky(%/), are p and g in the same path com-
ponent of projections in M, (% )? Since ./ has cancellation, [p] = [¢]
in Kog(#) if and only if p ~ g ([3] or [4]). Hence, Rieffel’s question
is equivalent to whether two Murray-von Neumann equivalent pro-
jections in M, (s/) are in the same path component of projections
in M,(#). The following corollary provides a partial answer for his
question in the case that ./ has FS:

3.4. CoROLLARY. If &/ is a unital C*-algebra with FS and can-
cellation, and if p and q are two projections in M,(%/), then p ~ q
ifand only if p~q.

Proof. Of course we need only to show that p ~ g implies p ~
q. Since M,(s&) has FS, by Theorem (3.2) we have p ~ q; + ¢»,
where ¢g; is a subprojection of ¢ and ¢, is a subprojection of 1 —¢q.
Since & has cancellation and p ~ ¢, ¢ ~ ¢ — q;. Working in
(1 —q)M,(2)(1 —q;), by Lemma (3.1) we can find a unitary v in
Uo((1 —q)My(s7)(1 —q;)) such that vgv* =qg—¢q,. Set u=¢q,+v.
Then u is a unitary in Uy(M,(#/)) such that ug, = qu. Thus
PR t+@p=q. o

Concerning the unitary orbit of elements in M, (%), we have the
following corollary:

3.5. COROLLARY. If &/ isa C*-algebra with FS and x is a normal
element in M, (/) with finite spectrum, then there is a unitary element
u in U(s/) such that uxu* = Y1_\[Y1 Aipijl®ej;, where {p;;} is
a set of projections in &/ such that Dpijipij in ¥ @ej; if iy # 1.
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Proof. By operator calculus we write x =Y 7, A,p;, where {;} is
a set of complex numbers and {p;} is a set of mutually orthogonal
projections in M, (% ). By Theorem (3.2) we can find a unitary el-
ement u; in UJ(&) such that u;pju} = Yioip1j®ej; (= q1) for
some projections {p;;} in & . Working in (I, — q,)M,(«)(I, — q1)
and repeating the same argument, we can find a unitary u, in
Uol(In —q1)My(57)(In—q1)] such that us(upyui)uy® = Y7 prj®ej;
for some projections {p,;} in & . It follows from p;p, = 0
that py;jpy; =0 for 1 < j</<n. Set uy =q;+u,. Then u; isa
unitary in UQ(&/) and wyu;(p; + po)uju} = Z%:l Y1 Pij® e =
(S pij) ® e

Proceeding in this way we can find unitary elements {u;: 1 < i <
m} in UY(&) such that

Umm—1 - U1 (D1 + D24 -+ Dm)UT - Upy Uy
n n m
=D |2 pu®ei| =) [ZPUJ ©ejj-
i=1 | j=1 j=1 Li=1
Let © = Uy - upu; . It is obvious that u is in U2(+/) and

uxu* = i [Z ADij

j=1 Li=1

®ejj. a

It is well known that the unitary orbit of a self-adjoint matrix in
M,(C) contains a diagonal self-adjoint matrix. If C is replaced by a
unital C*-algebra with FS, we have the following weaker analogue:

3.6. COROLLARY. If &/ is a C*-algebra with FS and x is a self-
adjoint element in M,(s/) (n > 1), then for any ¢ > Q there exist a
unitary element u in UY(s/) and elements a; in s/ with finite spectra
such that i
uxu* — Z a; ® e;;

i=1

<eé&.

Proof. Since M,(s/) has FS, there is a self-adjoint element / in
M, (&) with finite spectrum such that ||x — /|| < &. By the same
argument as in the proof of Corollary (3.5) we can find a unitary
element u in UY(&) such that uhu* = 3" a; ® e;;, where {a;} is
a set of self-adjoint elements in .« with finite spectra. Therefore,

h
uxu* =y a; ®ej;

=1

=|lx—h| <e. O
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3.7. ReMARK. Concerning the computation of Ky-groups of a C*-
algebra, M. A. Rieffel raised a question in [18, 8]: What is the smallest
n such that the projections in M, (&) generate Ky(%)? Theorem
(3.3) provides a partial answer for his question for the class of C*-
algebras with FS (actually it has been given in [22] although it was
not mentioned there). In fact, if &/ is a C*-algebra with FS, then the
smallest such an integer is n = 1; in other words, Ky(2/) is generated
by the set of Murray-von Neumann equivalence classes of projections
in & .

4. Diagonalizing projections in M (/).

4.1. THEOREM. Assume that &/ is a o-unital C*-algebra with FS
and {e,} is a fixed increasing sequential approximate identity consist-
ing of projections. If p is a projection in M (%), then the following
hold-

(i) There is a unitary u in M(«) connected to the identity by
a path of unitaries, where the path is continuous in the strict topology,
such that upu* = Y 72, p;, where p; < e; for i > 1; in other words,
each strict path component of projections in M (/) contains a diagonal
projection with respect to {ey} .

(ii) There exist a unitary v in Uy(M(s&/)) and a subsequence
{em} of {en} such that vpv* = Y32, p;, where p; is a projection
of (em, — em_, )% (em — em _ ) for i > 1; in other words, each norm
path component of projections in M (/) contains a block-diagonal pro-
jection with respect to {e,}.

Before proving this theorem, we state the following corollary, which
can be regarded as an analogue of the well known fact that a projec-
tion on a separable Hilbert space is unitarily equivalent to a diagonal
projection whose diagonal entries are either 1 or 0.

4.2. COROLLARY. If & is a o-unital C*-algebra with FS, and if
D is a projection in L(#;,), then there is a unitary u in L(Zy) such
that upu* =y 2, pi ®e;;, where {p;} is a sequence of projections in
&/ . Consequently, p ~ 3 2 pi®e; (by[8]).

Proof of Theorem (4.1).

Case 1. If p is a projection of &/ .
Choose n > 1 large enough such that ||p(1 —e,)p|| is small. Then
Lemma (2.1) of [10] applies. We find a unitary u in Uy(M(«/)) such
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that upu* < e,. By Theorem (3.2), p ~ upu* =~ > |, p;, where
pi <e;j—e;_; for 1 <i<n. Hence both (i) and (ii) hold.

Case 2. If p is a projection in M (¥ )\« .

Let {g,} and {g,} be two increasing sequences of projections in
& such that g, /' p and g, / 1 — p in the strict topology. Set
fn = aqn +q,. Then {f,} is an increasing sequential approximate
identity of ./ consisting of projections. By the argument of [10, 2.4]
we find a unitary element v in Uy(M(2/)) such that

€m, < Ufnlv* < €m, < ’Ufnz'U* < €m, <.y

where {n;} and {m;} are increasing sequences. It is clear that

vpv* =Y op(fo, = fo_ )V* —Ev(qn —gn,_ 0"
i=1 i=1

and v(gn —gn_)V* SV(fu — fo_)0* = (0 fn 0" —€m )+ (em —Vfn_ %)
(where g, =0 and f, =0).

We first prove (i). By Theorem (3.2) we find a unitary w; in
Uo(#), where o4 = [v(fo, — fo_)U*1&[V(fn, — fu_)v*], such that
WiV(gn, — gn_ JV*w; = r; +r;, where r; < vf, V* — ey and r; <
em —Vfp_v*. Set w =3 2, w;. Then w is a unitary in M(&)

such that w is path connected (in the strict topology) to the identity
and

oo o0
wopvrw* =Y (ri+1) <Y [(Vfnv* —em) + (€m, — v fn_ V)]
i=1 i=1
Since r; +r; 41 < em, —em , we can apply Theorem (3.2) again to get
a unitary w; in UO(EZS’ ), where Z; = (em  — em )M(Z)(em  — em)
such that

I+l

(r,+rH_1 = Z Dj,

Jj=m+1
where p; isin (e; —e;_;)¥/(e; —ej_;) for m; < j < m;,;.

Define w' = "7, w!. Then w' is a unitary in M (%) such that
w' is path connected in the strict topology to the identity and
w'wupvrwrw™* =Y 2, p;. Set u =w'wv, as (i) desired.

To prove (ii), we start with p ~ vpv* =3 72, V(gn —gn_ )", Where
Si=0(gn —qn_)V* SV(fu —fn_ )0 = (VI V" —€m )+ (em =V fn_ V")
foreach 1 >1 and gn, =0 and f,,0 = 0. With respect to

0, = fo 0" = (0S5, 0" — m) + (em, = 0o _0°),
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a; b,’ .
e >
S, = (b;‘ c,-) fori> 1.

we can write

By Lemma (2.3),

o0
vpv* & Y (Si+5)),
i=1
where s; is a projection in (v f, v* —em )/ (v fy V* —€m ) and s isa
projection in (em — v fy_ v*) (em — v fn_v*). Let p; =s;+s;_; for
i > 1, where 5o =0, as desired. m]

The following theorem asserts that the unitary orbit of each self-
adjoint element of M (%) contains an “almost” diagonal form, which
is a natural analogue of the classical Weyl-von Neumann theorem.

4.3. THEOREM. Assume that &/ is a g-unital C*-algebra with FS
and also M(«/) has FS. If {e,} is a fixed increasing approximate
identity of &/ consisting of projections and h is a self-adjoint element
in M (%), then there exist a unitary u in M (<), an element a in &,
some mutually orthogonal subprojection p;; (1 <j<n;) of ej—e;_,
Jor each i > 1 and a real bounded scalar sequence {4;;} such that

o0 1,'
Yopiy=1, and uhu* =) |> Ajpij| +a,
ij i=1 | j=1
where a can be chosen such that ||a|| is arbitrarily small. Moreover,
u is connected to the identity by a path of unitaries in M(%/), where
the path is continuous in the strict topology.

4.4. COROLLARY. If & is a unital C*-algebra with FS and L(#;)
has FS also, then for any self-adjoint element h in L(#,) there are
a unitary u in L(#y;), an element a in K(#,), a sequence of pro-
Jjections {p;;} in & and a real bounded scalar sequence {A;;} such
that

00 1, 00 [,
Yo | ®ei=1 and uhu* =) |> Aijpij| ®ei+a,
i=1 \Jj=1 i=1 | j=1
where p;j (i < j <I;) are mutually orthogonal for each fixed i, and
a can be chosen with an arbitrarily small norm.

Proof of Theorem (4.3).. Since & is o¢-unital and both & and
M(2) have FS, by [21, 3.1] we can find mutually orthogonal pro-
jections p; in & with ) 2, p; = 1, a real bounded scalar sequence
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{4;} and an element b in & with arbitrarily small norm such that
h =% Api+b. Let f =37 p;. Then {f,} is an increasing
approximate identity consisting of projections. By the same argument
as in [10, 2.4] we can find a unitary v in M (&) such that v ~ 1,
and

em SVfpv* <em Vv <em <o,
where {n;} and {m;} are increasing sequences. Since

n;

v D pi|vi=WhV —en)+ (em =V L V)

Jj=n,_,+1

(where f, = 0), by the same arguments in the proof of Theorem (4.1)
we can find a unitary w; of [v(fy, — fu_ )V IM(Z)[v(fn, ~ fu_)V"]
path connected to the identity v(f, — f,_ )v* such that

nl

n nl
ww | Y pi|vwi= ) wupptwi+ Y wwplviw;,
J=n,_,+1 Jj=n,_,+1 J=n_,+1

where

nl
pi+p!=pi, ri= > wuppurwf=vfv*—en and

Jj=n_+1
nl
rh= ). wuplvtw! =em —vfy_v*
J=n_+1
Let w = ) 72, w;. Then w is a unitary in M () such that w

is connected to the identity by a path of unitaries, where the path is
continuous in the strict topology. Since r; + r;- a S em ., —€m by the
same arguments in the proof of Theorem (4.1), we obtain a unitary
w; of (em,, —em )M (& )(em , —em,) path connected to the identity
em . —em, such that

mj-H

l
wilry + Wit = 30 D P

i=m +1 j=1

where {p;;: 1 < j <I;} is a set of mutually orthogonal subprojections
in (e;—ei_1)(e;—ei_1).

Define w' = Y2, w;. Then w' is a unitary in M (%) such that
w'’ is path connected to the identity, where the path is continuous in
the strict topology. Set ¥ = w'wv . Then u is path connected to the
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identity, where the path is continuous in the strict topology. It is easily
verified that uhu* has a desired form. (Notice that {4,} is equal to
{Ai;} as sets.) O

4.5. REMARKS. (i) The condition “ M (%) has FS” in the hypothe-
ses of Theorem (4.3) and Corollary (4.4) has been studied in [5], [21]
and [24]. Actually many multiplier algebras have the FS property.

(i1) Several applications of the results in this note have been given
in the author’s subsequent papers [24, Part II, III, IV].

Acknowledgment. The author wishes to thank the referee for point-
ing out an inaccuracy in Theorem (4.1) in the primary manuscript of
this paper.
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