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OPERATOR-VALUED FEYNMAN INTEGRALS
VIA CONDITIONAL FEYNMAN INTEGRALS

DONG MYUNG CHUNG, CHULL PARK, AND DAVID SKOUG

In this paper we use the concept of the conditional Feynman inte-
gral to obtain the analytic operator-valued Feynman integral of various
functions.

1. Introduction. In [1] Cameron and Storvick introduced a very
general analytic operator-valued function space "Feynman integral",
Jgn{F), which mapped an I^R1") function ψ into an Li(®y) func-
tion (J*n(F)ψ)(ξ). Further work involving the Li —• Li theory
includes [2, 3, 16-18]. In [4, 19] the existence of the Feynman inte-
gral as an operator from Li(R) to Loo(R) was studied. Finally in [20],
an Lp —• Zy theory, \/p + l/pf = 1, was developed for 1 < p < 2.
Related stability results were established in [10, 25].

In [15], Chung and Skoug introduced the concept of a conditional
Feynman integral. In this paper we further develop this concept and
proceed to express operator-valued Feynman integrals in terms of
conditional Feynman integrals. In particular we show that various
operator-valued Feynman integrals can be obtained using the formula

(1.1) (/ f (F)ψ)(ξ) =

where E*nfi(F\X) is the conditional analytic Feynman integral of F
given X. Thus Jgn(F) can be interpreted as an integral operator with
kernel

In [5], Cameron and Storvick introduced a Banach algebra S{v)
of functions on Wiener space which are a kind of stochastic Fourier
transform of Borel measures on L£[0, 71]. In §3 of this paper we
show that for all F in S(v)9 Jgn(F) is given by (1.1) and can be
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interpreted as a bounded linear operator from L^R") to L^W). In
this setting we also obtain some stability results.

A very important class of functions in Quantum Mechanics are
functions on Wiener space C Q [ 0 , T] of the form

ί rτ 1
(1.2) F(3c) = exp^ / θ(s,x(s))ds\

[Jo J
where θ: [0, T] x R1" —> C. In §§4 and 5, using a useful series expan-
sion formula, we show that for appropriate θ, Jgn(F) exists as an
operator from Li to Loo and is given by (1.1).

2. Definitions and preliminaries. Let v be a positive integer. Let
C [ 0 , T] denote the space of R^-valued continuous functions on
[0, T] and let C Q [ 0 , T] denote v-dimensional Wiener space; that

is the set of all functions jc(ί) in C^[0, T] such that JC(O) = 0 . Let
JK denote the class of all Wiener measurable subsets of CQ [0, T] and
let m denote v-dimensional Wiener measure. ( C Q [ 0 , Γ] , Λf, m) is
a complete measure space and we denote the Wiener integral of a
Wiener measurable function F by

F(x)m(dx)

whenever the integral exists.
A set E G ̂ # is said to be scale-invariant measurable [11, 21] pro-

vided pE € Jί for each /? > 0 and a scale-invariant measurable set
TV is said to be scale-invariant null provided m(pN) = 0 for each
p > 0. A property which holds except on a scale-invariant null set is
said to hold scale-invariant almost everywhere (s -a.e.).

Next we give Yeh's definition of the conditional Wiener integral
[29].

DEFINITION 1. Let X be an R^-valued Wiener measurable func-
tion on CQ [0, T] and let F be a complex-valued Wiener integral on
Q [ 0 , T]. Let Px be the probability distribution of X, i.e., for all
B^3SV , the Borel sets in R̂  , Pχ(B) = m(X-{(B)). The conditional
Wiener integral of F given X is by definition the equivalence class
of Borel measurable and Pγ-integrable functions φ on Ru, modulo
null functions on (R" , ̂ v , Px), such that for all B e 38V ,

= / φ(η)Px(dφ).
JB
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By the Radon-Nikodym Theorem such a function φ exists and is
determined up to a null function on (R" , 3SV , Px). We let
denote a representative of the equivalence class and so for all

(2.1) / F(x)m(dx)= [ E{F\X)(η)Px{dη).
JX~ι{B) JB

REMARK. In [27], Park and Skoug showed that if F is Borel mea-
surable and Wiener integrable and if X(x) = ^(T1), then the con-
ditional Wiener integral E(F\X) can be expressed in terms of an
ordinary Wiener integral by the formula

(2.2) E(F\X)(η) = f F (*(•) - -x(Γ) + ψη) m{dx).

We are now ready to define the conditional analytic Feynman inte-
gral of a function F given X.

DEFINITION 2. Let C, C+ and C+ denote respectively the complex
numbers, the complex numbers with positive real part, and
the nonzero complex numbers with nonnegative real part. Let F:
Cu[0, T] -+ C be such that for each λ > 0,

ί \F(λ~{/2x +~ξ)\m(dx) < oc
Jσ0

for a.e. ξ e M̂  . Let X: Cp[09 T] -+ Ru be such that for each λ > 0

and a.e. ξ e R^, X(λ~ι/2lic + ξ) is a Wiener measurable function

of x on Q [ 0 , Γ] ; i.e., for a.e. J in E^, Y(x) = X(λ~ι/2x + J ) is

scale-invariant measurable on CQ [0, T]. For A > 0 and ζ G M̂  , let

7Λ(?, 7/) = E(F(λ-{'2x + ξ)\X(λ-ιί2x + ?))(^)

denote the conditional Wiener integral of F(λ~ι/23c + ζ) given

Z(A~1 / 2x + ξ). If for a.e. ϊ j e f , there exists a function //(£ , ~η),

analytic in A on C+ such that J£(ξ, η) = Jχ{ξ, η) for all λ > 0, then

//(£, •) is defined to be the conditional Wiener integral of F given
X with parameter λ and we write

If for fixed real q φQ, the limit

lim
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exists for a.e. η e Ru where λ —> -iq through C + , we will denote
the value of this limit by E*nί*{F\X)(ζ){') and call it the conditional
analytic Feynman integral of F given X with parameter q.

We finish this section by stating the definition of the analytic opera-
tor-valued Feynman integral as an element of Jz?(L\(Ru), Loo(Ru)).

DEFINITION 3. Let F: Cv[0, T] -> C. Given λ > 0, ψ in LX(RV)

and ξ in R^, let

(Iλ(F)ψ)(ξ)= f
J σ0

If Iχ{F)ψ is in L\(Rμ) as a function of ξ and if the correspondence
ψ —• h{F)ψ gives an element of &{L\(βy), L^i^y)), the space of
continuous linear operators from Lχ{Ru) to L^R"), we say that the
operator-valued function space integral Iχ(F) exists. Next suppose
there exists an ^-valued function which is analytic in C+ and agrees
with Iχ(F) on (0, oc); then this J?-valued function is denoted by
I*n(F) and is called the analytic operator-valued Wiener integral of
F associated with λ. Finally, for λ = — iq £ C+ , suppose there exists
an operator J*n{F) in &(LX(C), L^R")) such that for every ψ in

as λ —• -iq through C+ then Jgn{F) is called the analytic operator-
valued Feynman integral of F with parameter q.

Finally we state the following well-known integration formula

(2.3) jf exp|- | | |^ | | 2 + /<//, ξήdη

which we use several times in this paper.

3. The S(u) theory. In [5] Cameron and Storvick introduced a
Banach algebra S(v) of functions on v-dimensional Wiener space
each of which is a type of a stochastic Fourier transform of bounded
C-valued Borel measures. They showed that the analytic (but scalar-
valued) Feynman integral exists for all elements of S{y). Further
work on S(u) includes [7, 8, 13, 22, 23, 24].



FEYNMAN INTEGRALS 25

The Banach algebra S(v) consists of functions on Q [ 0 , T] ex-
pressible in the form

(3.1) F(x) = ί exp I iJ2 [TVj(s)dXj(s) \ dσ(v)

for 5-a.e. ~x = (x\,... ,xv) in Q [ 0 , T] where σ is an element of
M(L%[0, T]), the space of C-valued, countably additive Borel mea-
sures on Lί>[0, T] and the integrals fj Vj(s)dXj(s) are Paley-Wiener-
Zygmund (P.W.Z.) stochastic integrals [23, p. 280].

REMARK. If F is in S(u) then F is scale-invariant measurable

and s-a.e. defined on CQ [0, T]. Furthermore there is a natural way

of regarding F as defined on C [ 0 , Γ]: If x in Q [ 0 , Γ] is such

that F(x) is defined, then by (3.1), F(x+ξ) = F(x) for all ξ e Ru .

First, for F in S(v) and X(y) = ~y (T), we obtain a formula for
Eanΐ,(F\X)(ξ)(η).

THEOREM 3.1. Let F e S(u) be given by (3.1) and let X: Cu[0, T]

-> Rv be given by X{y) = y (T). Then for all (ξ, ή) € R" x K̂

(3.2) E*™>(F\X)(ζ)(η)

L(rj-ξ,B)}dσ(υ)

for all λeC+ and

(3.3) Eanΐ,(F\X)(ξ)(η)

for all real q Φ 0 where

B == {bι, ... >bu)= i vι(s)ds, ... , Vv{s)ds\.
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Proof. Using (3.1), (2.2), the Fubini Theorem, (3.4) and a funda-
mental Wiener integration formula involving P.W.Z. integrals, for all
λ > 0 and all (ξ, if) € Ru x 1" we obtain the formula

(3.5) E(F(λ ξ)\X{λ-χl2x

= ί ί e χ P I < Σ [TVj(s)d[λ-V2Xj(s) -
JC"O\JL;[O,T] { jrtJo

(ηj-ξj)]\σdσ(v) m{dx)

JV2[Q,T]

f

Jo J J

ί
Jo

T
}j —ζj) I Vj(s) ds \ m{dx)

T

7=1

dσ(υ)

L"2[0,T]

lσ(v)

eχPS-^rτ -M ds} dσ(v)

JL'-

eχp I -TVΓ Σ^IMI 2 - b ^ + ψΰ - £> B) \ dσ^
7=1

Using the Cauchy-Schwarz inequality we see that

Γ ^ i2

b)= \Jo vj(s)ds < f \2ds ! υ2(s)ds=T\\vj\\2.
Jo Jo

Thus, since σ G M(L£[0, T]), the last expression on the right-hand
side of (3.5) is an analytic function of λ throughout C+ and is a
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continuous function of λ for λ e C+ . Thus (see Definition 2 in §2
above) equations (3.2) and (3.3) are established.

THEOREM 3.2. Let F and X be as in Theorem 3.1. Then for all real
q φθ, the analytic operator-valued Feynman integral Jqn(F) exists as
an element of ^f(Lι(Rl/), Loo(Ru)) and for each ψeL\(Rv) we have

(3.6) (J™(F)ψ)(ξ)

for all ξ e R".

Proof. Let ψ e L\{RV) be given. We can assume that ψ is Borel
measurable since if ψ is only Lebesgue measurable then there ex-
ists a Borel measurable function ψ\ such that ψ\ = ψ a.e. on Ru.
Moreover ψ\ is unique up to Borel null sets. But F is also Borel
measurable and so using equation (2.2) it is quite easy to see that

ξ)\X{λ-ι'2x

Then by the definition of Iχ(F)ψ and equation (2.1) it follows that

(Iλ(F)ψ)(ξ)= f
Jc

- f

= f^E{F{λ-"2x+ζ)\X{λ-χl2x+ξ)){η)

for all λ > 0. Then, using Theorem 3.1 and Morera's Theorem, we
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obtain that

(3.7) {IT{F)ψ){ξ)
I//2

λ\\η-ξ\\
— 27

for all λ e C+ and all ί e f .

But since Ean^(F\X)(ξ)(rf) is bounded and ψ <= h(Ru), we see
that the right-hand side of (3.7) is continuous in λ on C+ . Thus

/f (F)ψ)(ζ) = fE^(F\X){ξ, η) [ ^

for each ξ eR" . Thus Jgn(F) exists as an element of

and (3.6) is established.
The following stability results follow quite readily using equations

(3.3) and (3.6).

THEOREM 3.3. Let {σn} be α sequence of elements from
M(L£[0, T]) that converge weakly to σ e M(L»[0, Γ]), let F be
given by (3.1) and for n = 1, 2, . . . , let

Fn(x) = exp \ / V / Vj(s)dx(s) \ dσn(v)

for s-a.e. ~x e CQ [0, T]. Let {qn} be a sequence of real numbers con-
verging to qφO and let {ψn} be a sequence from L\(RV) converging
in Lγ-norm to ψ e L{(Rμ). Then as n -> oc:

(3.8) E™f«(Fn\X)(ξ)(η) -> E^{F\X){ξ){η)

for all (ξ, ί ) G f x f ,
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anΐ,(3.9) Eanΐ<» (F\X)(ξ)(η) - Eanΐ,(F\X)(ξ)(η)

forall(ξ,ή)€RuxR»,

(3.10) Jgn(Fn)ψ -> Jgn(F)ψ in Loo-norm on Rv,

(3.11) Jgn(F)ψ -> J™(F)ψ in on and

(3.12) Jgn(F)ψn -> / | n ( F ) ^ in L^-norm on R".

4. A useful series expansion. In this section for F given by (1.2)

with minimal conditions on θ and Λf(y) = y (T) we obtain a useful

series expansion for E(F(λ-ιf2x + ξ)\X(λ-ιί2x + ξ))(ή).

THEOREM 4.1. Let F(x) be given by (1.2) where θ is Borel mea-
surable and where for each λ > 0

ί \F(λ-^zx+ξ)\m(dx)<oo
Jq

for a.e. ξ e Ru. Then for each λ>0

(4.1) E{F(λ-ι'2x+ξ)\X{λ-ι'2x+ξ)){ri) "

7,
•exp

Hθ(Sj,Wj)

λ

2(T-sn

I K - η\\i?l|2 ...dwnds
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where An{T)^= {s = (s{, . . . , s n ) : 0 < Si < s2 < ••• < sn < T),

SQ = 0 and wo = ξ.

Proof. For notational purposes let Gχ(ξ, η) denote

E{F{λ-χl2x + ξ)\X(λ-V2x + ξ))(η).

Then

Gλ(ξ,η)=E\Σ,^
U=0

Γ1
oo /» n

- f t f π

n=OJ\{-T>JCo j=\

i-iz/2

fl UJ ' ^ T'V + ξ) + Sj;

du\ •• dun+\ ds
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with so = 0 and Ho = 0 . Next let WQ = ζ,

and let wn+\ = λ~ιli:un+ι +ξ. Then

foτj=l,...9n

I//2

A""
7=1

[/, ί
exp | - -

sn

• dwnds.

Next carrying out the integration with respect to wn+\ in the above
expression, simplifying, and multiplying both sides of the resulting
expression by

W2

we obtain equation (4.1) which concludes the proof of Theorem 4.1.
Recall that in equation (3.3), for F e S(v), we expressed the con-

ditional Feynman integral Eanf«(F\X)(ξ)(ή) in terms of an integral
over the infinite dimensional space L^iO, T]. In our next theorem,
as an application of Theorem 4.1, we obtain a series expansion of
E*n{«(F\X) in terms of integrals over finite dimensional spaces.

THEOREM 4.2. Let F{x) = exρ{/o

Γ0(s, ~x(s)) ds} with

(4.2) θ(s, w)= ί exp{i(w,υ)}dμs(v)
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where {μs: 0 < s < T} is a family from M(Rμ) such that \\μs\\ e
L\[0, T] and for each Borel set B from Rv , μs(B) is Borel measur-
able in s. Then for all real qφO,

(4.3) E^(F\X)(ξ)(η)

7=1 7=1

2qT
7=1

•dμs(υ1)---dμs(vn)d~s

where δji is the Kronecker delta.

Proof. We first note that F(x) is Borel measurable [24, Corollary
3.2] and belongs to S(u) [24, Remark 3.3]. Next using (4.1) and (4.2)
we see that for

λ > 0

γ/2

γ/2 r λ ...

ιz/2

\ / e χP{ *U<w;, v_, ) ) dμs^v^ dμs^Vn)

"2(r-5n)" "
£\\2 - dwnds.
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Then using the Fubini Theorem and the formula (see equation
(2.3))

exp<-

= [I2ΪΓΪ l^p{i(u,wn-η)-^\\u\ήdu

we obtain

\ T ]

Σ/

L

+ ξ)\X{λ-"2x-

exp < -

• r
K(T) U 2 π )

/ exp^

λ

nsι(s2

n

J=X

t\\2\1
- ί l ) ( ί / i - J « - l ) J

Wj , V j)

(s.—s. Λ"WJ 7-111 *\ >u

dμSl(vi) dμs(υn)d7.

Next we carry out the integration with respect to wn9wn-\9 ...
w i using the formula

i
\Wj-Wj-\
ι J J 1

υ

= exp I ϊ(ti57 - i , u + vn + - + vj) - Sj~2λ~lW" + ^n + ' ' ' + ^ ̂  \
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successively for j = n, n - 1, , 1 to obtain

ι/2x+ξ)\X(λ-^2x-

7=1

dμsβx) dμsfin)d's

2πλ

v/2

exp < —||f/ -

j -j^\\u\\2i(u , ή -ξ) - j l u ,J2sjVj) > du

But

I

dμSl(vι) dμs (vn)d~s.

syϋj ) \ du

12

2λT
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Hence

(4.4) E(F(λ-ι'2x + ζ)\X(λ~ι'2x

dμs(vι)---dμs (υn)d~s

Since F € 5(i/), we know by Theorem 3.1 that the left-hand side
of (4.4) has an analytic extension to C+ and is continuous on C+ .
We will show that the same is true for the right-hand side of (4.4).
We first show that the series converges absolutely for all ξ9 ή in Ru

and all 2 G C ^ . This follows from the fact that

T >o

since

d μ S χ { υ x ) - - - d μ S π { v n ) d s

(continues)
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(continued)

7=1

I dμsCυx)---dμs{
:υn)d~s

\\Ms\\ds\

= εxp{ \\μs\\ds> < oc.

Thus using Morea's Theorem and the Dominated Convergence Theo-
rem we obtain that the right-hand side of (4.4) is an analytic function
of λ throughout C+ and is continuous in 1 on C+, Thus (4.3) is
established which completes the proof of Theorem 4.2.

The following corollary is immediate using Theorem 4.2 in conjunc-
tion with Theorem 3.2.

COROLLARY 4.1. Let F be as in Theorem 4.2. Then the conclu-

sions of Theorem 3.2 hold and for ψ e L\(RV) , J*n(F)ψ is given by

(3.6) (and (1.1)) with E*nΐ<(F\X) given by (4.3).

5. The L\ —• Loo theory. In this section, as in [4, 10, 19] we
restrict our attention to the case v — 1 since [20, section 6] Johnson
and Skoug gave counterexamples showing that the L\(R") —• L^R")
theory doesn't hold for v > 1. In [4,19] an &(L\(R), Loo(R)) theory
of the operator-valued Feynman integral Jqn(F) was developed for
functions of the form

(5.1) θ(s,x(s))ds

with appropriate assumptions on θ the most general being as follows:
Let re (2, 00] and let θ: [0, T] x R —• C be a Borel measurable
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function such that for a.e. s in [0, Γ], θ(s9 •) is in L\{R) with L r

norm \\θ(s, )lli i n ^r[0, Γ] . In this section we will show that for
such F, Jgn{F) is given by the formula

(5.2) (J™(F)ψ)(ξ)

ψ(η)dη

for

REMARK. Note that i 7 of the form (5.1) may be unbounded and
thus not in S(l) and hence Theorem 3.2 and Corollary 4.1 do not
apply to F given by (5.1) with θ as above.

T H E O R E M 5.1. Let F be given by (5.1) with θ as above and let
X(y) = y(T) for y e C[0, T]. Then for all real qφQ,

(5.3) ^ ^(η - ξ)2

- η)2 dwn ds

where An(T) = {s = (s\, • • • , sn): 0 < S\ < s2 < • • • < sn < T}, s0 =

0 and wo = ξ. Furthermore Eanΐ*(F\X)(•)(•) is in L^R2) and

(5.4) | |£a nMiW( )(

<Σ
«=o

2π

n/2 [/oΊι^, )iiί
njr

where Γ denotes the gamma function and p is such that l/p+l/r = 1.
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Proof. Using equation (4.1) with v = 1 we see that for each λ > 0,

(5.5)

exp

oo

n=0

JR"
y = i

1/2

-cir1/2

2 ( Γ - J Λ )
(wn - η)2 > dw\ • • • dwn d~s.

For notational purposes let Hχ(ξ, η) denote the right-hand side of
(5.5). Then for all (λ, ζ, η) e C+ x E x 1 we see that

n=0

("+1)/2

/

J

2π L
n d l
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n=0

Ml
In

[Sl(S2 - Si) • (Sn -Sn-i){T
)

l/r

l[\\θ(Sj,-)\\\d7

But

L ]\\\θ{Sj,-)\\r

χdsX- -dsn

o ô fj:

and as was shown in [19, p. 652],

Thus for all (λ, ξ, η) € C+ x R x R,

(5.6)

n=0

But since for large positive w,

T(w)

it is not hard to see that the series on the right-hand side of (5.6)
converges for each λ 6 C+ in fact uniformly on compact subsets of
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C+. Thus the right-hand side of (5.5) is an analytic function of λ
on C+ and continuous on C+ which establishes (5.3). The inequality
(5.4) follows easily from (5.6) and (5.3).

THEOREM 5.2. Let F and X be as in Theorem 5.1. Then for all
real q Φ 0, the analytic operator-valued Feynman integral J%n(F)
exists as an element of J?(Li(R), LQO(R)) and for each ψ e L\(β) is
given by (5.2).

Proof. By [19] we know that Jqn{F) exists as an element of
&(Lι(R), Loo(R)) (actually as an element of £f(L{(R), C0(R)). We
need to establish equation (5.2) with Eanf*{F\X){ξ)(η) given by (5.3).
But, proceeding as in the beginning of the proof of Theorem 3.2, we
see that for all λ > 0

roo

(Iλ(F)ψ)(ξ)= /
J — OOOO

λ
2πT

where E(F(λ-ι^2x+ζ)\X(λ-^2x+ξ)){η) is given by (4.1) with v = \.
But, as was shown in Theorem 5.1, E(F(λ-^2x+ζ)\X{λ-ι^2x+ξ))(η)
is an analytic function of λ throughout C+ and so

(5.7) (Ifn(F)ψ)(ζ)

for all λ G C+ . Taking the limit of both sides of (5.7) as λ —• -iq, λ e
C+, establishes (5.2).
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