PACIFIC JOURNAL OF MATHEMATICS
Vol. 145, No. 1, 1990

POINCARE-SOBOLEV AND RELATED
INEQUALITIES FOR SUBMANIFOLDS OF RY

JouN HUTCHINSON

We prove Poincaré-Sobolev and related inequalities for rectifiable
varifolds in R" . In particular, all our results apply to properly im-
mersed submanifolds of R" .

Suppose M C Br = Br(0) ¢ RY = R** for some R > 0, and
V =v(M, 0) is a countably n-rectifiable varifold in Bz with gen-
eralised mean curvature vector H . u is the weight measure defined
by u=0H"|M. h: M — R is a Lipschitz function.

In Theorem 1 we prove a Poincaré-Sobolev result for non-negative
h in case p{¢: h(¢) >0} < w,R" and h € W1-?(u) for some p <
n . This generalises a Poincaré result of Leon Simon; but in addition
the relevant constant here does not depend on u(Bg). Theorem 2 is
an Orlicz space result in case p =n.

The proofs of Theorems 1 and 2 use a covering argument to obtain
weak LP type estimates on u{&: h(&) > s}.

Theorems 3 and 4 are generalisations of Theorems 1 and 2 in case
there is no restriction on u{&: A(&) # 0} (again the constants in
the estimates do not depend on x(Bgr)). The conclusion of Theorem
4 is analogous to the conclusion of the John-Nirenberg theorem for
functions of bounded mean oscillation.

We prove Poincaré-Sobolev and related inequalities for rectifiable
varifolds in R" . In particular, all our results apply to properly im-
mersed submanifolds of RV .

Theorem 1 is a refinement of a result due to Leon Simon. In [Sc; p.
70] and [S; Theorem 18.4, p. 91] one has a similar Poincaré inequality
in case p =1 and |H| is bounded, but with a constant ¢ depending
on M(V'|Br). In Theorem 1, ¢ depends only on p and the dimension
of V. This is important in case we have no a priori density bound
for V' at O (as in [H], which provided the motivation for the present
paper).

We also remark that the Poincaré result in Theorem 1 for p > 1
does not seem to follow directly from the case p = 1—the usual
trick of replacing 2 by A" does not work since the integrals in the
inequality occur over balls of different radius. Nonetheless, one can
use the Sobolev inequality for functions with compact support and
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a cut-off function argument to “bootstrap” up from the p = 1 case.
However, the proof in Theorem 1 gives the Poincaré result directly for
all p and with the constant dependence as noted above. The Sobolev
result then follows immediately (as pointed out by Leon Simon) by
a simple cut-off function argument from the result in the compact
support case (this latter was first established in [A; Theorem 7.3] and
[MS]).

In Theorem 2 we prove an Orlicz space result in case 2 € W!-"(u),
where 7 is the dimension of ¥ and u is the measure in RY induced
by V.

The proofs of Theorems 1 and 2 use a covering argument to obtain
weak L? type estimates on u{&: h(£) > s}, and were motivated in
part by the proof of the Sobolev inequality for functions with compact
support in [S; Theorem 18.6, p. 93].

Theorems 3 and 4 are generalisations of Theorems 1 and 2 in case
there is no restriction on u{&: h(¢) # 0} (again the constants in the
estimates do not depend on M(V'|Bg)). They follow directly from
Theorems 1 and 2, as was also realised by Leon Simon in the context of
his Poincaré inequality discussed previously [private communication].
The conclusion of Theorem 4 is analogous to the conclusion of the
John-Nirenberg theorem for functions of bounded mean oscillation.

I would like to thank Gerhard Huisken, Neil Trudinger, Bill Ziemer,
and particularly Leon Simon, for helpful comments and discussions.

NoTATION. Throughout this paper we use the notations and con-
ventions of [S].

In each of the following theorems we take the following hypotheses:

(H): M c Bg = Br(0) c RY = R for some R >0, and V =
v(M, 0) is a countably n-rectifiable varifold in Br with generalised
mean curvature vector H. u is the weight measure defined by u =
OH"|M . h: M — R is a Lipschitz function.

Convention. All integrals are taken with respect to u, unless other-
wise clear from context.

THEOREM 1. Suppose (H). Suppose also that h(£) >0 forall Ee M
and that p{&: h(&) > 0} < w,R"(1 — a) for some o> 0.
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Then there are constants ¢ = c(n,p) and f = B(n, a) > 0 such

that
/ hre/(n=p)
B

BR

(n—p)/np c t/p
} << [ / hP|HJP + |th|P}
a BR

whenever 1 <p <n.

REMARKS. (1) The hypothesis u{&: h(¢) > 0} < w,R"(1 — a) for
some « > 0 is clearly necessary, as one sees by letting V' = v(M, 1)
where M consists of two n-dimensional affine spaces passing through
the origin, and setting 2 = 1, 2 respectively on the two spaces.

The necessity of taking the left integral in the theorem over Bgp,
rather than over Bpg, is clear if one considers a modification of the
above example in which one of the affine spaces is displaced slightly
from the origin.

(2) From Holder’s inequality one obtains under the same assump-
tions that

J

BR

1/q 1/p
hq} < cR'tn/a-n/p [/ h?|H|P + IVMhlp]
BR

incase | <p<nand 1| <qg<np/(n—p),orincase p > n and
1 < g < oo. In the first case ¢ = ¢(n, p) and in the second case
c=c(n,q).

Proof of Theorem. Our main goal is to prove the estimate (11).
Without loss of generality assume R =1.
Fix s > 0 and define

(1) f(&) = min{h(%), s}.
In the following suppose
(2) 0<B<1)2

We will later further restrict S .
Applying the monotonicity formula to f7, we have for each ¢ € By
that

_8_ —n y4 _p—h 4 M rp
ap[/’ /Bp@f]z p /Bp@)[fIHHIV i,

(in the distributional sense in r) provided 0 < p < 1— f. (See [S;

(3)
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18.1, p. 89], where this result is stated for C! functions. The exten-
sion to the Lipschitz case follows by first extending f to a Lipschitz
function f on R"**, then mollifying in R"**, recalling that up to a
set of H" measure zero M is a disjoint union of sets M;, each of
which is a subset of a C! manifold N;, and finally showing that for
each i the integrals on each side of (3) (over M; N B,({) instead of
M N B,(&)) are the limit of corresponding integrals with f replaced
by the mollified function Zg . This last step makes essential use of the

fact that VM is a tangential derivative.)
For u a.e. & with |[£| < B and A(&) > s, we see from (2) that

@) L=E< sup wjlo" / 17
B_({)

O<a<l-g

sw;l(l—ﬂ)—"/B o
1-8
—n M
+c/0 . /B,@[fp'H'”V 7711
< 07 (1= B) " eon(1 — a)s”
1-8
—-n M
+c/O . /Br(é)[f"lHHIV 71

< —a/2)sp+6/ol_ﬂf’”/ C[f”IHI+|VMf"’I],

T

for suitable g = B(n, a), which we now fix.
It follows

sup w;la‘”/ Vi
O<o<1-8 B_(¢)

1-8
<< / " / L |H] + VM 7]
a B (&)

IA
Rlo

1- /)’
/ - / SN H] + [V
0 B.(¢)

1-1/p
[ sup o " f”]
0<o<l-B B(é)

_ 1/p
—n M
x /O [1 /B P I f|1’] .

an
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Thus forany O0<o<1-2,
1/p
(5) [ sup w;‘a”"/ pr
O<ao<1-8 B,(%)

<< [ [r-" [ imp+ IVMfl”} N
—aJo B.(¢)

1/p
€ [P -n D LD M ¢p
< /0 [T /B,(é)f‘Hl + V7 £

«a

c 1-8 1/p
4 & / o / SPIHPP + |9M fpp
@ Jp B (&)

0

c [Po 1 ol
<S[Plen [ Ep vt S,
@ Jo B,(%) ] o
where we set
11/p
(© r- [ | P s
B,(0) ]
Now choose sy so that
al (1\'7" 1
() o (10) = 2%
For each s > 59 choose py = po(s) such that
all Jionpy _ 1
(8) a (po ) - 2S,
i.e.
I\ 2/ (n=p)
9) p-a(y)
Note that
1
< —.
(10) Po< 15

From (5), (8), (10), (2), (4) we have for s > sy and py as in (9),

that
1/p
sup w,'c7" / 1P
O<o<1-B B.()

c [Po| _, M
<< [z [, o 71 191

1/p
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Hence

1/p
sup 6"’/ 7l <Sp r‘”/ SPIHP + VM [
0<a<(1-B)/5 B, (&) « B (%)

for some 0 < 7=1(¢) < po.
Since pp < 1/10< (1-p)/5 from (10) and (2), it follows from (9)
that for this particular 7 = 7(¢) < pg we have

[y o7 S ath [, o P ISP
B (£)

1/p

where pg is as in (9).

Since this is true for x4 a.e. £ € Bgn{h > s}, it follows from (10),
(2) and a standard covering argument (see [S: Theorem 3.3, p. 11])
that

Jy o S aaf f, SAHP +IVAIE
B ﬂ{th}
and so for any s > sy we have (using (9)) that

(11) (B 1 {h > s}) <c(r’;°) gc(£>'w/("—p)_

as

(Since u(B,N{h > 0}) < w,, this last inequality is true foral/ s > 0.)
It follows from (11) and the fact u(BzN{h > 0}) < w, that

(12)/3 hpzp/ooosp‘lu(Bﬂﬂ{h >s})

I'/a
=p/ P u(Bgn{h > s})
0

p / By {h > 5))

np/(n—p)
o) o[ ()
F/a as

e
(5 oo [ emrase(EY

(Remarks. One can similarly estimate the integral of 49 for any 1 <
g <np/(n-p).)

Finally suppose ¢ € C*(B;), 0< ¢ <1, ¢p=1on Bg;,, p =0
on By ~ Bg, and |Dg¢| < ¢/f. From the appropriate Sobolev in-
equality for functions with compact support (for example,

I/\
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see [S; Theorem 18.6, p. 93], replace A there with A" where r
p(n—1)/(n - p), and use Holder’s inequality) it follows

(n=p)/n
[ / <¢h>'"’/<"-”>] <c [ pPwIHP + VM (ph)P
B\ B\

<< [ / hP|H|P+|th|PJ ,
af B,

using (12). Hence
(n=p)/np 1/p
/ jynp/(n=p) <& / WP |HP + [VMhP
By, -~ o U

This establishes the theorem.

THEOREM 2. Under the same hypotheses as Theorem 1, there exist
B=pB(n) >0, yy=y(n) >0, and y, = y(n), such that

n
/B (%) exp (y‘;fh> < ynR",

BR

]

where
1/n
r:[/ h”|H|”+lVMh]”] .
BR

Proof. Choosing R = 1 and arguing exactly as in the proof of
Theorem 1, with p = n, we obtain instead of (5) that

1/n
(5) [ sup w;‘G‘”/ f”]
O<o<1-8 B (&)
¢ [P 1/n
<< [r-" / f"|H1"+|va|"}
a Jo B(®)

al. . _
+ ——log(py ).

Choose sy so that
: ol (L) 2L
(7 5 log(lo) = 5%

For each s > 59 choose pg = po(s) such that

Gl g1 =L
a logp() _ZS’

(8)
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ie.
cras
9y Po = €Xp (——f-) :
Arguing again exactly as before, we obtain for any s > 57 that

Fpo " r\” caas
/ - rv < - o
(11) ,u(Bpn{hZS})gc(as) ‘c(as> exp( T )
(This is then true for any s > 0 since u(BgN{h >0}) < w,.)

By Fubini’s theorem we see that if ¢(s) isa C! increasing function
of s for s >0, and ¢(0) =0, then (since #>0 on BgN M)

[ ow=  (5)u(By 1 {h > s})ds.
B/‘9 0

0t = (%) e (422).

where p; is yet to be chosen, it follows from (11)’ and the fact
u(BgN{h>s}) < w, that

If we let

X €Xp (T
< 72, say,
where we choose y; = ¢3/2. o

THEOREM 3. Suppose (H). Suppose o > 0 and choose N such that
#(M) < Nawy(l-a).
Choose any Ay < --- < Ay such that
/.l{h <11} fwy,—a,
/l{/li<h</1,'+1}$0)n—a fori=1,...,N,
w{Ay < h} < wp — o

This is clearly possible for some M < N — 1.
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Then if 1 <p<n and p <q < np/(n—p), there exist constants
c=c(n,p) and B = f(n, a) such that

q1/4
[/ (inflh—lil) }
B 1
» 1/p
< SRYnfanir [/B [(ix}f}h—lﬁ) |H|1’+|VMh|1’H .

The same result holds if p > n and p < q < oo, but with ¢ =c(n, q).

BR

R

REMARK. The necessity of allowing distinct values for the A; is
clear if one considers examples where V' = v(M, 1), M consists of
distinct affine spaces, and /4 takes a distinct constant value on each
affine space.

Proof of Theorem. Let

Io=(-—00,}.1],
I, =[Ai, Aiz1] i=1,..., M-1,
IM=[AM,OO).
Define
inflh(&) — A4, h(&)el;,
hj<:={,.l<> 1 h@ el
0, h) ¢ 1.
Let

h(&) = inf|h(&) = ] = D ().
J

Then for each £ € M there exists at most one j such that 4;(&) #
0. Moreover, each A4;(¢) is Lipschitz. Finally, for H" ae. ¢ €
Mn{h eI;} wehave VMh;(&) = VMh(E), and so VMA(E) = VMA(E)
for H" ae. £e M.

Taking f as in Theorem 1, it follows that

pla a/p] P/ p
al  _ p pa/
) T el

/q

BR
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(by Minkowski’s inequality, using g > p)
c

< —_Rp+(np/q)—n /

< ; —R [ ’

(by Theorem 1 and the remark following it)

W HP + [V, I"}

R

1074

= _Rp+ (np/q)—n [/ K |H)P + lthlp}

REMARK. The restriction g > p is required in order that the con-
stant ¢ not depend on u(BgR).

THEOREM 4. Suppose the same hypotheses hold as in the previous
theorem.
Then there exist f = B(n) >0, y; = yi(n) >0, and y, = y2(n),

such that
a&. " J1a h n
[, () ew () dnsnrr,

BR

where

h(&) = infA(&) ~ 4,
1/n
=[/ ﬁ"|H|"+|VMh|”} .

BR

Proof. Define A; and A; as in the proof of the previous theorem.

Then '
n Y1 h n
/ (ahj)" exp < I,
B r]

BR

where B, y; and y, are as in Theorem 2, and where

1/n
rj=[/ h;’|H|"+[Vth|"} .
BR

Replacing I'; by I on the left side (as I'; <I'), and then summing
the inequality over j, we obtain the required result. o
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