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SEIFERT SURFACES OF KNOTS IN S4

DANIEL RUBERMAN

This paper uses some ideas from 3-dimensional topology to study
knots in S4 . We show that the Poincare conjecture implies the exis-
tence of a non-fibered knot whose complement fibers homotopically.
In a different direction, we show that Gromov's norm is an obstruction
to a knot having a Seifert surface made out of Seifert fibered spaces,
and hence to being ribbon. We also prove that any 3-manifold is in-
vertibly homology cobordant to a hyperbolic 3-manifold, so that every
knot in S4 has a hyperbolic Seifert surface.

One of the reasons that the study of knots in the 4-sphere has a
special character is that the Seifert surfaces that such knots bound
are 3-dimensional. Hence the peculiar nature of the topology of 3-
manifolds can lead to interesting behavior of 2-knots. In this paper
we give several examples of this principle. The first example is to show
that the 3-dimensional Poincare conjecture implies the existence of
non-fibered (topological) knots in *S4 whose exteriors are homotopy
equivalent to the exterior of a fibered knot. (Similar phenomena have
been noticed by J. Hillman and C. B. Thomas [12, 13] and S. Wein-
berger [32].) The second instance is to see how the existence of a
"geometric structure" on a Seifert surface influences topological prop-
erties of the knot.

Restrictions on the possible geometric structures are obtained via
"Gromov's norm" of a 2-knot, defined below. We show that a knot
with non-zero norm cannot have a Seifert surface which is a connected
sum of Seifert-fibered 3-manifolds. In particular, the norm is seen to
be an obstruction to a knot in S4 being ribbon. A similar obstruction
has been found by Bruce Trace [30]. In contrast, we will show that
any knot has a Seifert surface which is a hyperbolic manifold. This
follows from Theorem 2.6, which states that any 3-manifold has an
invertible homology cobordism to a hyperbolic manifold. A cobordism
W from M to N is called invertible if there is another cobordism
W, so that W UN W = M x I . Without the requirement that the
homology cobordism be invertible, this theorem is due to R. Myers
[23].
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1. Non-fibered 4-manifolds. If W is a manifold of dimension 6
or greater, then the theorem of Farrell [7] gives complete criteria for
deciding whether W is a fiber bundle over the circle. Roughly, W
must have the homotopy type of such a fibration, and some additional
^-theoretic conditions must be satisfied. The argument proceeds by
first using ambient surgery to find a codimension-one submanifold
M which will be a candidate for the fiber, and then to apply the s-
cobordism theorem to the complement of M. Smooth manifolds of
dimension five which do not fiber smoothly are constructed in [17];
these depend on Donaldson's theorem about the non-smoothability of
certain definite 4-manifolds.

In a similar vein, we show that the 3-dimensional Poincare conjec-
ture implies the existence of topological 4-manifolds which don't fiber
over Sι, although they do satisfy the hypotheses of Farrell's theorem.
The reason will be that there is no 3-manifold to serve as the fiber.
Taking infinite cyclic covers gives rise to smooth 4-manifolds of the
proper homotopy type of (3-manifold xR) which are not R cross
any 3-manifold. However there is an argument for this which avoids
the Poincare conjecture: In order for Freedman's fake S3 x R to be a
product, it would have to be a //-invariant 1 homotopy sphere cross
R. But Casson's recent work [5, 1] implies that a homotopy sphere
has trivial //-invariant.

We use the same constructions to answer a question (in the topolog-
ical case) posed by J. Hass [17], as to the existence of a 4-dimensional
analogue of the sphere/projective-plane theorem of 3-dimensional
topology. Specifically, if W is a 4-manifold with πι(W) = 0 and
π${W) Φ 0, then Hass asks if there is an embedded spherical space-
form carrying a non-trivial class in π$(W). We show that the man-
ifolds constructed as non-fibering manifolds above also do not have
any embedded space-form carrying π^ .

Our results depend on a recent theorem of H. Rubinstein [25] on
Z3-actions on the 3-sphere.

THEOREM 1.1 (Rubinstein). A free action of Z3 on a lens space is
conjugate to a linear action. In particular, a 3-manifold with funda-
mental group Z3k whose universal cover is S3 is a lens space.

If M is a closed 3-manifold, and M —> M is a regular Zn -covering,
then Atiyah-Singer [2] define the α-invariant a(M, Zn) in terms of
the intersection form of some four manifold over which (some mul-
tiple of) the covering extends. The α-invariant may be viewed as an
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element of the ring R(Zn) = Q[*]/(l +X + -- + Xn~ι)> w h e r e the
coefficients are eigenspace signatures as defined, say, in [6]. If A is an
element of the surgery group L%(Zn), then Wall [31] defines the mul-
tisignature p(A), lying in the same ring R(Zn). If W is a cobordism
between 3-manifolds M and N, and the Z[ZΛ]-valued intersection
form of W is represented by A, then the α-invariants of M and N
are related by a(N) - a(M) = p(A). Thus if the realization theorem
for elements of the surgery group worked in dimension 4, there would
be many homotopy lens spaces with α-invariants different from those
of any genuine lens space.

Unfortunately, it is known (using [5]) that the realization theorem
fails in this dimension. However, it does work in the topological cate-
gory in the next dimension up, for "small" fundamental groups. Com-
bined with Theorem 1.1, this leads to our non-fibering result.

THEOREM 1.2. Assume that the ^-dimensional Poincarέ conjecture
holds. Then there are topologίcal 4-manifolds satisfying the hypotheses
of FarrelΓs fibering theorem [7] which are not bundles over Sι. These
can be chosen to be complements of knots in S4.

Proof. Suppose that a group G is given by a twisted extension of
the integers:

G = KxtZ.

Here t is an automorphism of the group K. Then Farrell and Hsiang
give a computation of the L-groups of G in terms of those of K. If
K = Zn , then we have an exact sequence:

- Lh

5(K) - LS

5(G) 4 Lh

4(K) l=l* Lh

4(K) -

If U , the map induced on L\(K), is the identity, then LS

5(G) splits

as the direct sum L%(K) Θ L%(K).

The "boundary map" d from L\(G) to L%(K) is given by codimen-
sion-one splitting. In practice, this means the following. Suppose M
is a 4-manifold with fundamental group G, and W is a 5-dimensional
cobordism from M to M' realizing an element A of the L-group
L\(G). The surjection from G to Z is induced by a map / from
W to the circle Sι. Making / transverse to a point of Sι yields
a 4-dimensional manifold V embedded in W\ the multisignature
ρ{dA) is then exactly the multisignature of the intersection form on
V. By the remarks preceding the theorem, then, the action of A on
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M is to change M by varying the α-invariant of an embedded 3-
manifold dual to Hι (M) = Z . (We will call the α-invariant of such
a 3-manifold a codimension-one α-invariant.)

For example, suppose that M is Sι x L, where L is a lens space
with fundamental group Z 3 *. Since t in this case is the identity,

d:Ls

s(ZxZ3k)5> L\(Z3*). Choose AeLs

s(Zx Z3*) such that α(L) +
p{dA) is not the α-invariant of any lens space with %\ = Z 3 *. This
can be done since there are only finitely many such lens spaces, but
infinitely many possible multisignatures. Using topological surgery
[8], realize A by a 5-dimensional cobordism. The 4-manifold M' at
the end of the cobordism cannot fiber over Sι, although it is simple
homotopy equivalent to M.

To see this, note that if M1 were to fiber over Sx, the fiber would
have to be a homotopy lens space, with α-invariant a(L) + ρ(dA).
Hence the fiber couldn't be a lens space. But (assuming the Poincare
conjecture), this would violate Rubinstein's theorem.

To obtain examples of the same phenomenon where the 4-manifolds
are knot complements, we use the same argument, but with different
groups. Start with a 2-bridge knot in S3 whose double branched cover
is a lens space L = L(3k , q). The exterior, X, of the 2-twist spin of
this knot is fibered with fiber LQ = L punctured, and the monodromy
of the fibration acts by multiplying by - 1 on Z 3 *. It is easy to
verify that (-1)* is the identity on Z^(Z3*), so the construction of
the previous paragraph works as well to get a manifold Y simple
homotopy equivalent to X, but which cannot fiber over S 1 . None
of the operations affect the boundary of X, so that S2 x D2 may be
attached to Y to get a knot in S 4 which doesn't fiber. D

Doing the same sort of construction with a little more care, we ob-
tain a negative answer to Hass's question about a 4-dimensional ver-
sion of the sphere/projective-plane theorem of 3-dimensional topology
by finding a 4-manifold with %i = 0, π^ Φ 0 and with no spherical
space form carrying a non-trivial class in π?,. The construction we give
works in the topological case; it would be interesting to have a similar
example in the smooth case. If we relax the requirement that %2 = 0,
the problem becomes easier, even in the smooth case. For instance,
we show (Theorem 1.5 below) that there is no embedded 3-manifold
with finite fundamental group carrying a nontrivial element of
πi(S2 x T2) = Z . These results are independent of the Poincare
conjecture.
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By definition, a spherical space form is S3/G, where G is a finite
group acting linearly and freely on S3. The spherical space-forms
have been classified [33], and we rely on this classification in the proof
of the next theorem. The fundamental groups are all well-known sub-
groups of SO(4), and are in the list: cyclic groups Zn, generalized
quaternion groups D\m, binary dihedral groups D'nm+m1 ' t e t r a ^ e "
dral groups T*, binary octahedral 0*, binary icosahedral /*, and the
products of these groups with cyclic groups of coprime order. Except
for the cyclic groups, there is only one homeomorphism type with a
given fundamental group.

THEOREM 1.3. There is a topological manifold W with πι = 0
and π$ non-trivial, in which there is no embedded spherical space-form
carrying a non-zero class in π>$. W may be chosen simple homotopy
equivalent to Sι x L(3, 1).

Proof. We will construct W as in the previous theorem, by acting
on Sι x L(3, 1) by an element A of L s

5 (ZxZ 3 ) = L^(Z3). There are
two α-invariants we wish to avoid; one is the α-invariant αo of the
lens space L(3, 1). The other comes from the group G = D\ x Z3.
There is a 3-fold covering S3/D% —• S3/G which has an α-invariant
a\ G R(Z$). Choose A in LS

5(Z x Z3) so that the codimension-one
α-invariant of W is neither αi nor αo.

We claim that the resulting manifold contains no space-form carry-
ing a non-zero class in π^. The proof consists of checking the possi-
bility of embedding for each of the space-forms enumerated in [33].
The majority of them can be eliminated by an essentially homological
argument.

Note first that π^W) = H3(W) = Z , and that the Hurewicz map
is given by multiplication by 3. A codimension-one submanifold of
any oriented manifold represents a primitive homology class, so any
3-manifold embedded in W and carrying a jion-trivial element of
π${W) represents a generator of H$(W). Let W be the infinite cyclic
cover of W\ it is proper homotopy equivalent to I ( 3 , l ) x R . Any
3-manifold M representing the generator of H^{W) lifts to W, and
thus has a map of degree ±1 to L(3, 1). In particular, its fundamen-
tal group surjects to Z 3 .

This eliminates some possibilities, such as the binary icosahedral
group /* (or /* x Zn with (n, 120) = 1). To make more progress,
we use the linking form of the 3-manifold M. For any group which
surjects onto Z3, consider the restriction of the linking form of M to
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the kernel of the map H\ (M) to Z 3 . An argument similar to that in
[10] shows that if M were to embed in W, this linking form would
be hyperbolic.

It is not hard to compute the homology of all the groups and decide
which have surjections to Z3. The only ones which have such surjec-
tions such that the kernel supports a hyperbolic linking form are the
groups D\m x Z 3 where m is even. To eliminate these manifolds,
we must work harder, since in fact the linking form in question is
hyperbolic, at least when m is of the form 4k + 2.

The group D*4m is presented as

ί r v v2m — 1 vm — x2 x~~ιvx — v~ι\
]^*x , y . y — 1 , y — v̂ , Λ, y w — y j .

Thus its homology is given by Z 2 ® Z 2 , generated by the images of
x and y under abelianization. Suppose S3 /D\m x Z 3 embeds in
W. Then N = S3/Dlm embeds in a 4-manifold proper homotopy
equivalent to 5 3 x R , and hence (topologically and locally flat) in S4 .
We will use the obstructions to such embeddings given in [10] to see
that this cannot happen.

According to that paper, for appropriate homomorphisms φ of
H\(N) to Z 2 , the associated α-invariant will satisfy an inequality.
More precisely, there are three non-trivial homomorphisms of H\(N)
to Z 2 , which we will denote φx, φy , and φxy . The map φx sends
x to 1 and y to 0 the map φy does the opposite, and φxy is the
sum of the other two. Applying Theorem 2.1 of [10], we find that for
two of the three homomorphisms, we must have: a(N 9 φ) = ± 1 .

We can calculate the α-invariant of the involution on the double
cover N of N by using a formula due to Hirzebruch [12]. He observes
that when a manifold such as N is covered by S3, the α-invariant of
an action on N may be computed as the average of the α-invariant's
of a coset of ker[πi(iV) —• Z2] whose elements act on S3. Carrying
out this computation, we find that

a(N, φy) = -l,

1 1

The last equality may be found in [34]. Hence for m greater than two,
N cannot embed in S4, and the manifold it 3-fold covers cannot
embed in W. For m = 2, N does in fact embed in S4, as the
boundary of a tubular neighborhood of an embedded projected plane.
But we prevented the corresponding 3-manifolds S3/(DZ x Z3) from



SEIFERT SURFACES OF KNOTS IN S4 103

embedding in W by choosing the codimension-one α-invariant of W
to be different from the α-invariant of this 3-manifold. Hence there is
no spherical space-form embedded in W, carrying a non-trivial class
in π 3 .

REMARK 1.4. The same technique gives manifolds simple homotopy
equivalent to Sι x L(3k , q) with no embedded space-form carrying a
non-zero class in π 3 , for any k and q. Similarly, the knot comple-
ments in Theorem 1.2 can be chosen so that there is no (punctured)
space-form as Seifert surface of the knot.

As mentioned above, if one does not require the vanishing of %2,
then it is easier to find 4-manifolds (even smooth ones) with no space-
form carrying a non-trivial element of π 3 . We give one such example,
which has a somewhat stronger property.

THEOREM 1.5. There is no 3-manifold with finite fundamental group
embedded in the manifold S2 x T2 carrying a non-trivial element of
π3(S2x T2).

Proof. Let f:M-+S2xT2 be a map whose induced map on π 3 is
non-trivial. If π\(M) is finite, then the induced map on fundamental
groups is trivial, and so / lifts to the universal cover S 2 x R 2 . If /
was an embedding and non-trivial on π 3 , then the lifted map has these
properties as well, so it suffices to show that there is no embedding of
M in S2 x R2 which is non-trivial on π 3 .

Now since π\(M) is finite, M has the rational homology of S3,
and its universal cover is homotopy equivalent to S3. Therefore there
is a well-defined, Q-valued linking number between 1 -cycles in M.
Using this, one defines a Q-valued Hopf invariant of a map / from
M to S2 as the linking number between the inverse images of two
distinct regular values of / in S2 . This rational Hopf invariant has
the property that the Hopf invariant of the induced map M ~ S3 -»

M —• S2 is |πi(Af)| times the Hopf invariant o f / . Since n^(S2) is
detected by the usual Hopf invariant, it follows that a map / : M —• S2

is trivial on π 3 if and only if it has trivial Hopf invariant.
Now if M happens to be the boundary of a 4-manifold V with

the rational homology of a ball, then linking numbers of 1-cycles in
M may be calculated in term of intersections of surfaces which they
bound in V. In particular, if / : M —• S2 is a map which extends
over a rational ball then the inverse images (in V) of two regular
values of the extended map give surfaces with boundary the cycles
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whose linking number is the Hopf invariant of / . The surfaces are
disjoint, so it follows that the Hopf invariant of a map which extends
in this way must be zero.

To apply these remarks in our situation, notice that n^(S2 x R2) =
π3(*S2) by projection. Moreover, an easy Mayer-Vietoris calculation
(compare [10]) shows that if a rational homology sphere such as M
embeds in S 2 x R 2 , it separates, and bounds a rational ball V. But
the projection to S2 provides an extension of the map M —• S2 over
V thus by the previous paragraph the induced map on π^ must be
trivial. D

2. Geometric structures on Seifert surfaces. The previous section
used surgery-theoretic constructions in dimension 4 to restrict the pos-
sible Seifert surfaces of knots in S4. In this section, we use more
specifically 3-dimensional ideas to give restrictions of a different na-
ture. In contrast to the previous section, the knots here will be smooth.

A compact 3-manifold is hyperbolic if its interior has a complete
hyperbolic structure. In a mild abuse of language, we will say that
a manifold with some 2-sphere boundary components is hyperbolic
if the manifold obtained by filling in 3-balls is hyperbolic. Similarly,
we will talk about punctured 3-manifolds being Seifert-fibered. The
main results of this section are that every knot in S 4 has a hyperbolic
Seifert surface, but not every knot has a Seifert-fibered Seifert surface.
This second fact can be used to demonstrate that certain knots are not
ribbon knots.

To demonstrate that certain knots have no Seifert Seifert surface,
we will use Gromov's norm [11, 28]. If z = Σf/07 is a real singular
chain in a space X, then Gromov defines the norm of z as Σ |r/|.
The norm of a homology class in X is the infimum of the norms
of chains representing that class. In particular, Gromov's norm of a
closed orientable manifold is defined to be the norm of the fundamen-
tal class of the manifold.

The norm of a hyperbolic manifold is a constant times its volume
in the hyperbolic metric. Gromov's norm adds under connected sum,
and moreover if M is a 3-manifold which is a union along incom-
pressible tori of hyperbolic manifolds and Seifert-fibered manifold,
the norm of M is the sum of the norms of the hyperbolic pieces.
If M is a punctured 3-manifold, then we will define its norm as the
norm of the filled-in manifold.

DEFINITION 2.1. Let K be a knot in S4 . The Gromov norm of K,
|AΓ|, is the infimum of the Gromov norm of all Seifert surfaces of K.
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There are other reasonable definitions of \K\; for instance one
might define \K\0 as the norm of the generator of H$(Y) = Z, where
Y is the surgered manifold S4-KxD2uSι xD3. It is easy to see that
\K\Q < \K\, and one might conjecture that they are equal. The proof of
Proposition 2.4 shows that the two norms coincide for fibered knots.
Gabai [9] has shown equality for the analogous quantities defined for
knots in S3.

LEMMA 2.2. If K is a knot in S4 which has a Seifert-fibered Seifert
surface, then its norm is 0. The same holds if the Seifert surface is a
graph manifold.

Proof. This follows directly from the fact that the norm of a Seifert-
fibered manifold, or a sum of such manifolds along tori or 2-spheres,
is trivial. D

One observes directly that the Gromov norm thus provides an ob-
struction to a 2-knot being ribbon.

COROLLARY 2.3. If K is a ribbon knot in S4, then \K\ = 0.

Proof. It is well known that a ribbon knot in S4 has a Seifert surface
which is a connected sum of S2 x Sι 's. Such a manifold has norm 0
by the lemma. D

To use this corollary to find non-ribbon knots, we must find some
knots with non-trivial norm. This is done in the following proposition.

PROPOSITION 2.4. Suppose K is a fibered knot in S4, whose fiber
M is hyperbolic. Then the norm of K is the norm of M: \K\ = \M\.
In particular, \K\ ̂  0, the knot is not ribbon, and has no Seifert-fibered
Seifert surface.

Proof. Let Y be the surgered manifold S4-KxD2uSι xD3. Then
Y is fibered over Sι with fiber M. The infinite cyclic cover of Y,
Ϋ, is diffeomorphic t o M x R and is therefore homotopy equivalent
to M. If N is any other Seifert surface for K, then it lifts to Ϋ and
represents a generator of H^{Ϋ) = Z. The homotopy equivalence of
Ϋ with M restricts to a degree ±1 map from N to M. Therefore
[28] the norm of N is greater then or equal to that of M. It follows
that |AΊ = \M\. D
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Of course there are many knots in S4 with hyperbolic fibers. For
example, if K is a hyperbolic knot in S3, then for large enough
p , the p-ϊold cover of S3 branched along AT is a hyperbolic man-
ifold. This manifold (punctured) is the fiber of the /?-twist spin of K
which is thus the desired knot. We remark that any invariant of 3-
manifolds which is non-increasing under degree-one maps will provide
obstructions to knots being ribbon in exactly the same way, provided
it vanishes on connected sums of S2 x Sι 's. For example the "Seifert
volume" of Brooks and Goldman [4] has this property. Using this
observation, we can show that many fibered knots in S4 whose fibers
are Seifert-fibered 3-manifolds are not ribbon knots. For example, the
Brieskorn homology spheres Σ(p, q 9 r) have non-vanishing Seifert
volume if p, q and r are sufficiently large. Thus the /?-twist spun
(q, r) torus knot is not a ribbon knot.

Since there are knots in S4 with no Seifert-fibered Seifert surface, it
seems reasonable to ask if there are further restrictions on the type of
geometric structure a Seifert-surface might have. The discussion above
shows that the reason Seifert-fibered spaces can be prohibited is that
the knot is too complicated, at least as measured by Gromov's norm.
This suggests that perhaps every knot has a hyperbolic Seifert surface.
In the rest of this section, we show that this is indeed the case. This
is accomplished by constructing a special sort of cobordism between
any 3-manifold and a hyperbolic 3-manifold.

DEFINITION 2.5. Let M and N be 3-manifolds. A 4-manifold W
with boundary MuN is called a homology cobordism if H*( W, M) =
H*(W, N) = 0. A cobordism W is invertible from M if there is a
cobordism W from N to M with WuMW' = N xl. We say that
M splits N x I .

Not every invertible cobordism is a homology cobordism, nor is
every homology cobordism invertible. Note that if M splits N x I,
there is a degree-one map from M to N obtained by collapsing Nxl
to N. In the remainder of this section, we show that for every 3-
manifold N, there is a hyperbolic manifold M such that M splits
Nxl.

THEOREM 2.6. Let N be a closed orientable 3-manifold. Then there
is a hyperbolic Z-manifold M, and an invertible homology cobordism
from M to N.
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We will show this shortly, but first draw some corollaries. We
remark that Myers [23] showed that any 3-manifold is homology-
cobordant to a hyperbolic 3-manifold. The cobordism he constructs
will not in general be invertible, however. Several other authors [3, 4,
26] have shown that any 3-manifold is the target of a map of a non-
zero degree from a hyperbolic manifold. From the collapsing map of
the invertible cobordism we obtain:

COROLLARY 2.7. For any 3-manifold N, there is a hyperbolic man-
ifold M, and a degree-one map from M to N.

From the construction of invertible cobordisms, we deduce the ex-
istence of hyperbolic Seifert surfaces for any knot in *S4:

(a)
FIGURE 1

(b)

COROLLARY 2.8. Let K be a knot in S4. Then there is a Seifert
surface M for K which is a hyperbolic 3-manifold.

Proof. Let No be an arbitrary Seifert surface for K thus JVo x I is
embedded in S4. By Theorem 2.6, find a hyperbolic 3-manifold M
splitting N x I . Thus Mo embeds in JVQXI , with boundary K. D

The proof of Theorem 2.6 follows the basic idea of [18, 23]: For
each number g , find a hyperbolic 3-manifold Mg with boundary
which splits Ngxl9 where Ng is the orientable handlebody of genus
g. The cobordism from Mg to Ng will be a product on the bound-
ary, and will be a homology cobordism. By construction, Mg (for
g > 3) will have the property that if it is glued to itself via any dif-
feomorphism of its boundary, the resulting closed manifold will be
hyperbolic. Since any 3-manifold has a Heegaard splitting of genus
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> 3, Theorem 2.6 will follow by gluing together two copies of Mg

via the difFeomorphism which glued the two halves of the Heegaard
splitting together.

The manifold we use for M - g is the complement of the g arcs
a\, ... , ctg embedded in B3 as in Figure l(a). Note that a\, ... , ag

are the lifts of the arc a in Figure 1 (b) under the branched covering
B3 —> B3, branched along the arc β drawn in Figure l(b). This
branched cover description will be the key to showing that Mg is
hyperbolic. For g = 1, we have the solid torus M\ = B3 - v{a),
which we will abbreviate to just M. Also, we will refer to (B3, a, β)
as a "tangle" and denote it by " T ".

Recall the following definition [21] which captures the topological
data inherent in a hyperbolic 3-manifold with non-torus boundary.

DEFINITION 2.9. Let X be an irreducible, compact 3-manifold, and
P C dx a union of essential tori and annuli. Then (X, P) is a pared
manifold if:

1. Every abelian, non-cyclic subgroup of τt\{X) is conjugate to a
subgroup of n\(P).

2. Every map φ: (Sι x I, Sι x dΐ) —• (X, P) which injects on π\
deforms (rel<9) into P.

If (X,P) is a pared manifold, write d0X = dX-P.

One should think of P as a maximal subsurface of dX carrying the
parabolic elements of τi\{X). We note further, that as a consequence
of the torus-annulus theorems of Jaco-Shalen and Johannson [15, 16],
as long as (X, P) is not a Seifert pair, we may restrict to embedded
tori and annuli in verifying the above conditions.

For β a properly embedded arc in a 3-manifold M , let X be
the complement of a regular neighborhood v(β). Let P be du(β);
then we can write dX = P UQP d$X. We will show that for X =
B3 - i/(α U β) = M - v(β), and P as above, that (X, P) is a pared
manifold.

THEOREM 2.10. Suppose β c M3 is a properly embedded arc such
that X = M - v{β), P = dv(β) have the following properties:

1. (X, P) is a pared manifold.
2. ΘQX is incompressible, and any essential annulus with bound-

ary in ΘQX V deforms, (rel9) into OQX .

If' p: Mk —> M is a cyclic cover branched along β and k > 3, then Mk

is irreducible, atoroidal, and anannular, and dMk is incompressible.
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Proof. We use the equivariant sphere theorem and Dehn's
Lemma/loop theorem of [20], and the equivariant versions of the an-
nulus, and torus theorems [19]. The argument for each part of the
conclusion is similar: a surface upstairs in Mk gives rise to a surface
downstairs in ¥ or I , which contradicts properties of X. Let g
be a generator of the covering translations of Mk over M, and Xk

be the unbranched cover p~ι{X).
First we show that Mk is irreducible. By the equivariant sphere

theorem, if there is a 2-sphere in Mk which does not bound a ball, then
either there is an invariant such 2-sphere, or one for which gr{S2) Π
S2 — 0 for all r < k. In the latter case, the sphere misses the fixed
point set β and hence projects to an embedded sphere in X. Since
X is irreducible, the sphere bounds a ball B, and so S2 bounds
p~ι(B). If S2 is invariant, then S2 Π β is two points and S2 Π Xk

is an annulus A. The annulus A projects to an embedded annulus
A in X with boundary in P. Since (X, P) is pared, there is a solid
torus in X with boundary = AuAf, where A' is an essential annulus
in P. Lifting this solid torus to Xk , and gluing in B gives a ball with
boundary S2.

The proof that dMk is incompressible follows a similar line, with
the sphere replaced by a disk D. If gr{D) misses D for all r < k,
then projecting down into X gives rise to a contradiction. If there is
a disk which is invariant, then its intersection with Xk projects to an
annulus A in X running from P to d$X. The end of A lying in P
may be isotoped to lie in OQX . By hypothesis, there is a solid torus
in X with boundary A U A1 where A1 c d$X . As above, this solid
torus lifts to Xk , where it can be used to find a ball in Mk pushing
D into the boundary of Mk .

The hypothesis that k > 3 enters into the proof that Mk is atoroi-
dal. The point is that if Zk acts on T2 with non-empty fixed-point
set, then k must be 2. (This is easily shown by an Euler characteristic
argument.) Hence if there is an essential torus T in Mk , then either
there is one which is disjoint from all of its translates, or there is one
which is invariant under Zk and on which the group acts freely. In ei-
ther case, the projection of T to its image T in M is a covering map.
Since π\(T) injects into π\{Mk), it certainly injects into 7t\(Xk).
Therefore the composition Z® Z = π\(f) —• π\(Xk) —• π\(X) is an
injection. This contradicts the fact that (X, P) is a pared manifold.

The proof that Mk is anannular uses essentially the same argument,
and will be omitted. D
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In establishing the hypotheses of Theorem 2.10, we will use some
easily derived properties of the tangle T of Figure l(b).

LEMMA 2.11. The tangle T has the following properties:

1. Both components are unknotted arcs which can be interchanged
by an isotopy of B3.

2. Any disk D2 in B3 - T with dD c S2 - (da U dβ) is isotopic
(in B3 - T) to one lying in S2.

Proof. The first statement is easily seen from the picture of T. If
there were a disk as in 2, then it would have to separate a from
β . Since both components are unknotted, then T would be a trivial
tangle, and any knot gotten by closing the tangle would be a 2-bridge
knot. One such knot is the true-lover's knot ( 9 4 6 in Rolfsen's table
[24]). But this is not a 2-bridge knot; for example its 2-fold branched
cover doesn't have cyclic first homology. D

We are now in a position to verify the first hypothesis of Theo-
rem 2.10 for the complement of the tangle T.

LEMMA 2.12. Let X be the complement of T, i.e., X = B3-v(aΌβ)
and P be the boundary of a regular neighborhood of P. Then (X, P)
is a pared manifold.

Proof. Since X is a compact submanifold of R3 with connected
boundary, it is irreducible. Suppose that T is an incompressible torus
in X. It is compressible in M, so it either bounds a solid torus in
M, or it bounds a ball minus a knotted arc. If T bounds a solid
torus in M, then it does so in X and is therefore not incompressible.
If T bounds a ball minus an arc then β must go through the tunnel
dug out by the arc, for T would compress in X if not. If T doesn't
bound a solid torus, the arc must be knotted. But then the knot in S3

obtained by capping off β would then be non-trivial. This contradicts
the fact that β is itself trivial. D

Verifying the hypothesis of Theorem 2.10 concerning the incom-
pressibility of 8QX and the existence of annuli with boundary in P
is, unfortunately, more complicated. We divide X into two submani-
folds X\ and Xι meeting in a common surface F . The submanifolds
X\ and Xι are pictured below; each of their boundaries is divided
into pieces: dXi = F U <?/ U Pi. The Pi are of course the pieces of P
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FIGURE 2. X split into pieces

in the X\. The idea is to analyze a disc or annulus in X by consid-
ering its intersection with the X[. A straightforward argument in the
style of [22, 23] shows that to verify that there are no discs or annuli,
it suffices to demonstrate the following facts.

LEMMA 2.13. For the manifolds X\ in Figure 2, the following hold:

1. Both Xt are irreducible, and the surfaces Ft, G[, and P/ are
all incompressible.

2. Any disc D in Xt with dD n Pi = 0 and dDnF a single arc
is boundary-parallel.

3. There is a disk D\ in X\ with dD\ n F = two arcs, which
is not boundary-parallel. Any disk D in X\ with dDΓ\P\ = 0 and
dDnF = two arcs is boundary-parallel or parallel to D\.

4. There is no (non-trivial) disk D in X2 with dD n P2 = 0 and
ΘDΠF = dD{nF.

5. Any essential annulus (A9dA) in (Xi9 dXi-dF -dGi
is homotopic (rel boundary) to an annulus in dX[ - OF -dGi~

Proof. The statements in 1 about X\ are straightforward, using the
easily verified fact that X\ is a genus-2 handlebody. To prove part 1
for Xι, note that X2 is the union of two genus-2 handlebodies along
the 3-punctured sphere A in Figure 2(b). The 3-punctured sphere is
incompressible, as are G2, Pi and F in the subhandlebodies. There-
fore they are incompressible in X2 as well, and X2 is irreducible by
a standard theorem.

The proofs of the other statements share a similar pattern of ar-
gument. The pieces of the boundary of the X\ where the boundary
of the disk (for 2-4) or annulus (for 5) lie are 3-punctured spheres.
The main point is that there are only a few (rel boundary) homotopy
types of properly embedded arcs in a 3-punctured sphere. For the case
of an annulus, we also need the fact that a simple closed curve in a
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3-ρunctured sphere is peripheral. Because of this, it is elementary to
find all the possible arcs which could be part of the boundary of a disk
(say for 2-4), or circles which could be boundary components of an
annulus. Each case is then eliminated by an elementary knot-theoretic
argument.

Rather than go through all of the (numerous) cases, we will just
illustrate the idea in proving part 2 for X\. So suppose that D is a
disk in X\ whose boundary misses Pi , and whose boundary meets
F\ in a single arc γ. Since it does not intersect P\, γ must be in one
of the 3 relative homotopy classes drawn in the following picture. The

FIGURE 3. Arcs in 3-punctured sphere

letters (Pi, G\) in the figure label a boundary component according
to which surface shares that boundary component with F\. Suppose
that the arc γ is in the first relative homotopy class. The relative
homotopy class of the other arc in the boundary of D is determined
by its endpoints, but the homotopy class of the whole boundary of D
is only determined up to twisting about the curves dF\ Π dG\. So
the possible boundaries curves in this case are the curves γn drawn
below. But if one of these curves were to bound a disk in X\, then the
link with one component γn and the other component gotten by join-
ing the ends of β in S 3 would be a trivial link. (See the figure below.)

FIGURE 4. Link arising from supposed disk
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Now one computes some link invariants to show that the link is in
fact non-trivial. In this case, the two components have linking number
n - 1 (with respect to some orientation). So for there to be a disk, n
would have to be 1. But for n = 1, the link is the Whitehead link,
which is certainly non-trivial. The other relative homotopy classes of
arcs are treated similarly.

The pattern is the same in all of the parts of the lemma concerning
the existence of disks. In each case, as it turns out, the link whose
components are the boundary of D and β with its ends joined can
be shown to be non-trivial by using the one-variable Alexander poly-
nomial. There is exactly one case where this doesn't work, and one
gets the disk D\ whose boundary is drawn below in Figure 5.

FIGURE 5. Boundary of disk in X\

However one shows using the same argument that there are no disks in
X2 meeting in dD\ Γ\F. Part 5, concerning annuli in the Xι, follows
a similar line, but is easier. Up to isotopy in dX\, there are three
possibilities for boundary curves in dXf - <92X/. None of the three
are even homologous in ΛΓ, , so any annulus would have to go from
a curve to itself. But such an annulus would have to be boundary-
parallel, by the following argument. Note that filling in either a or
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β makes X\ (or Xι) a solid torus). Each of the possible boundary
curves becomes isotopic to a longitude of a solid torus after filling
in one of a or β. Therefore the annulus spanned by two copies
of the boundary curve separates the solid torus and is parallel to the
boundary torus on both sides. The arc (a or β ) that was taken out
lies on one side or the other, so the annulus is still boundary-parallel
when the arc is taken out again to get X\ or I 2 α

By analyzing the intersection of a disc or annulus with the boundary
of the Xj, we see that (X, P) satisfies hypothesis 2 of Theorem 2.10.

COROLLARY 2.14. If X is the complement of the tangle T, and
P is the boundary of a regular neighborhood of β, then any essential
annulus with boundary in ΘQX = dX-P deforms into d^X. Moreover,
OQX is incompressible.

So from Theorem 2.10, we obtain:

COROLLARY 2.15. For g > 3, the branched cover Mg is irreducible,
astroidal, annanular, and has incompressible boundary.

From this corollary we see that any manifold gotten by gluing copies
of Mg together via any homeomorphism of the boundary is an atoroi-
dal Haken manifold. By Thurston's theorem [29], such a manifold is
a hyperbolic manifold. The hyperbolic manifold M which we will
use to prove Theorem 2.6 will have this form.

Proof of Theorem 2.6. Any closed 3-manifold N has a Heegaard
splitting of genus g > 3, i.e. is obtained by gluing a genus- g solid
handlebody Hg to itself via some homeomorphism φ. We will show
that there is an invertible homology cobordism Wg from Mg to Hg

which is a product on the boundary. Gluing two such cobordisms
together via φ x id |i gives an invertible homology cobordism from
M = Mg Uφ Mg to N. Therefore the hyperbolic manifold M splits
Nxl.

The cobordism Wg will be the exterior of an invertible tangle-
concordance in B3 x I (using the obvious definition) from the tangle
Tg = a\, . . . , ag c B3 (see Figure l(b)) to the trivial g-string tangle.
The complement of the trivial tangle is a handlebody of genus g, so
the exterior (in B3 x I) of the tangle concordance yields the desired
cobordism between Mg and Hg.
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To construct the concordance, note that there is an obvious surface
in Figure l(a) whose boundary is Tg union some arcs in dB3. Note
further that each component of the surface has genus one, and that the
obvious generators (say aj, bj) of the homology are each unknotted
and have zero self-twisting on the surface. The collection of aj form
an unlink in B3, as do the collection of bj . View B3 as the \-level in
B3 x I , then the α7 may be surgered in, say B3 x [j, 1]. Surgery on an
di yields a disk in B3 x [\ , 1] with boundary α, U an arc in B3. The
collection of disks coming from surgering the aj 's may be regarded
as a tangle-concordance in B3 x [5, 1] to the trivial tangle in B3 x 1.
Likewise, surgerying the bj's in B3 x [0, \] yields a concordance to
the trivial tangle in 5 3 x 0 .

Since the aj are geometrically dual to the bj, the two concor-
dances fit together to be the product concordance from the trivial
tangle to itself, just as in Sumners' original work on doubly null-
cobordant knots [27]. Therefore, the tangle Tg admits an invertible
tangle-concordance to the trivial tangle, and the theorem follows. D
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