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SYMPLECTIC-WHITTAKER MODELS FOR Glw

MICHAEL J. HEUMOS AND STEPHEN RALLIS

We consider the Klyachko models of admissible irreducible rep-
resentations of the group GLn(F) where F is a non-Archimedean
local field of characteristic 0. These are models which generalize the
usual Whittaker model by allowing the inducing subgroup a symplec-
tic component. We prove the uniqueness of the symplectic models and
the disjointness for unitary representations of the different models.
Moreover, for n < 4 we prove that all unitary irreducible represen-
tations admit a Klyachko model.

Introduction. Let F be a non-Archimedean local field of character-
istic zero. This paper studies the realization of irreducible, admissible
representation of G\n{F) in certain induced representations general-
izing the Whittaker model. In contrast to generalizing by allowing
degenerate Whittaker characters or smaller unipotent groups arising
from some degenerate data (cf. [Mo-Wa]), we generalize the inducing
subgroup by allowing a symplectic component.

Our investigation is motivated by results of A. A. Klyachko [Kl],
who exhibited a model, in the sense of I. M. Gel'fand, for G\n over
a finite field. He found a set of representations (which we will re-
fer to as models) which are disjoint, multiplicity free and exhaust the
set of irreducible representations. The representations he considers
form a family Jίn ^ , 0 < k < [§] . One extreme Jtn^9 is the Whit-
taker model, a representation induced off a character on the subgroup
of unipotent, upper triangular matrices. When n is even, the other
extreme Jίn,nβ is induced off the trivial character of Spw , the sym-
plectic group of In x In matrices. The other "mixed" models Jίn ^ ,
0 < k < \, are induced off characters of subgroups coming from
smaller unipotent and symplectic groups. Since the Whittaker model
for representations of p-adic G\n is of considerable importance, e.g.
in the study of automorphic forms, it is natural to investigate the role
of the other models in the /7-adic case.

The natural category to study in the local field setting is the category
of admissible representations. The Whittaker model J£n 9 o is the only
model which has received attention. It was shown by I. M. Gel'fand
and D. A. Kazhdan ([Ge-Ka,l]) that the Whittaker model is unique,
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meaning that for an irreducible representation π, HomG1 (π,Jtn o)
has dimension at most one.

The main results of this paper are:
(1) Uniqueness of the symplectic model.
(2) Unitary disjointness of the set of models, i.e. a unitary repre-

sentation cannot embed in two different models.
The advent of unitary representations is natural in light of GI3. In

that case there is an irreducible representation without a model but
the intriguing fact is that all irreducible unitary representations have
unique models. This prompts focusing our attention on the questions
of existence and uniqueness of models for unitary representations and
leads to the remaining results of the paper.

(3) The description of the category of admissible representations of
GI3 with respect to models. In particular it is shown that every irre-
ducible unitary representation admits a unique model and we describe
the (essentially) only representation which does not admit a model.

(4) The existence and uniqueness of models for irreducible, unitary
representations of GI4.

The reason for the symplectic group playing such a role is not clear;
however there are two properties it enjoys which are prominent in our
results and those in [Kl]. The first is that SpΛ is the fixed point set of
an involution on G\n , which we use in (1). The second is that there is
a bijection between the set of Spn double cosets of Gl2« and the set
of conjugacy classes of Gl« . Over the finite field with q elements, this
bijection has been central to recent work of Bannai, Kawanaka and
Song ([Ba-Ka-So]), who prove that the character table of the Hecke
algebra of Spπ bi-invariant functions on G ^ is "almost" obtained
from the character table of G\n by the substitution q to q2.

A word about the proofs. In the finite field case, no explicit de-
scriptions or structure of the irreducible representations is used. In
the jp-adic case we depend heavily on the description of admissible
and unitary representations due to I. N. Bernstein and A. V. Zelevin-
skii ([Be-Ze,l], [Ze]) and M. Tadic ([Ta,l]). Using these and the yoga
of Jacquet functors it is not difficult to inductively show that many
representations have models, but this method will not show that a
representation has a symplectic model. It is desirable to have a simple
inductive statement for the existence of symplectic models. One of
our goals is to determine to what extent this is possible. In the case of
GI4 we show that it is. There we consider a representation induced
from representations with symplectic models as part of a family of
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induced representations depending on a complex parameter s. On
these representations we define a functional by an integral and show
that it converges if the real part of s is sufficiently large. Then us-
ing the theory of Bernstein, developed for the analytic continuation
of intertwining operators, we continue the functional to the original
representation. This inductive statement in particular provides the
symplectic models for certain complementary series representations
of GI4. Other unitary representations arise as Langlands quotients
from square integrable data. For these to have symplectic models it
must be shown that the functional descends to the unique irreducible
quotient. The representations of GI4 which require this attention are
special cases of a unitary Langlands quotient representation of G ^
which is fundamental in the description of the unitary dual. Knowl-
edge of the composition series of this induced representation is used
to show that these irreducible quotients have symplectic models in
general (Theorem 11.1). (H. Jacquet has recently obtained this result
by similar methods.) This is the technical heart of the paper; the case
of GI4 illustrates the problems that will be encountered in the general
case.

We now briefly describe the organization of this paper. Section 1
sets notation and conventions and reviews general background. The
next two sections are devoted to proving the general results on unique-
ness of symplectic models and unitary disjointness of models. Section
4 presents some results on symplectic orbits in certain flag varieties.
The rest of the paper is devoted to specific groups GI2 is dispatched
in §5. In §6 we recall the classification of the unitary dual of G\n due
to Tadic, and explicate it in the cases of GI3 and GI4 in §§7 and
10 respectively. Section 8 contains the proof that every irreducible,
unitary representation of GI3 has a unique model. Those admissible
representations of GI3 without models are described in §9. Section
11 shows that the unitary representations of GI4 all have models.

We are grateful to various people for discussions which have proven
valuable in the production of this paper. In particular we are grateful
to M. Tadic for explaining some of his work and to H. Jacquet for his
interest and receptivity.

1. Notation and terminology. General references for notation and
terminology are [Be-Ze,l] and [Be-Ze,2].

Throughout, F will denote a non-Archimedean local field of char-
acteristic zero, i.e. a p-adic field. Unless stated otherwise, GL« will
denote GL Π (F).
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The standard (upper triangular) parabolic subgroups of Glw are in
one-to-one correspondence with partitions of n: (riχ, . . . , nk), n\ +

\-nk = n . Pnιt...,nk denotes the associated group and NHχ t...tΆk its
unipotent radical.

/„ denotes the In x In matrix (_°{ I ") . We sometimes use / to
n

denote the associated symplectic form J(x9 y) = txJny. The sym-
plectic group Spw preserves this form.

Let Un denote the group of upper triangular unipotent matrices in
GU thus Un = iVi, 1,..., 1 - For 0 < k< [f ], let Nk be the subgroup of
Un of matrices (M/7 ) where for / φ j , w/y = 0 unless / < n - Ik < j .
With Un_2k embedded in the upper left, Sp^ in the lower right, let

v denotes the character g —• | d e t ^ | . δp denotes the modular
function of the group P. A character of Glπ is of the form g —•
χ(άetg) for some character χ of Fx . We sometimes write χn to
indicate the group involved, but we will continue to write χn for the
restriction to subgroups of G\n .

Induction is always normalized, with ind (resp. Ind) denoting com-
pact (resp. full) induction. Given representations G\ of G\n , / =
1, . . . , k, extend σnχ ® ® &nk to Pnχ,...,nk so that it is trivial on

1 Gi

Nn w9n. . Denote IndP "ι+'"+"k σn ® ® σn by σn x x σn. .
To a character θ of Nn^_^k and representation π of Gl«, we

have the Jacquet functor rn mm9n ;β(π) which is the quotient of the
space of π , Vπ, by the subspace spanned by {π(n)v - β(n)i;|ι; E
Kπ, A2 G Λ^ i?...,^}. It is naturally a Gl^ x x Gl^ module. If
θ = 1, we delete it from the notation and may simply write (π)# if
there is no risk of confusion with regard to the subgroup N. f will
denote the normalized Jacquet functor (cf. [Be-Ze, 2]).

Let ψ be any nontrivial, complex, additive character of F. Define
the character ψn of Un by ψniMij) = ψ(u\2 H h un-\n). Any char-
acter which is nontrivial on all the simple root groups in Un will be
called nondegenerate or said to be a Whittaker character. The diagonal
torus in G\n acts transitively on the set of Whittaker characters.

For k < [f ], define the set of models for G\n to be the representa-
tions

M Ψ ® * ® !(1.1) J^n,k M

When n is understood, we simply write Jt^. J?o is called the Whit-
taker model. The Whittaker models for any two Whittaker characters
are equivalent.
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If π is a representation, we denote by (π) (resp. L(π)) the unique
irreducible submodule (resp. quotient module) of π, when it exists.

2. Uniqueness of symplectic models.
2.1. In this section we show that for an irreducible representation

π, dimHomG 1 (π, Jfn) < 1. The proof is a combination of the proof
of the uniqueness of the Whittaker model in the /?-adic case ([Ge-
Ka,l]) and uniqueness of the symplectic model in the finite field case
([Kl]).

2.2. We collect here some results on polar decompositions. We are
indebted to Daniel Shapiro for the proofs of these results.

Let k be a field of characteristic different from 2, k its algebraic
closure and M (resp. ~M) denote the set of n x n matrices with
coefficients in k (resp. k). Similarly, let G = Gl2Λ(fc), Sp = Spn(k),
and G and Sp will be the k rational points of these groups. Let σ
denote an involution on M , i.e. an anti-automorphism of order two.

LEMMA 2.2.1. For any A e G, there exists a polynomial f G k[t],
such that f(A)2 = A.

Proof. If R is a commutative ring with unit, in which 2 is invertible,
it follows from the Taylor expansion of (1+z) χl2 that l+p is a square
in R, for every nilpotent p G R. If b is a unit in R, let 1 be the

image of t in R[t]/(t - b2)n , n > 1. Since s = Ί - b is nilpotent in

this ring, writing 1 — b (1 + (b)~2s) implies that 7 is a square.
Let m{t) be the minimal polynomial of A.

(2.2.1) m(t)= J ] (ί-*/)"..
\<i<s

Choose bi G k such that a\ = bf . Then

(2.2.2) k[A] = k[t]/(m(ή) = R{® . ®RS,

where i?/ = k[t]/(t - bf)n'. The conclusion follows easily D

PROPOSITION 2.2.2. For any AeΌ, there exist S, T eG such that

σ(S) = S, σ{T) = T~ι and A = ST.

Proof. By the lemma, there exists an S G Ύ such that S2 =
Aσ{A). As S is a polynomial in Aσ{A), σ(S) = S. Set T =
S~XA. Then σ{T) = σ{A)σ{A)σ(S)-χ = σ(A)S~ι, and Tσ(T) =
(S-ιA)(σ(A)S-{) = S~l(S2)S-1 = / . D
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2.3. Let / = Jn . For A G G\2n set AJ = -JιAJ, where ιA is the
transpose of A.

PROPOSITION 2.3.1. Let k denote a local or global field of charac-
teristic zero. There exist P\, P2€ Sρw, such that AJ = P\AP2.

Proof. B y P r o p o s i t i o n 2 . 2 . 2 , t h e r e e x i s t S , T e ~G\2n, s u c h t h a t
TJ = T~ι, SJ = S and A = ST. Then Λ 7 = T"ιS = T~ιAT-χ.
Since T G Spw if and only if T G G\2n and TJ = T~\ the proposi-
tion will follow if we can show there exists such a decomposition with
Γ e G l 2 Λ .

The set

(2.3.1) r(A) = {(Pl9P2)\AJ =PXAP29 Λ , ft e S p π } ,

is an algebraic subset of Spn x SpΛ . Given (P{, P2) ? (Qi > Q2) G
3^(i4), set R = QiPf 1 . As P ^ P 2 = Q1-4Q2, it follows that Q2 =
A^_R~ιAP2, so that R G ̂ S p ^ ^ " 1 . Define a left action of Spn Π
^ S p ^ " 1 on T(A) by R(P{, P2) = (RP{, A~ιRAP2). ^ ( ^ ) is a
left principal homogeneous space for this group.

^ S p , ^ " 1 is the subgroup of Gl2« which leaves invariant the sym-
plectic form associated to the matrix / ' = ιAJA~γ. Sp^Π^ίSp^^"1 is
thus the group preserving the forms / and / ' denote it by Sp(/, / ' ) .

Since both forms are nondegenerate, an endomorphism Φ is de-
fined by the condition that it satisfy Jf(x > y) = J(Φx, y). In the
terminology of [Kl], Φ_is a symmetric operator and Sp(/, /') is the
centralizer of Φ in Sp(/). By Corollary 5.6 of [Kl], Sp(/, /') is
connected and there is an exact sequence

(2.3.2) 1 -> U -> S p ( J ,J')-+S-+l,

where U is a unipotent group and S is a product of symplectic groups.
(The statement in [Kl] is for a finite field, but it is noted in the proof
of Proposition 5.5 that the needed constructions are valid for any al-
gebraically closed field.) Because U is linear and k has characteristic
zero, U is connected.

From (2.3.2) we obtain the sequence in Galois cohomology

(2.3.3) Hι(k,U)-+ Hι(k, Sp(/, /')) ->Hι(k,S),

which is exact at the middle term (cf. [Sp], Proposition 2.2). Since U
is connected and unipotent, Hι(k, U) = 0 ([Se], III, §2.1, Proposi-
tion 6). S is a product of symplectic groups which have trivial first
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cohomology ([Se], III, §1.2, Proposition 3), and thus Hι(k, S) = 0
([Sp]), and *V{A) has a rational point. D

2.4. In this section k will now be a non-Archimedian local field
of characteristic zero. Let F = G x G and 2? — G x G and define
an action on the left (resp. right) of Sp x Sp (resp. G) on JF by
coordinate (resp. diagonal) multiplication on the left (resp. right). Let
&\ (M?) denote the space of functions on Sf which are locally constant,
constant on the orbits of Sp x Sp and compactly supported modulo
the action of Sp x Sp, i.e. for each f E<9\, there exists a compact set
C c%? such that supp/ c (Sp x Sp)C.

Define the involution a on JP by σ(g{, g2) = ((g^V, Uf 1)* 7)-
Let <¥[(G) denote the space of locally constant functions on G which
are constant on the orbits of Sp acting by left multiplication and
which are compactly supported modulo Sp. We now have a symplec-
tic version of Theorem 3 in [Ge-Ka,l]

THEOREM 2.4.1. Define the operator A on <¥\(G) by (Af)(g) =
f{{g-ι)J). If C ( / i , / 2 ) is a G-invariant, bilinear form on &\{G),
then C(fl,f2) = C(Af29Afl).

Proof. The proof follows that of [Ge-Ka,l] To use their Theorem
1', we need only verify that the Sp x Sp x G orbits in 3? are permuted
by a and that the Sp x Sp x G orbits in %? are fixed by a. The first
condition is obvious.

Writing (gx, g2) = (s{, ^ ( l , s2g2g^ιsι)(s^ιgι)9 we see that the
Sp x Sp xG orbits may be identified with the Sp double cosets in G.
We have

(2.4.1) σ(sιgxg,s2g2g)

so that orbits are invariant. By Proposition 2.3.1, there exist S3 and
s4 e Sp, such that

(2.4.2) σ(l, sιgs2) = (s3g'ιs4, 1) = (1, s^ιgs^ι)(s3g-ιsΛ),

so that the orbits are invariant by σ. D

Let π be an irreducible, admissible representation of G on a space
V. Define the representation it on V by π(g) = π((g~{)J). By
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Theorem 2 in [Ge-Ka,l], ft is equivalent to π', the contragradient
of π .

By Frobenius reciprocity (cf. [Be-Ze,l], Theorem 2.28), π admits
an embedding in Jίn if and only if it supports a nontrivial, Spw in-
variant linear functional; the embedding is unique up to scalar if and
only if dimHomsp (π, 1) equals one.

THEOREM 2.4.2. Let π be an irreducible, admissible representation
of Gl2n - Then d i m H o m S p ( π , 1) < 1.

Proof. This a symplectic restatement of Theorem 4 and its corollary
in [Ge-Ka,l]. In light of Theorem 2.4.3, their proof applies mutatis
mutandis. Q

3. Unitary disjointness of models. The main result of this section is
the following theorem.

THEOREM 3.1. Let π be an irreducible, unitary representation
of G\n. Let S\, s2 be distinct integers, 0 < s\, s2 < [§]• Then

(π, Jfs) is nonzero for at most one i.

Proof. For simplicity denote Jti = JfSt, Mi — MSι and ψι — ψS{

(see §1). Assume there are nontrivial maps π —> Jti•, / = 1, 2.

π is equivalent to the Hermitian contragradient representation π + =

πf. By dualizing, obtain ^#2

; —• π' = π . Let Z2 = I n d M " V^1 . For

f2 e ι2, F ejf{, the pairing

(3.1.1) {f,F}=[ . f(g)F(g)dg

determines a map zi —• ^ ?

 v ^ a /-*{/>•}• Since /2 — ̂ 2 ( s e e §1)5

we obtain a nontrivial map i2-^ n ([Be-Ze, 1]); thus the composite

(3.1.2) z 2 - + π - » ^ i

is non trivial. By Frobenius reciprocity, this corresponds to an element
of Hom M (z 2 ? Vi).

Associated to ι2 is a unique isomorphism class of equivariant /-
sheaves & on Af2\GlΛ ([Be-Ze, 1], Proposition 2.23). The right
action of M\ on M^GXn is constructive ([Be-Ze, 1], Theorem A,
6.15) with locally closed orbits (ibid., Proposition 6.8(c)).

The restriction of SF to the orbit M2wM\ is associated to the

representation ^^nw-^Mw) Ψ2 , where ψ«>(g) = ψ2{wgw-χ),
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g G M\ n w~xMiW . Frobenius reciprocity gives

(3.1.3) ^

The groups M\ and M2 are associated to symplectic forms with
different ranks, as are M\ and w~xMιw. Thus there exists h e
M\ C\w~ιMιw such that ψfih) Φ ψ\{h)\ hence the right side of
(3.3) is zero (cf. [Kl], Proposition 1.3). Consequently there do not
exist quasi-invariant distributions on & supported on a single orbit
of Mx.

The proof of Theorem 6.9 in [Be-Ze,l] for invariant distributions
can be trivially modified to apply to quasi-invariant distributions, the
result being that if an /-group acts constructively on an /-sheaf &
such that no orbit supports a non-zero quasi-invariant distribution,
then there do not exist non-zero quasi-invariant distributions of &.
Therefore the composite (3.2) is zero and the theorem follows. D

3.2. Disjointness of symplectic and Whittaker models. In this sec-
tion we drop the assumption of unitarity.

PROPOSITION 3.2.1. Let π bean irreducible, admissible representa-
tion. If π has a Whittaker (resp. symplectic) model, then its contra-
gradient π' likewise has a Whittaker (resp. symplectic) model.

Proof. Having a Whittaker model is equivalent to the existence of
a nontrivial, ^-Quasi-invariant distribution T. The contragradi-
ent πr is equivalent to the representation obtained by composing π
with the automorphism g —> tg~ι ([Ge-Ka,l], Theorem 2). This au-
tomorphism takes Um to the opposite unipotent subgroup of lower
triangular matrices. The opposition element s$ of the Weyl group
conjugates this back to U2n- Therefore u—^s^u~xs^x preserves Uin

and the representation g —• τt[s^g~xs^x) is equivalent to π'. Thus
we have

(3.2.1) Γ ( π ( ί O ' ι Γ V ^
= ψ-n

x(u)T(f).

ψ^n is a nondegenerate Whittaker; hence π' has a Whittaker model.
The same argument applied to g -» -Jing~xhn gives the sym-

plectic statement. D
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THEOREM 3.2.2. An irreducible, admissible representation cannot
have both a Whittaker model and a symplectic model

Proof. If we have π —• I n d ^ 2 n ψ2n > we obtain π1 —• I n d ^ 2 n ψ2n - As
In In

in §3.1, dualizing gives ind^2" ψm —» π (cf. [Ge-Ka, 1] §3). Thus
In

if π has a symplectic model, we obtain the composite ind^2n ψin —>

l.. 2" D

4. Orbits. For applications in §11, we need descriptions of orbits
in certain flag varieties. We prove here some general results.

4.1. Spw Orbits in Pm-k,k\G^in To compute these orbits it suf-
fices to consider the cases k < n.

Let %?k denote the variety of A:-planes in 2«-space. For X\, Xi e
^ , let J1, /" be the restrictions of / to X\ and Xι respectively.
It follows from Witt's theorem that X\ and Xι are conjugate by a
symplectic endomoφhism if and only if the radicals of /' and /"
have the same dimension. Thus J% is the union of symplectic orbits

(4.1.1)

<$ήc(r) is nonempty if and only if k = r{2).

PROPOSITION 4.1.1. If k<\ set

(w'k 0

where w'k equals

/ 0 0 \k

(4.1.2) 0 ln_2k 0

\h 0 0

If k > j set Wk — {WQW ) where w'k equals

0 0 ln.k

(4.1.3) I 0 l2fc_B 0
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Let

yr=

0
0

1A-
0

1A-,

0

,0
0

0
0

0

0
1A

0
-0

Then

(4.1.5) n/SPn= \J P2n-k,

Proof. We may choose a representative for the orbit ^t(r) which

is spanned by the set {/ i , . . . , / Γ , / r+i Λ» ^r+i, . -. , ̂ } , where
X — (k+r)/2 and {β\ 9 ... , en , f\ , . . . , / „ } is the standard symplectic
basis relative to / . A basis for the k-plane Xo fixed by Pin-k^k is
{/„_£+!,. . . ,/«}. The image of Xo under wk is the space spanned
by {/i, . . . , Λ } . yr then maps this set to {fi,...,fλ, er+x, ... ,
eλ} •

4.1.1. We specialize now to the case k = n and describe the stabi-
lizer of an orbit. This will be used in § 11 in establishing the uniqueness
of symplectic functionals on certain reducible representations.

PROPOSITION 4.1.1.1. Let Σr be the stabilizer of the Sρw orbit of
Pn,nΎr - Then Σr = (Gl r x SP(n-r)/2 x SV{n-r)ii)U'r> where U'r is unipo-
tent In particular, for the n-plane Xr, with basis {/i,..., f(n-r)/2 >
er+{ ? . . . , e{n_r)/2}> G\r x Sp ( r t _ r ) / 2 x S p ( w _ r ) / 2 is realized as the ma-
trices of the form

(g
0
0
0
0

0
A
0
0

c
0

0
0

A1

0
0

c

0
0
0

0
0

0
B
0

'g-1

D
0

0
0

B'
0 0
0

D'
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'£ # ) are in Sp/M_κw? U'r is the

(4.1.1.2)

where Y is symmetric.

fir X Y Z \
0 1Π_Γ

 ιZ 0
0 0 1Γ 0
0 0 -{

Proof. Σr preserves the radical of / restricted to Xr hence it is
contained in the symplectic parabolic subgroup -P{/,...,/}, fixing this
isotropic subspace. The unipotent radical of P{f,...,/} is precisely
Uj. it clearly leaves Xr invariant.

The Levi component of the parabolic is G\r x Spw_ r, realized as the
matrices of the form

(4.1.1.3)

where g e Gl r and ( a b

d ) G Spw_ r . For such an element to fix Xr, the
symplectic part must leave the span of {er+\, . . . , e^ry2> fr+ι> •-• >
f(n-r)ii} invariant. Since the symplectic form restricted to this space
is nondegenerate, the orthogonal complement is fixed. D

fg
0
0

I 0

0
a
0
c

0
0

'g~ι

0

b
0
d)

It is straightforward to compute the dimension of the stabilizers Σr.
If n is further assumed to be even we have the

COROLLARY 4.1.1.2. Let n = 0(2). There is a single open SρΛ orbit
in Pn,n\G\2n given by the double coset Pn,nyoSρ«, where

(4.1.1.4)

fO 1 0 Oλ
0 0 0 1
1 0 0 0
0 0 1 0)

4.2. Spw/2 x Sptt/2 Orbits in Spw /(Pn,n n Spw). Assume n is even
and set P'n n — Pn ,n n Sρn . Acting on the right P'n n preserves the
span of {/i, . . . , fn}. Thus we consider the variety P^n\Spn of
maximal isotropic subspaces.
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PROPOSITION 4.2.1. There is a unique open Sρw/2

 x Sp«/2 orbit in
« /P^n given by (SpΛ / 2 x Spn/2)pJPnnf where

(\ 0 0 lλ
0 1 1 0
0 0 1 0

(4.2.1)

Proof. Let (Vn, ( , )) denote an ^-dimensional symplectic vector
space with standard ordered basis {e\, . . . , en/2, f\, . . . , fn/2} asso-
ciated to Jnβ. Set W = Vn θ Vn and define a symplectic form on W
by

(4.2.2) {{v\, ^2), (v[, ^2)) = (^1, ^1) - (̂ 2 ? ^2)-

Let f̂ + (resp. ϊ^~ ) be the embedding of Vn on the first (resp. second)

factor of W. Let ef (resp. ff ) be the images of eι (resp. f) in ^ .

With respect to the basis \e\, . . . , e+/2,/+,..., ^ J 2 , ef , . . . , e~/2,

/j~ , . . . , y^ 2 } , the matrix of the form on W is ( Q _°/) •

The transformation from W to V2n defined by e+ —• ez / j+ —•
/ , e~ -+ fnβ+i and yj" -+ e(π/2)+I , 1 < i < n/2 is an isom-
etry. The images of K+ and V~ are spanned by the images of
{e\, . . . , enβ, / 1 , . . . , /w/2} and {enβ+\, . . . , en, Λ/2+1,...,/«}
respectively.

According to Proposition 2.1 in [PS-Ra], the only invariant of an
Spπ/2 x Spw/2 orbit in P^n\Spn is the dimension of the intersection
of a representative n-plane with F+ or V" . Thus there is one open
orbit which has a representative intersecting F + and V~ only in 0.
A simple example of such a maximal isotropic subspace is given by
the span of {et + /(«/2)+/}. This space is the image of the span of

(4.2.3)

by the matrix
/O

0
1

l o

0
0
0
1

- 1
0
0
1

0
- 1
1
0

Thus the open orbit in Pnn\Spn is
verting this gives the theorem.

In-
D

5. GI2 . In this case there are two models, the Whittaker model and
the pure symplectic (SI2) model.

In the notation of [Ze] the admissible representations of GI2 are
of two types: supercuspidal; {a\ xa2), where a\ and a2 are charac-
ters of kx . In general, supercuspidal representations have Whittaker
models ([Ge-Ka,2]). The second type is irreducible if and only if
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α i φ OL2V
±1 . Whittaker models satisfy a hereditary property which

says that the representation parabolically induced off representations
with Whittaker models themselves have Whittaker models (cf. [Ro]
Theorem 2, for the precise statement). Thus in the case a\ Φ OLΊV±X ,
these representations have Whittaker models.

The remaining cases are (a x au±ι). These representations are the
twists of the identity representation and Steinberg representation St.
St is square integrable (mod center) and hence has a Whittaker model
([Ze] Example 9.3, Theorems 9.3, 9.7). The identity clearly has the
symplectic model.

6. The unitary dual of G1Λ . We now recall the classification of the
irreducible, unitary representations of Glw due to M. Tadic ([Ta,l]).

Let DQ(Π) denote the set isomorphism classes of irreducible rep-
resentation of G\n which are square integrable modulo center and
DQ = \Jn>0 Do(n). Let D(n) be the set of representations of the form
vaδ, where a is real and δ e DQ\ D = \Jn>0D(n), M(D) is the
collection of all finite (unordered) multisets oif D.

Given a = (δx, . . . , δn) e M(D), <J, = i/α/^, ^ G ΰ o , w e may
assume that a\ > > an . The induced representation δ\ x x δn

has a unique irreducible quotient module, L(ά).
Given an irreducible representation σ, let σ + denote its Hermitian

(complex conjugate) contragradient. Set Π(σ, a) = vaσ x v~aσ+,
for a real. For a positive integer n and δ e DQ, set u(δ, n) =
L(v*δ9 vp-ιδ, ... , v-*δ), where p = (n - l)/2. Thus if δ is a
representation of G l m , u(δ, ή) is a representation of G\nm. (We
sometimes write u{δm , ή).)

THEOREM 6.1 {Tadic). Let B = {u(δ, ή), Π(u(δ, n), a)\δ € Do,
0 < α < i } .

(ϊ)Ifσ\9...,σrEB, then σ\ x x σr is irreducible and unitary.
(ii) If π is an irreducible unitarizable representation, then there ex-

ist τ i , . . . , τ 5 G B, unique up to permutation, such that π =
τ{ x ••• x τs.

7. The unitary dual of GI3. In this section we explicate Theorem
6.1 in the case of GI3. Denote by Bn the set B of Theorem 6.1 for
G\n , i.e. the set of representations of Gl m , m < n, contained in B.
Let B'n denote the set of elements of Bn which are representations
of G\n . #3 is the disjoint union of B\ = B[, B'2 and B'3.

For GI2, B'2 is composed of:
(i) The supercuspidal representations and the Steinberg represen-

tation St. These are of the form u{δ2, 1).
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(ii) The unitary characters. These are of the form

([Ze], §§9.1 and 3.2).
(iii) The complementary series Π(δ\, a), δ\ e B\ , a G (0, \).

The rest of B2 comes from Bx, viz.

(iv) δ\ x δ2, δ\, δ2 G B\ .

2?3 is the union of i?2 and .63, which contains:
(i;) The square integrable representations δ?> = 1/(^3, 1).

(ii") The unitary characteris u(δ\, 3) = L{yδ\ xδ\X v~~ιδ\), δ\ G

Bi.
The representations arising from B\ and #2 a r e :

(iii ') χx xδ2, xieBl9 δ2eD0(2).
(iV) χ\ x xi, // a unitary character of Gl z .
( V ) χ i x ι/α/2 x v~aXi, X\,X2^Bχ, 0 < a < \ .

The remaining unitary representations of GI3 arise from B\:

(vi;) X\ x Z2 x X3, X\, X2, ^3 G 5i .

8. Models for GI3. For GI3 there are only two models, the Whit-
taker model .# 0 and the mixed model Jί\. The main result of this
section is the following.

THEOREM 8.1. Let π be an irreducible unitary representation of
GI3. Then π can be uniquely embedded as a submodule of J£§ or

Proof. By Theorem 3.1, π cannot be realized in both models. Since
the Whittaker model is unique, we need to show that every represen-
tation has a model and that the mixed model is unique. We do this
by examining the catalog of representations compiled in the previous
section, showing that they all have models and then examining those
with mixed models to establish uniqueness in those cases.

The simplest cases to deal with are those with Whittaker models.
We need two facts. The first is the hereditary property of Whittaker
models quoted in §5. The other is that square integrable representa-
tions have Whittaker models, since in the terminology of [Ze] they
are transposes of segments ([Ze], Theorem 9.3). Thus case (i'), (iii'),
(v') and (vi;) all have Whittaker models.

Case (ii') is the unitary character χ 3 . Frobenius reciprocity gives
HomGi (/3, Jί\) = HomSi (1, 1), thus the existence and uniqueness
in this case. The remaining case (iv') is X\xχ2 where χι is a unitary



262 MICHAEL J. HEUMOS AND STEPHEN RALLIS

character of Gl,. Inducing in stages, we have

(8.1) Λfί = Ind° l 3JInd^' s*
 G l j 1] ® 1.

Two guises of Frobenius reciprocity ([Be-Ze,2]), Proposition 1.9(b);
[Be-Ze,2] Theorem 2.28) imply

(8.2) ^ ^

= HomG 1 χGi2(Π,2(IndP

 3 X\®Xi),

— Homsi (f\ 2(Iπdp

 3 Ύ\ ®/2)ki ? 1)

According to Theorem 1.2 ([Ze]), the Gli x GI2 module

(8.3) r i ? 2 ( I n d p

3 X\®X2)

has a filtration of length two with quotient module (closed orbit) χ\ ®

X2 and submodule (open orbit) v~x^2X2 ® IndP

l 2 (/1 ® vx^X2) The

last representation cannot support an SI2 invariant functional since

the second factor has a Whittaker model. Restricted to SI2 , the first

representation is the identity, it has a unique SI2 invariant functional
pi

and thus the quotient of f\ 2(Indp

 3 X\ ®Xi) supports this functional.
5 1,2

Hence (8.2) is one dimensional and χ\ x χ2 is uniquely embedded in

9. Representations of GI3 without models. In this section we de-
termine the admissible, irreducible representations of GI3 which do
not embed in either J£§ or Jί\. It turns out that these are essentially
the non-unitarizable representations, i.e. what remains after discard-
ing the representations arising from twisting the inducing data in the
set of representations that give the unitary dual.

9.1. Consider the representation / = Ind p

 3 vχl2 ® v~x. In the
2,1

notation of [Ze], / = (1 x v) x v 1 . By Proposition 2.1 and Corollary
2.3 in [Ze], / is multiplicity free, as is / = v~x x ( l x i / ) , and
they have the same composition factors. By transitivity of induction,
/ embeds in v~x x 1 x v. Both of these have unique irreducible
submodules (/) and (v~x x l x i / ) , which are equal. (/) = 1, the
trivial representation ([Ze], Proposition 1.10, example 3.2). Thus we
have an exact sequence

(9.1.1) 0-> </)->/-> 1 ->0.

THEOREM 9.1.1. The representation (I) has neither a Whittaker
model nor a mixed model
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Proof. Consider the case of the mixed model. By Frobenius reci-
procity

(9.1.2)
? 1),

= Hom f f l a(r 1 > 2((/»lsi a,l).

By exactness of rU2, ru2(I)/ru2{(I)) = 1.
We describe rii2(I) in detail. There are two orbits of P\2 on

Pi, l \ GI3 , viz. the closed orbit which has stabilizer Λ , 1,1 > a n d
orbit P2i\W, where

(9.1.3)
0 0 1

w= I 0 1 0
1 0 0

The stabilizer of P2Λw is G l i x G l 2 . Orbital analysis ([Ca], 3.4)
implies that / has 2L P\2 submodule equivalent to

and corresponding P\ > 2 quotient module

(9.1.5) i?2 = i n dp ' 2 v <g> ί/1/2®!/"3/2.
1,1,1

Thus we have the exact sequence of P\2 modules

(9.1.6) O^Ri - > / - > i ? 2 - > 0 ,

and the exact sequence of Gli x GI2 modules

(9.1.7) 0 - rϊt2(Rι) - ru2(I) - r1 > 2(Λ2) - 0.

The center of Gli x G h acts on ^,2(^1) and Π,:
acters

/5 0 0^
(9.1.8) 0 t 0

Vo 0 /
respectively. Thus

(9.1.9) ri> 2(/) = r i , 2

Let / G R\. From the relation

3Ά

(9.1.10) /

by the char-

g
= \s\-2\detg\f

(\ s~ιx
0

0
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we may, via the restriction to N\92, identify R\ with the space of
Schwartz functions on F2 . The action of N\ 9 2 becomes

(9.1.11)

Write / = Y^i=\CiXi, where c, e C and χι is the characteristic
function of the ball of some small radius r, entered at (M/ , ^/) . Let
Xo be the characteristic function of the ball of radius r centered at
( 0 , 0 ) . Then

/I Ui vΛ
(9.1.12) χt= 0 1 O / o ,

Vo 0 1 ;
which equals χ0 in r{ ,2(^1) Thus f = cχ0, and rx ,2(^1) is the one
dimensional representation 1 <g> 1. Restricted to SI2 , it is trivial.

Since the center of Gli x GI2 acts on r\ ,2(^2) by a nontrivial char-
acter, the trivial representation does not occur there. Thus r\ ,2(C0)
will have a nonzero SI2 invariant functional if and only if τ\ ,2(^2)
has one.

N\92 acts trivially on i?2, hence i?2 = Π ,2(^2) ? and restriction to
Gli x GI2 gives

(9.1.13) n 2{R2)= Ί

Since

(9.1.14) (indp12 z/ 1 / 2 ®^" 3 / 2 ) |s i = i

we have

(9.1.15) Homsiαndg! 1 ^ 1 2 ^®^ 1 / 2 ®^- 3 / 2 , 1)

= HomSi ( i n d j i/®!/" 1 , 1)
2 1,1

= H o n v (z/5(g) 1, 1),

which is clearly zero. Thus (/) has no mixed model.
Now consider the Whittaker model. Note that (/) will have a

Whittaker model if and only if r\9\9\ ; ^ ((/)) φ 0. By exactness of
r i , i , i ψ3 >

(9.1.16) 0 ^ r 1 > 1 > 1 ;
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hence to show that (/) does not have a Whittaker model, it suffices
to show that r\ 9 \, i ; ΨJ,I) = 0.

Consider C/3 acting on i*2,i\Gl3. There is the orbit of 7 ,̂1 with
stabilizer Us, and the orbits P2,\W\ and ^2,1^2 where

/ I 0 0\ /0 0 1
(9.1.17) w{ = 0 0 1 and w2= 0 1 0

Vo 1 0 ; \ι 0 o.
The stabilizers i\ϋj and P^2 of these orbits are the matrices of the
form

/ I * *λ
(9.1.18) 0 1 0 and

Vo 0 1)
respectively. We have a filtration of / by U3 invariant subspaces
IDFXDF2, where F2 = indp3 1, Fλ/F2 = indp3 1, and I/Fx = 1.

W2 w l

Obviously there are no Us moφhisms between 1 and ψz. Since
Ψ2 is nontrivial on the inducing subgroups, H o m ^ i ^ , ψ$) and
Homu(F\/F2, ^3) are both zero. Thus τ\ 1151. ψ (I) = 0.

9.2. The classification of irreducible, admissible representations of
G1Λ is given by Theorem 6.1 in [Ze]. Using the previous methods and
the injectivity of the Whittaker map ([Ja-Sh]), it can be shown that,
modulo twisting the inducing data by characters the counterexample
presented is unique.

9.3. We compare the p-adic and finite field situations with respect
to the counterexample. The representation Ί = \ xv xv~x is multi-
plicity free and has length four ([Ze], Corollary 2.3). The finite field

— C*\

analogue of / is If = Indp

 3 1. There is a bijective correspondence
between the irreducible representations that appear in If and the ir-
reducible representation of the group algebra GS3, with the degree
of the latter giving the corresponding multiplicity (cf. [Car], Theorem
10.1.2). S3 has two distinct characters and a two dimensional repre-
sentation. Thus If has three irreducible constituents one appearing
with multiplicity two.

10. The unitary dual of GI4. We now enumerate the set of irre-
ducible unitary representations of GI4. In the notation introduced in
§§6 and 8, the basic set of representations is B4 = B'4\J £3. In the
following, the δn 's will be in DQ(Π) , all a's are in the interval (0, j)
and the χn 's will be unitary characters of Gl^ (see § 1 for conven-
tions).
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B\ consists of the following:

(i) M(<$4 , 1) = <54, the square integrable representations of GI4.
(ii) u(δ2, 2) = L{yχl1δ1 x u~ιf2δ2).

(iii) u(δ\, 4), the representations of the form

These representations are all characters ([Ze]).
The complementary series induced off P2,2 •
(iv-1) vaδ2 xv~aδ2.
(iv-2) ^ j f e x ^ J f e -
The representations induced off the parabolic subgroup Pi 9 3 are:
(v-1) χι xδ3.
(v-2) Z i x f t .
The representations induced off the parabolic subgroup -Pi, 1,2 a r e :

(vi-1) χ\ χχf{xδ2.
(vi-2) *; x x'/ x * 2 .
(vi-3) δ2 x z/Q/i x i/-Q^i.
(vi-4) vaχγ x z/~αχi x χ2.
The representations induced off the Borel subgroup Pi, 1,1,1 are:
(vii-1) χ[ x χ'{ x vaχ'{f x i/"a^J/;.
(vii-2) χ[χχ'{χχTχχΐ".
(vii-3) i/^/J x u~aιχ[ x va2χ'{ x ιy~Q2χf(.
The remaining representations are induced off P22 :
(viii-1) δ'2xδ'{.

(viii-3) ^2 x X'ί -

11. Models for unitary representations of GI4. In this section we
consider the unitary representations of GI4 with respect to the ques-
tions of existence and uniqueness of models. Besides the Whittaker
model, there is a mixed model and a symplectic model. These cases
lead to the technical heart of our investigation where we confront some
of the significant problems which are encountered in proving that an
irreducible unitary representation has a unique symplectic model. One
of our goals is to determine to what extent a simple inductive state-
ment, analogous to the hereditary property of Whittaker models, holds
for symplectic models.

We prove the following general results.

THEOREM 11.1. Let δ be an {arbitrary) irreducible admissible rep-
resentation of G\n.
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(a) The representation vχl1δ x v~χl2δ admits a nontrivial Spw in-
variant functional.

(b) If δ is further assumed to be square integrable, then the functional
is supported on the unique irreducible quotient L{vχl2δ x v~χl2δ).

LEMMA 11.2. Let π\ and π2 be irreducible admissible representa-
tions of Q\n . The representation

(11.1.1) lndf2nπι®π2®δs

P
n , « n , n

has a filtration by Sp^ invariant subspaces with associated subquotient
representations

(11.1.2) I r (s) 4 ^

where Σr is the group described in Proposition 4.1.1.1, and the super-
script γr indicates composition with conjugation by γr.

COROLLARY 11.3. Except for a finite set of s the representations
(11.1.1) have at most one nontrivial Sρw invariant functional

The remaining results pertain to GI4. In this case, a functional is
explicitly constructed on the representations of the corollary for Re s
sufficiently large, where π\ and π2 are assumed to have symplectic
functional. The corollary then allows us to apply the method of Bern-
stein to analytically continue the functional to the cases of interest. We
obtain the following.

PROPOSITION 11.4. If π\ and π2 are irreducible representations of

GI2 with symplectic invariant functional, then for Re s » 0, there

exists a unique nontrivial Sp2 invariant functional on I n d p

4 πiφπ?®

δp given by a convergent integral Moreover this functional may be

analytically continued to the entire complex plane as a rational function
in q~~s.

Along the way, we examine the catalog of unitary representations of
GI4, determining first which of them have Whittaker or mixed models.
From the results stated above our final result easily follows.

THEOREM 11.5. If π is an irreducible unitary representation of GI4,
then π can be realized in a unique way as a submodule of exactly one
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of the following representations: the Whittaker ^#0> the mixed model
Jt\ or the symplectic model Jti.

11.1. Simple cases for GI4. The previously observed facts about
square integrable representations and the hereditary property of the
Whittaker model allow us to conclude that cases (i), (iv-1), (v-1),
(vi-1), (vi-3), (vii-1), (vii-2), (vii-3) and (viii-1) all have Whittaker
models.

Case (iii), the unitary characters, obviously have symplectic models.
By Theorem 2.4.1, all these models are unique.
11.2. Representations of GI4 with the mixed model There are four

cases which have mixed models: (v-2), (vi-2), (vi-4) and (viii-2).
11.2.1. Case (v-2). Noting that Jξ\ may be written

(11.2.1.1) ϊ n d ^ I n d J ^ ' 2

 ψ2®l,

we have

(11.2.1.2) H o m o ^ I n d ^ χ{ ® χ3, I n d ^ x ^ ψ2 ® 1 ® 1)

Proposition 1.5 ([Ze]) gives

(11.2.1.3) fx, 1,2(^1 ® ̂ 3) = Xi ® h ,2(^3) = Xi

The Gl2 x Gl2 representation

(11.2.1.4)
1,1

corresponds to the closed P2,2 orbit of P i ^ G L * and hence gives a

quotient module of the orbit filtration of f2,2(Ind/>4 Xi ® Xi) ([Ze]>

Theorem 1.2).

The submodule of the representation is computed similarly. First

(11.2.1.5) ^1,2,1(^1 ®X3) = *

Conjugating by the coset representative

/0 1 0 0\

(W)\fλ 0 0 1 0
(11.2.1.6) 1 0 0 0

o 0 0 \)



SYMPLECTIC-WHITTAKER MODELS FOR GL 269

of the open P2,2 orbit in P 1 3 \ G 1 4 to get v~xl2χ^®X\®vxl2Xz, then
inducing we obtain the submodule

(11.2.1.7)
1,1

Clearly there are no nontrivial morphisms from this representation to

(11.2.1.8)

On the other hand IndF

 2 vιl2χ\ ® v3/2χi has a unique Whittaker

model. Whence the uniqueness of the mixed model for χ\ x χ 3 .

11.2.2. Cases (vi-2), (vi-4), (viii-1). The remaining representations
are all induced off 7*2,2 and are irreducible. For a representation of

the form π = IndP

 4

invariant subspaces 0 = τ0 C
isomorphic to F\ = π\ ® %2,
and τ\ is isomorphic to

, h,i{κ) has a filtration of GI2 x GI2

c τ2 C τ3 = π, such that τ 3/τ 2 is
is isomorphic to Fw = τt\

(11.2.2.

where

(11.2.2.

1) FWi

2) W\ =

=

ί°
0
1

Ind

0
0
0

Gl2

1
0
0

xGl2

,1.1

0\
1
0

w2[h,\{*\)

, W2 =
0
0

, i (

0
0
1

π2)

0
1
0

],

0
0
0

\0 1 0 0 0 0 0 1

Case (v-4) is of the form χ\ x χ" x χ2. χ\ x χ" is an irreducible
representation of GI2 with Whittaker model; χ2 has an SI2 model.
Hence

(11.2.2.3)

dimHomGi2 x G\2((x[ x X\) ® X:

Also

(11.2.2.4) HomG, x G, (χ2 ® {χ[ x ψ2)

1)) =

1)) = 0.

Π.iUΊ x X") is glued from χ\ ® χ'{ and χ'{ ® χ[. ruι(χ2) =
v~χl2χ2 ® vχl2χ2. Hence FWi has composition factors

(11.2.2.5)

and

(11.2.2.6)
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Neither of these representations admits nontrivial homomorphisms
into (11.2.1.7). Thus χ[ x χ" x χ2 has a unique mixed model.

The remaining cases are of the form δ2

 χ Xi The argument is
similar to the previous cases. The quotient of h,2{<>2 x Xi) will be
2̂ ® Xi 5 which has a unique map to (11.2.1.7). Thus it remains to

show that the other filtration factors of ^2,2(^2 χ Xi) have no such
morphisms. By disjointness of models, Fw = X2®δ2 has no such
map. To describe FWi, it is necessary to specify δ2.

As in the previous case FWi is built from h,\(^2)®h,\ {Xi) s o δ2 is
either supercuspidal, the complementary series vaX\M~aX\ orSt, the
Steinberg representation. If δ is supercuspidal, ^1,1(^2) = 0. For the
complementary series, fχ,ΛvOίX\ *v~aX\) is glued from vCίχ\®v~OLχ\
and v~aχ\ ® vaχ\. f\ , lQte) = v~ι/2X2 ® "ι/2X2 Thus FWi is glued
from {vaχ\ x v-χl2χ2) ® {y~aX\ x ^1 / 2^2) and (^~α^i x v~xllX2) ®
(^α/i x ^1//2/2)". Since the characters are the only GI2 representations
with SI2 models, we see that in each case the second tensor factor has
no such model, since the central characters of these representations
are vχl1±QL(χ\ ® X2), with 0 < a < \ , which are not unitary.

For δι = St, we have the exact sequence

(11.2.2.7) 0 -> 1 -* v~χl2 x v1'1 -* St -> 0.

f\ 91 is an exact functor; hence we get the exact sequence of Glj x Glj
representations

(11.2.2.8) 0 -> v~xl1 ® z/1/2 -> n , i ( ^ ~ 1 / 2 x i/1/2) -> n, 1 (St) -> 0.

As ri,i(St) = vι/2®v-1'2 ([Ze], Theorem 1.2), FWi = (u^2xu~ι/2χ2)
®{v~λl2 xvl/2X2). If X2 is nontrivial, the second factor is irreducible
and has a Whittaker model. If χ2 is trivial, v~χl2 x vιl2 is reducible
and supports no SI2 invariant functional, for if it did, it would have
an irreducible unitary character as a quotient but St is the unique
irreducible quotient.

11.3. Unitary representations and symplectic models. We investi-
gate symplectic models for certain representations of Gl2« . This will
include giving the proofs of the general results stated at the beginning
of §11 and finishing the proof of Theorem 11.5, by showing that the
remaining three cases for GI4 have symplectic models.

11.3.1. Proof of Theorem 11.1; case (ii). Case (ii) is u(δ, 2) =
L(vχl2δ x v~ιl2δ), where δ is square integrable. That this has a sym-
plectic functional is precisely Theorem 11.1 (b). The proof naturally
divides into two parts.
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11.3.1.1. Consider in general the G ^ representation

(11.3.1.1.1) u{δ, 2) = L{yχl2δ x ιs~x/2δ),

where δ e DQ(JΊ) . Since δ has a Whittaker model, the full induced
representation π = vχl2δ x v~χl2δ does so too.

Suppose that δ is square integrable. Then, in the terminology
and notation of Zelevinsky ([Ze]), δ = (Δ)', where Δ is a segment
{σ, i/(7, . . . , vισ], with σ supercuspidal, and δ is the unique irre-
ducible quotient of

(11.3.1.1.2) σxvσx •••xΛ

(ibid., §9.1, Theorem 9.3). According to Lemma 3.2 in [Ta,2], in the
Grothendieck ring of admissible representations of finite length,

(11.3.1.1.3) π = «(<?, 2) + ((Δu)' x (Δn)')

where

(11.3.1.1.4) Δn = vx'2A Π z/~1/2Δ, Δy = vx'2A U v~χl2A.

In particular, π has length two. The submodule is an irreducible tem-
pered representation, hence has a Whittaker model. Since a represen-
tation cannot have both a symplectic and Whittaker model (Theorem
3.2.2), we conclude that if π has a map into the symplectic model, it
must be supported on the irreducible quotient u(δ, 2).

We remark that the composition factors appearing in the induced
representation which gives u(δ, n) (see §6) are now known. In the
notation of [Ta,3], u(δ, n) — L(a), the unique irreducible quotient
of a representation λ(a), where a is a multiset of segments. Then a
necessary and sufficient condition for L(b) to be a subquotient of λ(a)
is that b < a in the Zelevinsky partial ordering ([Ze, §7]), so that the
composition factors appearing in the Langlands, i.e. square integrable
setting are exactly those which appear in the Zelevinsky, i.e. cuspidal
setting. A proof of this result will be appearing in a forthcoming paper
of Tadic.

11.3.1.2. We now show that u(δ, 2) has a symplectic functional by
constructing one on vχl2δ x v~χl2δ .

Consider the representation

(11.3.1.2.1) /, =Ind™2"(π®π)®δs

P ,
n ,n n ,n

where s is a complex parameter. For fs e Is and

(11.3.1.2.2) p =
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we have

(11.3.1.2.3) fs{p) = δs

p

+ι/2(p)(π(g) ® π('g-ι))fs(l)
n ,n

= \delg\2ns+"(π(g)®π'(g))f(l)

Thus restricting fs to Spπ gives an element of

(11.3.1.2.4) Indρ

p,"(π®π')®δί ,
n,n n,n

where s' = (2ns + n)/(n + 1) - \ .
Let /: π ® π' —• C be the standard pairing. Then / o fs e I', =

" <H, . / is surjective and induction is an exact functor. Thus

when s' = j , integration over P^n\Sρn with respect to the quasi-
invariant measure is a nontrivial, Spn invariant functional on Γs.
This value of sf corresponds to s = l/2n.

The restriction map I\βn —• I[β corresponds to a map between the
finite sections of sheaves, induced from the restriction from Pn,n\ Gb«
to the image of P!

n n\ Sprt in Pntn\ Gl2« , which is closed. This is also
surjective ([Be-Ze,2], Propositions 1.8, 1.16, Proposition 2.23). The
composite I\βn —• I[β —• C is thus SpΠ invariant and nontrivial.
Since

(11.3.1.2.5) Il/2n =

we have shown that vχl2πxv χl2π has an Spw invariant functional.

11.3.2. Proofs of Lemma 11.2 and Corollary 11.3. The Spw orbits
of Pn,n\G\2n are described in Proposition 4.1.1. Orbital analysis (cf.
[Ca]) then gives a filtration of (11.1.2) of the form stated in Lemma
11.2.

The corollary will follow by showing that, except for a finite number
of values of s, only one of the representation Xr(s) carries a unique
symplectic functional.

Conjugating the matrix (4.1.1.1) by yr gives
tg 0 0 0 0 0 \

0 A! B' 0 0 0

(11.3.2.1) 0
0
0
0

a0
0
0

D'
0
0
0

0
tg~ι

0
0

0
0
A

c

0
0
B
DJ
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Conjugating the unipotent element (4.1.1.2) by γr gives

(11.3.2.2)

where X = {XιX2), Z = {Z\Z2) and Y is symmetric. Mindful of the
normalization in the induction, the inducing representation applied to
an element of Σr is

(11.3.2.3) πx

(\
0
0
0
0

^0

x21
0
0
0
0

z20
1
0
0
0

Y
'Z2

-'X2

1

'Zι

- z x ,

X\
0
0
0
1
0

ZΛ
0
0
0
0
I i

The contragradient of Xr(s) is

(11.J.Z.4J LVLCL-^ [{7l\(&7l2)'r\ ® " £

Let C//(0) be the elements of the form (11.3.2.2) with Γ = 0. Then

(11.3.2.5) HomS P π(X r(s), 1) = Hom S P π ( l , Xr(s)').

which in turn equals

(11.3.2.6)

Horn
H o m (Gi rχsP ( n_ f ) / 2χSp ( n_ r ) / 2)ί7;(0) CC π ' \-s+n/2+(2n-r+\)

where the groups act according to (11.3.2.3). Applying Jacquet func-
tors, (11.3.2.6) equals

(11.3.2.7)

HomG l r x S det |

where N(r) is the group of unipotent matrices appearing in (11.3.2.3)
and N(r) is the opposite unipotent subgroup. Glr acts in (π̂ )#(/•)
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via transpose inverse. Since (̂ 2)ΛΓ(Γ)
 = ((7Γ2)iV(r))/ ([Cas], Corollary

4.2.5), we find HomSp (Xr(s), 1) equal to

(11.3.2.8)

HomGlr x SP(n_r)/2 x sp^jWrnrMM^r))'^ det

If r ^ O , there is only one value of s for which this groups can be
nonzero. If r = 0, we have

(11.3.2.9) HomSPn(Xr(s), 1) = HomSP/j/2χSpn/2(πi ® π 2 , 1).

This space has dimension one precisely when it\ and π2 both admit
symplectic models.

11.3.3. Proofs of Proposition 11.4 am/ Theorem 11.5; care? (iv-2),
(viii-3). Let π\ and π2 be irreducible with Sl2 invariant functional

pi

/t and /i. Consider the representation Is = IndP * π\®π2®δs

P .Set
r 2 , 2 r 2 , 2

/ = l\®h, and denote ^2,2 by P.
By Corollary 4.1.1.2 the open SP2 orbit in P\GU is given by the

coset PγGU where
/0 1 0 0\

0 0 0 1
1 0 0 0

\0 0 1 0J
For fs €ls, Io fs(γg) = lofs(γ) for g e Sl2 xSl 2, embedded in Sρ2

so as to be γ conjugate to the diagonal embedding in GI4. Consider
the integral

(11.3.3.1) γ =

(11.3.3.2) Kfs) = ί
J(S

lofs(γm)dm,
'(Sl2xSl2)\Sp2

where dm is a right invariant measure on (Sl2 x S12)\ Sp2. If this
converges, it will provide an Sp2 invariant functional on Is. Let-
ting P' = P Π Sp2, by Proposition 4.2.1, the open dense P' orbit in
(Sl2 x S12)\ Sp2 is (Sl2 x S\2)pJP'. Thus

(11.3.3.3) lofs{γm)dm,
l(S\2xSl2)pJP'

We may view the domain of integration as the P' orbit

ί b Oλ
g

where

(11.3.3.4) PΎ = <
0

0

g = c d
GS12
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and thus

(11.3.3.5) Λ(/,)= / lofs(γpjp)dp,
Jp'x\p'

where dp is a right invariant measure on Pχ\P'. As

(11.3.3.6) p /

P'x\Pχ = Sl2 \ Gl2 x Sym2. For a right invariant measure dg on
S12\G12 and an additive invariant measure dZ on Sym2, dp =
\gfdZdg. If /* = ( « J ) e S l 2 , geG\2 and Z e S y m 2 ,

h b O

0

hg o

Then by the invariance of dZ,

(11.3.3.8)

Λ(/s)=/
Sl2 \ Gl 2 x Sym2

g —• *gJg maps S1 2 \G1 2 bijectively onto the nonzero 2 x 2 skew
symmetric matrices. Identified with Fx , the invariant measure on
this Gl 2 orbit is dxλ = dλ/\λ\, where dλ is an additive measure.
Thus

(11.3.3.9) Λ(/5) = / lofs (γpJD{λ)ίl Z

JFx xSym2 \

where

(11.3.3.10) D(λ) =

(λ

i - i

Set ξ = γpJ. Then

(11.3.3.11) ω s- l

(1 + yλ xλ
-z \-y
z λ~ι-l+y

-λy -λx

xλ
-y

-λx

\-λ + yλ\
—z
z

λ-λy
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where Z = (*y

z). Define h by

n
(11.3.3.12) ω =

-λ
1

-λ

h

Thus

(11.3.3.13)

By right multiplication on hξ by elements of the maximal compact

subgroup K = G\n(o), obtain h = h\k\, k\ e K, where h\ — (. L) ,
" l

ht and h7 are 2 x 4 matrices and

(11.3.3.14) K- x

1 0
0 1

/z has an Iwasawa decomposition {AQ^)k2, where ki&K. Accord-
ing to Lemma 6.8 in [PS-Ra], | det^2l = Ki(h~[ι), where K2(A) is the
maximum of the absolute values of the 2 x 2 minors of the 2 x 4
matrix A. We have |detαω| = 1, |detA| = |detail = \λ\~2, and
I detΛi 11 det.42l = W~2 • Thus for some keK, depending on x, y,
z and λ

(11.3.3.15)

Substituting this in the expression (11.3.2.9), we obtain Λ(^) equal
to

(11.3.3.16)

l{πι O -
Making the change of variable λ —»• λ ' and «; = λ + y, we obtain for

Λ(/,)

(11.3.3.17) / | « , ^ | ^ 2 ^ W ί ^V(4i+2)

Ml -Λ J ® π 2 ( θ -A ' )fs(k)dwdxdydz.
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Since the inducing representations of GI2 have symplectic models,
either 7ΓZ = // are unitary characters or π\ = vaχ and π2 = v~aχ,
so that

(11.3.3.18)

For 5 > £,

(11.3.3.19) \w-y\4s~2 <max{\w\,

<K2

= Π(k)\.

z w 1 0 χ 4 ί " 2

y x 0 1

so the integral of the absolute value of the integrand in (11.3.2.17) is
bounded by a constant multiple of

(11.3.3.20) JF<
K2(y * 0 l ) dwdxdydz-

Let I{P,s) = IndJl4<S£ and I(F, s) = I n d ^ 4 ^ , where P is the
parabolic subgroup opposite to P. Extend δp to GI4 via the Iwasawa
decomposition GI4 = PK. We have the basic intertwining operator
As: I(P, s) -> 1(7, -s) defined by

(11.3.3.21) As(Fs)(g) = ί_Fs{ng)dn,
JN

where "N is the unipotent radical of 7. From the Iwasawa decompo-
sition of n = ( I } ) , with Fs = δs

P

+ι/2 obtain

(11.3.3.22) As(δs

p

+i/2)(l) = / κ2(X, l2y
4s-2dX.

JF4

As(δs

P

+ι/2)(l) converges for Res > 1/4 (cf. [Bo-Wa]). In particular
for s = 1/2, we obtain (11.3.3.20). Thus for s > 1/2, we have
constructed an SI2 invariant functional on IndP

 4 χx ® χ2 ® J | , . The
representations of interest correspond to 0 < s < \ .

We continue the functional Λ5 using the method of Bernstein (cf.
[Ge-PS], pp. 126-129; [Ka-Pa], p. 67). Let Vs denote the space of
the representation Is = IndP

 4 χ<8>δs

p, where ^ is a unitary character.
Then ί̂  is naturally isomorphic to Vo by restriction to K.

The action of GI4 on VQ via Is is given by

where /c^ = pk'. Let ί̂ * be the dual, D = C x as an irreducible
variety and C[D] = C[z, z" 1 ] the ring of regular functions on D.
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Write z = q s, -π/logq < s < π/logg. Let R = Ry0 x Rs where
i?Fo = {yυ*} is a countable basis for Vo and i?5 = {gυ} is a countable
basis for Sp 2 . The family of systems Ξs = {Is(gv)yυ> - yv> = 0;
(v, v1) e JR} , 5 G C , i s polynomial in z and by Corollary 11.3 it is
a unique solution for Res sufficiently large. According to Bernstein's
theorem, there is a unique solution Λ5 e (VQ ® C(Z)))*, C(D) the
function field of D. As(y) is an Sp2 invariant functional which
is a rational function of q~s. In particular this will give nontrivial
invariant functionals on the remaining representations.
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