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POINCARE-SOBOLEV AND RELATED
INEQUALITIES FOR SUBMANIFOLDS OF R^

JOHN HUTCHINSON

We prove Poincare-Sobolev and related inequalities for rectifiable
varifolds in RΛ . In particular, all our results apply to properly im-
mersed submanifolds of RΛ .

Suppose M c BR = BR(0) c R* = RΛ+/c for some R > 0 , and
V = v(M, θ) is a countably «-rectifiable varifold in BR with gen-
eralised mean curvature vector H. μ is the weight measure defined
by μ = ΘHn [M. h: M -+ R is a Lipschitz function.

In Theorem 1 we prove a Poincare-Sobolev result for non-negative
h in case μ{ζ: h(ξ) > 0} < ωnR

n and h e Wι>p(μ) for some p <
n . This generalises a Poincare result of Leon Simon; but in addition
the relevant constant here does not depend on μ(BR). Theorem 2 is
an Orlicz space result in case p = n .

The proofs of Theorems 1 and 2 use a covering argument to obtain
weak LP type estimates on μ{ξ: h(ξ) > s} .

Theorems 3 and 4 are generalisations of Theorems 1 and 2 in case
there is no restriction on μ{ξ: h(ζ) Φ 0} (again the constants in
the estimates do not depend on μ(BR)). The conclusion of Theorem
4 is analogous to the conclusion of the John-Nirenberg theorem for
functions of bounded mean oscillation.

We prove Poincare-Sobolev and related inequalities for rectifiable
varifolds in R^. In particular, all our results apply to properly im-
mersed submanifolds of R^.

Theorem 1 is a refinement of a result due to Leon Simon. In [Sc; p.
70] and [S; Theorem 18.4, p. 91] one has a similar Poincare inequality
in case p = 1 and \H\ is bounded, but with a constant c depending
on M(V[BR). In Theorem 1, c depends only on p and the dimension
of V. This is important in case we have no a priori density bound
for V at 0 (as in [H], which provided the motivation for the present
paper).

We also remark that the Poincare result in Theorem 1 for p > 1
does not seem to follow directly from the case p = 1—the usual
trick of replacing h by hr does not work since the integrals in the
inequality occur over balls of different radius. Nonetheless, one can
use the Sobolev inequality for functions with compact support and
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a cut-off function argument to "bootstrap" up from the p = 1 case.
However, the proof in Theorem 1 gives the Poincare result directly for
all p and with the constant dependence as noted above. The Sobolev
result then follows immediately (as pointed out by Leon Simon) by
a simple cut-off function argument from the result in the compact
support case (this latter was first established in [A; Theorem 7.3] and
[MS]).

In Theorem 2 we prove an Orlicz space result in case h E Wx yH{μ),
where n is the dimension of V and μ is the measure in R^ induced
by V.

The proofs of Theorems 1 and 2 use a covering argument to obtain
weak LP type estimates on μ{ξ: h(ζ) > s}, and were motivated in
part by the proof of the Sobolev inequality for functions with compact
support in [S; Theorem 18.6, p. 93].

Theorems 3 and 4 are generalisations of Theorems 1 and 2 in case
there is no restriction on μ{ξ: h(ξ) Φ 0} (again the constants in the
estimates do not depend on M(V[BR)). They follow directly from
Theorems 1 and 2, as was also realised by Leon Simon in the context of
his Poincare inequality discussed previously [private communication].
The conclusion of Theorem 4 is analogous to the conclusion of the
John-Nirenberg theorem for functions of bounded mean oscillation.

I would like to thank Gerhard Huisken, Neil Trudinger, Bill Ziemer,
and particularly Leon Simon, for helpful comments and discussions.

NOTATION. Throughout this paper we use the notations and con-
ventions of [S].

In each of the following theorems we take the following hypotheses:

(H): M c BR = BR(0) C R ^ = W+k for some R> 0, and V =
v(Λf, θ) is a countably n-rectifiable vaήfold in BR with generalised
mean curvature vector H. μ is the weight measure defined by μ =
ΘHn [M. h: M —> R is a Lipschitz function.

Convention. All integrals are taken with respect to μ, unless other-
wise clear from context.

THEOREM 1. Suppose (H). Suppose also that h(ζ) > 0 for all ξ e M
and that μ{ξ: h(ξ) > 0} < ωnR

n{\ -a) for some a > 0.
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Then there are constants c = c(n, p) and β = β(n, a) > 0 such
that

1 (n-p)/np r -I 1/p

hnp/(n-p) /

whenever \ <p <n.

REMARKS. (1) The hypothesis μ{ζ: h(ξ) > 0} < ωnR
n(l - α) for

some a > 0 is clearly necessary, as one sees by letting V = v(Af, 1)
where M consists of two n-dimensional affine spaces passing through
the origin, and setting h — 1, 2 respectively on the two spaces.

The necessity of taking the left integral in the theorem over BβR,
rather than over BR, is clear if one considers a modification of the
above example in which one of the affine spaces is displaced slightly
from the origin.

(2) From Holder's inequality one obtains under the same assump-
tions that

hq f
JB

in case 1 < p < n and 1 < q < np/(n — p ) , or in case p > n and
1 < q < oo. In the first case c = c(n, p) and in the second case
c = c(n , q) .

Proof of Theorem. Our main goal is to prove the estimate (11).
Without loss of generality assume R = 1.

Fix s > 0 and define

(1) f(ζ) = min{h(ξ), 5}.

In the following suppose

(2) 0 < β < 1/2.

We will later further restrict β.
Applying the monotonicity formula to fp, we have for each ξ eBβ

that

(3) T,
n f f p > -P~n f [fp

JB(ξ) JBlξ)

(in the distributional sense in r) provided 0 < p < 1 - β. (See [S;
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18.1, p. 89], where this result is stated for C 1 functions. The exten-
sion to the Lipschitz case follows by first extending / to a Lipschitz
function / on Rn+k , then mollifying in W+k , recalling that up to a
set of Hn measure zero M is a disjoint union of sets Λf, , each of
which is a subset of a C 1 manifold Nj, and finally showing that for
each / the integrals on each side of (3) (over Λ/, Π Bp(ξ) instead of
MπBp(ζ)) are the limit of corresponding integrals with / replaced
by the mollified function / . This last step makes essential use of the
fact that V M is a tangential derivative.)

For μ a.e. ζ with \ξ\ < β and h(ξ) > s, we see from (2) that

(4) = fp(ξ)< sup
Q<σ<\-β

-ισ-» ί fp

)-» ί
l~βτ-» ί

O JBτ(ξ)

<ω-χ{\-β)-nωn{\-a)sp

Bt(ζ)

< (I - a/2)sp + c [ τ~n [
Jo JEBt(ξ)

for suitable β — β(n, a), which we now fix.
It follows

sup ω
0<σ<\-β

•\l/P
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Thus for any 0 < σ < 1 - β,
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(5) sup ω
0<σ<\-β ?'-" Lή

Γ"<-Γ
α JO

a Bτ(ζ)

a JO [ JB

where we set

(6) Γ

Now choose SQ SO that

(7)

Bτ(ξ)

/

VP

f\P

UP

UP

ι\ι-"fp_ \_

a VIOJ " 2 5 0 >

For each s > SQ choose po = po(s) such that

(8)

i.e.

(9)

Note that

(10)

Pθ = as J
p/{n-p)

From (5), (8), (10), (2), (4) we have for s > s0 and p0 as in (9),
that

sup ωn

UP

< - Γ° \τ-n ί fp\Hψ +
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Hence

„-./ AIP<C-P0\τ-f
« l ί r (C ) I ^ ^ I » -IJ

sup σ-/ /P <^ 0 T-/ / ^ r + V-/|

for some 0 < τ = τ(ξ) < po.
Since po<l/lθ<(l -β)/5 from (10) and (2), it follows from (9)

that for this particular τ = τ(ξ) < po we have

B5τ(ζ) <*P ΌJBτ(ξ)

where PQ is as in (9).
Since this is true for μ a.e. ξ G Bβ n {h > s}, it follows from (10),

(2) and a standard covering argument (see [S: Theorem 3.3, p. 11])
that

JBβ
Bβn{h>s} OLP

and so for any s > So we have (using (9)) that

/ΎDΛP (Γ\np/{n~p)

(Π) MBβn{h>s})<c(-£) <,(-)

(Since μ(BpΠ{h > 0}) < ωn , this last inequality is true for all s > 0.)
It follows from (11) and the fact μ(Bβ Γ\{h> 0}) < ωn that

(12) / h?=p
JBβ Jo

= p
Jo

+ p Γ s*>-ιμ(BβΓ){h>s})
JΓ/a

/Γ\P ί°°

<C(L] +c S^
\<*J JΓ/a

(Remarks. One can similarly estimate the integral of hq for any 1 <
q <np/(n-p).)

Finally suppose φ e C™{B\), 0 < φ < 1, φ = 1 on Bβ/2, φ = 0
on 5i ~ Bβ, and |Zty| < c/^. From the appropriate Sobolev in-
equality for functions with compact support (for example,



POINCARE-SOBOLEV INEQUALITIES 65

see [S; Theorem 18.6, p. 93], replace h there with hr where r =
p(n - l)/(n -p), and use Holder's inequality) it follows

{φh)np^n'p)\ <c φphp\H\p + \VM{φh)\p

X JBX

aP
ί

using (12). Hence

β/2

(n-p)/np
c

a

\VMh\p\ ,

P + \VMhA .

This establishes the theorem. D

THEOREM 2. Under the same hypotheses as Theorem 1, there exist
β = β(n) > 0, 7i = γι(n) > 0, and γ2 = yi{n), such that

where

Γ = hn\H\n + \VMh\n

1/7/

Proof. Choosing R = 1 and arguing exactly as in the proof of
Theorem 1, with p = n, we obtain instead of (5) that

(5)' sup ω
0<σ<\-β

-1 -n ί

JB.

τ~nL

1/n

CjΓ

a 0 /"

Choose ίo so that

For each s > SQ choose po = po(s) such that

(8)'
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i.e.

(9)' A, = exp (-

Arguing again exactly as before, we obtain for any s > so that

(This is then true for any s > 0 since μ(Bβ Γ){h > 0}) < ωn.)
By Fubini's theorem we see that if φ(s) is a C 1 increasing function

of s for s > 0, and p(0) = 0, then (since h > 0 on Bβ Π Af)

/ φ(u)= Πφf(s)μ(BβΓ\{h>s})ds.
JBβ JO

If we let

φ(s) = (Y) exp

where y\ is yet to be chosen, it follows from (11)' and the fact
μ(Bβ Π{h> s}) < ωn that

/ — ) exp
Ba

lf(τ) + 3 ; i (τ)J e x p (V
a

x e x p ( — ) U J e x p(""τ-)
< 72, say,

where we choose 71=03/2. D

THEOREM 3. Suppose (H). Suppose a > 0 and choose N such that
μ(M) < Nωn(\ - a).

Choose any λ\ < • •• < AM such that

μ{h <λι} <ωn-a,

μ{λi < h < Λ/+1} < ωn - a for i= I, ... , N,

μ{λM < h} < ωn - a.

This is clearly possible for some M <N —\.
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Then if 1 < p < n and p < q < np/(n - p), there exist constants
c — c{n, p) and β = β(n, α) such that

inf\h-Xi

-[/J(¥,*-,,
The same result holds if p > n and p < q < oc, but with c = c(n, q).

REMARK. The necessity of allowing distinct values for the λi is
clear if one considers examples where V = \(M, 1), M consists of
distinct affine spaces, and h takes a distinct constant value on each
affine space.

Proof of Theorem. Let

/o = (-oo, λi],

Define

Let

Then for each ^ € M there exists at most one j such that hj(ξ) Φ
0. Moreover, each hj(ξ) is Lipschitz. Finally, for H" a.e. ^ €
Mn{/i € Ij) we have VMhj(ξ) = VMh{ζ), and so VMh(ζ) = VMh(ξ)
for //" a.e. ζeM.

Taking β as in Theorem 1, it follows that

PIQ

Jβ

β

"i/Vtf
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(by Minkowski's inequality, using q >p)

c
I h?j

(by Theorem 1 and the remark following it)

REMARK. The restriction q > p is required in order that the con-
stant c not depend on μ(Bχ).

THEOREM 4. Suppose the same hypotheses hold as in the previous
theorem.

Then there exist β = β(n) > 0, γ\ = γ\(n) > 0, and γ2 = yi{n),
such that

where

Γ = ί hn\H\n + \VMh\n

1/Λ

Proof. Define λ, and hj as in the proof of the previous theorem.
Then

where β, y\ and 72 are as in Theorem 2, and where

fn
J B D

\/n

Replacing Γ7 by Γ on the left side (as Γ7 < Γ), and then summing
the inequality over j , we obtain the required result. D
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