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ON MINIMAL AND MAXIMAL EIGENVALUE GAPS
AND THEIR CAUSES

MARK S. ASHBAUGH, EVANS M. HARRELL, II, AND ROMAN SVIRSKY

We consider quantum-mechanical potentials giving rise to mini-
mal (or maximal) eigenvalue gaps subject to LP constraints in n-
dimensions. We prove existence and characterization theorems for
optimizing potentials. The tunneling effect through a single barrier
is shown always to be the cause of minimal gaps, and in some cases
the gap minimizers are shown to be specific double-well potentials.

I. Introduction. Let Ω be a bounded, smooth domain in 3ίn , and
consider the Schrόdinger operator

H = -A+ V(x)

acting on L 2 (Ω), with zero Dirichlet boundary conditions. As is well
known, for reasonable potentials V the spectrum consists of eigen-
values {Ei}, conventionally numbered in an increasing sequence,

(1.1) - o o < £ Ί <E2 <E3 < ••• .

The eigenvalues correspond to the energy levels, in atomic units, of a
quantum particle in the potential energy V, imagined as +oo outside
Ω. We refer to E\ as the ground state, E2 as the first excited state,
and

(1.2) Γ = E2-Eι

as the fundamental gap.
Bounds on the fundamental gap have been the subject of a num-

ber of recent works [1], [23], [25], usually with assumptions imposed
on both V and Ω that can loosely be characterized as convex. If
R is a characteristic diameter of the problem, then with these as-
sumptions Γ can be no smaller than const. R~2. Without the con-
vex assumptions, on the other hand, exponentially small fundamental
gaps Γ = O(exp(- const. R)), are known to arise in double-well prob-
lems, owing to the tunneling effect, and also in problems on pinched
or dumbell-shaped domains [4], [19]. Recently, a pair of papers by
Kirsch and Simon [14], [15] established, roughly, that the fundamental
gap is bounded below by a polynomial in R times exp(- const. R),
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although with constants that differ from the tunneling constants. Re-
lated work appears in [13], [17].

The purpose of this article is to investigate mechanisms causing ex-
ponentially small gaps, and, in particular, to provide evidence that the
smallest possible gaps are due to double-well type tunneling. The ap-
proach we follow is one of direct optimization, in the spirit of earlier
papers on other spectral properties [2], [3], [8], [11], [24], and espe-
cially [9], where more discussion of the fundamental gap and some
initial investigation along these lines are to be found.

The analogous problem of maximizing the fundamental gap does
not seem to have as much physical importance as that of minimizing
it. It is, however, intriguing as a mathematical problem in its own
right, and is treated here by similar methods.

In §11 we use straightforward compactness arguments to establish
the existence of potentials V that optimize the fundamental gap sub-
ject to IP constraints on V, and then show how to characterize them
by direct optimization. This entails some delicate perturbation theory.
In particular, we derive "switching principles" relating the high and
low parts of the optimal potentials to the ratio of the corresponding
eigenfunctions, and deduce that minimal gaps are caused by tunneling
through a single barrier, in the sense that the positive support of a gap-
minimizing potential will be shown to be a connected set. Speaking
pictorially, gap-minimizing potentials have no "islands." Analogously,
unless Eι is degenerate, gap-maximizing potentials have no "lakes."
The main results are stated in Theorems II.3-II.6. In the third section
we analyze the one-dimensional case, where the gap minimizers are
shown to be symmetric double wells.

II. Existence and characterization of optimizing potentials. We con-
sider the differential eigenvalue equation

(2.1) Hψ := (-Δ + V{x))ψ = Eψ

on a connected, bounded, open domain Ω c <9ln with a smooth
boundary and Dirichlet boundary conditions. The function V, re-
ferred to as the potential, is real-valued and measurable, and further
conditions will always be imposed making H self-adjoint. We con-
sider the fundamental gap Γ of (1.2) as a functional on potentials
belonging to one of the classes

(2.2) ^ , M ( Ω ) : = { F : s u p p F c Ω , \\V\\P < M}

for some fixed M > 0 and p > n/2 when n > 2. When n = 1 we
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consider all p > 1 as in (2.2) and in addition by convention set

(2.3) S\ ,Λf (Ω) : = {the bounded real Borel measures

of total Mass M supported in Ω}.

We begin with a discussion of the existence of optimal potentials. It is
known that for any of these classes V is relatively form bounded, and
therefore H is self-adjoint with the quadratic-form domain W^'2,
(1.1) holds, and E\ is nondegenerate with a positive eigenfunction [7],
[20], [21]. Moreover, let Ej(V) denote the y'th eigenvalue of H as
defined by the min-max principle. Then Ej(V) is bounded uniformly
from above and below on SP9M(Ώ) for any fixed p, M as specified
above. (See [6], where this is proved for j = 1 the generalization
to higher eigenvalues is straightforward.) Obviously, the functional
Γ(F) = Eι - E\ is likewise uniformly bounded.

The key to proving the existence of optimizers is the well-known
Rellich-Kondrashov Embedding Theorem [7], which states that the
Sobolev space W^p is compactly embedded in Lq for tp < n, q <
npj{n - tp) and in Cm(Ω) for 0 < m < t - n/p. The technique is
fairly standard.

THEOREM II. 1. Let Ω and H be as above and fix M, p. Then the
functional Γ(V) attains its maximum and minimum on Sp

Proof. We shall prove only the existence of the minimizer Ftt such
that Γ(F») = P := infs Γ ( F ) . The existence of a maximizer is

P > M

entirely similar.

Let ( F « , ψf\Ef]), j = 1,2, k= 1 ,2, . . . , be a sequence of

potentials in Sp 9 M, eigenfunctions normalized in W^'2, and eigenval-

ues such that \imkT{V^) —• infΓ(K). By passing to subsequences,

we can assume that Ef] -+ E] , Γ(V^) -+ Γ , and that VW tends to

a limit F" in the weak U sense (or weak-* sense in the case S\9M)

We claim that we can extract a uniformly convergent subsequence

from {ψj *} . This is immediate for n = 1, for in this case W^1'2 is

compactly embedded in C°(Ω) by the Rellich-Kondrashov Theorem.

For n > 3 the Sobolev inequality
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where the constant C depends only on n and p, tells us that {ψj ^}
is bounded in Lq for q = 2n/(n - 2). For n = 2 it is bounded in
Lq for all q < oc.

Thus from

we find with the help of Holder's inequality that {Δψj®} is bounded
in U, where

1 1 1 Λ
 2" ^ i- = - + - and r > > 1

r p q n + 2

for n > 2. Therefore {^ } } is bounded in W*>r. For n = 2,

1 < r < p, but can be chosen arbitrarily close to /? > n/2, and we

conclude from the Rellich-Kondrashov Theorem that the set {ψj ^}

is compactly embedded in C°(Ω). For n > 3, the Sobolev inequality

implies that {ψ^} is bounded in Ls with s = nr/(n-2r) > q. After

a finite number of repetitions of the above argument we discover that

{ ψ^} is bounded in a space with a high enough index to be compactly

embedded in C°(Ω).

We now renormalize {ψj ^} in the L°°-norm and observe from the

Schrodinger equation that {ψf^} is a bounded set in W^'p which is

compactly embedded into C°(Ω) since 2p > n. We denote the limit

ψj and observe that it is not identically zero.
It is now easy to see from the eigenvalue equations

that

in the sense of distributions. We finally observe that E\φ E\, since
the ground-state eigenvalue is nondegenerate, so Γ(F () = Π* > 0. D

A complementary point of view can also be adopted. Since eigen-
values change continuously under perturbations V —• V + KP , with P
bounded, Γ is a continuous monotonic function of M for each fixed
p > n/2 (resp. p > 1). Hence, given a positive real number Γ < Γ(0)
(resp. Γ > Γ(0)) sufficiently small and fixed p, there exists M such
that Γ is the minimal (resp. maximal) gap for SP9M(Ώ) Let V° be
a potential in LP(Ω) such that Γ(F°) = Γ, and define

M(Γ) :={Ve Lp(Ω): Γ(V) = Γ}.

Finally, define the functional p : M(Γ) -+ ^ + by p(V) := \\V\\P

P .
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PROPOSITION Π.2. The functional p attains its minimum on M(T)
at some V*, which is simultaneously an optimizer for T(V) on SP,M-

Proof. The argument used here is modeled on one in [18].

Let {V^} be a minimizing sequence for p(V) of elements of
M(Γ). Then it is bounded in LP norm and we can extract a weakly
convergent subsequence with limit V*, \\V*\\P < M. As in the proof
of Theorem II. 1, we have lim^ Γ ( K ^ ) = Γ(F*). We shall show later
that in fact \\V*\\P = M. D

The next task is to characterize the optimal potentials in SP^M
We shall denote the gap minimizer ( F β , ψ\, Ej) as above, since in
molecular physics a small gap corresponds to a "sharp" spectral line.
In distinction to this we use Vb for the gap maximizes and when we
do not distinguish between the optimizers it seems natural to use V^.
The basic idea is to subject V^ to generic perturbations and to use the
formula for the first-order change induced in Γ to find conditions on
0 . Some of the ideas we use were developed by us in [2], [3], [8],
[9], [11], [24].

DEFINITION. A real-valued, bounded, measurable function P(x) on
Ω is an admissible perturbation of V iff dist(F + κ P , SP,M) = o(κ).
It is strongly admissible iff V + KP e SPM for all sufficiently small
K . An admissible perturbation is thus either strongly admissible or
tangential to dSPiM On occasion we will refer to perturbations that
are admissible only for positive or only for negative K , but in the
absence of an explicit restriction, K may have either sign.

We recall that if Ej(V) is nondegenerate, then

(2.4) ^ " f ) g / f W ψJdx a t κ = 0

[5], [12], [16], [21] (in fact this is true for all P G ΊJ , for the values
of p we consider). Therefore

(2.5)

A complication arises when Ej is degenerate [5], [12], [16]: Ej can
split into a cluster of eigenvalues Ejym9 which can be considered as a
set of diίferentiable functions near K — 0, but those functions do not
ordinarily correspond to the ordering of eigenvalues given by the min-
max principle. For example, the lowest one for K < 0 will typically
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be the highest for K > 0. The ground-state is nondegenerate, but if
Eι is degenerate, then (2.5) is replaced by

(2-6) T^V + KP) = Jj{x){ψlm _ ψi)dχ ( jc = 0),

where Γm = Eι, m - E\, and the orthonormal eigenfunctions ψ2, m

are specially chosen so that

(2.7) / ψ2jPψ2,mdx = 0 ΐoτjφrn.
JΩ

We remark that in cases of highly symmetric Ω, we believe that Eι
is indeed degenerate at maximum in a nontrivial way (symmetry is
broken). For the minimizer, however, this does not happen.

We now state our main theorems. We start with the case p = oo,
and optimize over the set S'^ M = {V : 0 < V(x) < M}. This is
essentially the same as S^ M/2 > but is more convenient.

Note. In the absence of an explicit statement to the contrary, all set
theoretic or topological operations occurring below should be under-
stood to be carried out relative to Ω, except for those referring to
Ω itself and the operation of finding the support of a function (both
of which should be taken relative to 31n). By the support of an Lp

function V we shall mean its distributional support. For a set X, Xc

will denote the complement, X the closure, and dX the boundary.

THEOREM II.3. Let Ω and H be as above, with V constrained to

(a) EiiV^) is nondegenerate.
(b) Let B* denote the support of V*. Then

Moreover,

(2.8) ψ\(x)>\ψl(x)\ onB* and ψ\{x) < \ψ\(x)\ on

and therefore B* = {x : ψ\(x) > \ψ\(x)\}.
(c) B$ is connected.
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THEOREM Π.4. Let Ω and H be as above, with V constrained to
S^ M. Then either E2(Vb) is degenerate, or else in place of(b) and
(c) of the foregoing theorem we have:

(V) Let the set Bb denote the support of F b . Then

Vb = MχB>(x)a.e.

Moreover,

(2.9) ψ\{x) < \ψ\(x)\ on Bb (with equality holding only on dBb)

and ψ\(x) > \ψb

2(x)\ on (Bb)c. Therefore,

(Bψx = {x:ψ\(x)<\ψb

2(x)\}.

(d) (Bb)c is connected.

THEOREM II. 5. Let Ω and H be as above, with V constrained to
Sp, M 9 n/2 < p < oc. Then

(a) Eι{V^) is nondegenerate\ and
(b) suρρ(F') = Ω, and F s and ψ* are related by

(2.10) ψf - ψf = -c\V\v-2V*

for some constant c > 0. In particular, \ψ2\< ψ\ on B\_ := supp(F,?)

and \ψ2\ > ψ\ on B\_ := suρρ(FJ), where V+ := max(F',0) and

Vl := πίm(V^, 0). In addition, \ψ\\ cannot equal ψ\ on the interior

ofBί.
(c) B\ is connected.
(d) V*eC(Ω),and

(2.11)
JΩ

THEOREM Π.6. Let Ω and H be as above, with V constrained to
Sp,M> n/2 < p < oo. Then either E2{Vb) is degenerate, or else in
place of(b) and (c) of the foregoing theorem we have

(b;) suρρ(Fb) = Ω, and F b and ψbj are related by

(2.12) ψ\2 - ψ\2 = +c\ F b ψ-2 F b

for some constant c > 0. In particular, \ψ\\> ψ\ on B+ := suρρ(Fj)
and \ψ$\ < ψ\ on Bb := supp(F^), where V\ := max(F b

? 0) and
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VΪ := min(Fb, 0). In addition, \ψ%\ cannot equal ψ\ on the interior
ofB\.

(d) Ω\Bb+ is connected.
(d') V*

(2.13) ί \V*\p-

Properties (b) and (b') are the switching principles referred to in
the introduction. They state that the potential switches on and off
whenever the sign of \ψl\- ψ\ changes. The physical interpretation of
properties (c) is that the smallest possible gaps are caused by tunneling
through single barriers, as in double-well problems. The proofs for
minimizers will be done in several steps. The proofs for maximizers
are almost exactly the same except for some sign changes, and the
need to assume nondegeneracy. For simplicity of notation we drop
the ft throughout.

Proof.
Step 1. Theorem II.3, (b), first part: We first assume that E2 is

nondegenerate, and show that ψ2{x) = Ψ\(x) ° n the set T := {x :
0 < V(x) < M}, which therefore has measure 0:

Write T = |JΓ=i τk , where

Tk =

and assume that at least one of these is of positive measure. For
any XQ G 7* and any measurable sequence of subsets G^j C 7^
containing XQ , perturbations of the form P = χok are admissible,
so from (2.5),

dΓ(V + κP)
0 = f

Dividing by μ(Gkj) and letting G^j shrink to XQ as j -> oc, we
find by the Lebesgue Density Theorem [22, p. 158] that

(2.14) ψl(x) = ψf{x) on Tk and therefore on T.

We now claim that this can only occur on a set of measure zero. Let
us assume to the contrary that Γ+ := {x e T: ψι{x) > 0} is of positive
measure. (If the set where ^ W < 0 were of positive measure, we
could multiply ψ2 by -1.) Clearly T =T+UT- where Γ_ := {x e
T : ψ2(x) < 0}, since ψ\ = ψ\ on T and ψ\ does not vanish on Ω.



ON MINIMAL AND MAXIMAL EIGENVALUE GAPS 9

For a.e. x € T+ there are sequences of points in T+ converging to x
from n linearly independent directions, and we can differentiate a.e.
by taking sequences of difference quotients evaluated at those points.
This shows that -Aψ2 = —Δψ\ a.e. in Γ+. Substituting into the
eigenvalue equation (2.1), we find that (E2 - E\)ψ\ = 0 a.e. on T+,
which is impossible since ^ ( x ) > 0 o n Ω . D

Therefore, if B denotes the distributional support of V, then V —
MχB(x) a.e.

Step 2. Theorem II.3, (b), remaining part, assuming nondegeneracy:
To see that ψ\(x) > \ψ2(x)\ ° n 5 , observe that if x e B and {Gj}
is a sequence of sets containing x, then P = χG is an admissible
perturbation for K < 0. Therefore, from (2.5),

. dY{V
0 > — ^ = J

Once again dividing by μ(Gj) and choosing Gj to shrink nicely to
x as j —> oc, it follows from the Lebesgue Density Theorem that

A similar argument shows that ψϊ(x) < ψ\{x) on Bc. Moreover,
the inequality on Bc must be strict: Suppose that ψγ(xo) = ψ\(xo)
for some xo G Bc, and consider a ball 3S contained in Bc and cen-
tered at Xo. We can assume without loss of generality that ψ2 > 0 on
33 and we pick a potential V of the equivalence class of a minimizing
potential that is identically zero on Bc. The function Φ := ψ\-ψi < 0
on 3§ and attains its maximum at XQ . But Φ is subharmonic, since
ΔΦ = E2 Ψ2 - E\ ψι > 0 on 38 and therefore ψ2 = ψ\ on 38 by the
maximum principle. This, however, is impossible as for (2.14). D

REMARK. For a maximizing potential we can rule out the possibility
of sets of measure zero on which ψ\{x) = \ψ2(x)\ in the interior of
the support of V. Indeed, pick a V from the equivalence class of a
maximizing potential, such that V is identically M on B . We know
that ψ\(x) < \ψ2(x)\ ° n B If for some x0 e Bml, ψ\(xo) = |V2( *o)l
and 38 is a ball in Bmt centered at XQ , we conclude (by assuming
that ψ2 > 0 in 38) that the function Φ := ψλ - ψ2 has a nonnegative
maximum, viz., 0, at XQ . Yet in 38 Φ satisfies

ΔΦ - MΦ = E2ψ2 - E\ψι > 0.
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By the maximum principle [7, Chapter 3], we conclude that Φ must
vanish identically on Bmt, and thus that ψ\{x) — ψi(x) on a set of
positive measure. This is a contradiction.

Step 3. Theorem II.3, (a): We now show that E^ cannot be degen-
erate. If Eι were r-fold degenerate, then for any particular strongly
admissible perturbation P(x)9 the cluster of eigenvalues {E2,m(κ)}
into which £ 2 would split could be arranged to be analytic in K at
K = 0, and likewise for the associated orthonormalized eigenfunctions

} (depending on P). If

dTm < 0 (ic = 0)
dK

for any m, then we would have Γ(KQ) < Tm(κo) < Γ(0) for some
KQ > 0, which is impossible since Γ(0) is a minimum. There is
likewise a contradiction if

dTm > 0 (K = 0)
dK

for any m, because then we could find a κo < 0 for which Γ(ιco) ^
Γm(/c0) < Γ(0). Therefore

= J P{x)(ψlm - ψ\)dx = 0 (K = 0)

for all admissible perturbations and all m. Suppose now ψ is any
normalized vector in the eigenspace for £2 , so that

7=1 7=1

Because of (2.7),

(2.15)

[ P(x)(ψ2 - ψ2) dx= f P(x) I V \cj\2ψi j - ψ2 I

= ±\'J\2fί
= 0.

We may now argue as in Steps 1 and 2, restricting first to sets 7^ to
conclude that for some set B, V{x) = MχB{x) a.e. We shall now
argue that on B,

(2.16) ΨΪ(x)>Ψ2(x)
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as before, and that this holds for each and every normalized vector ψ
in the eigenspace of E2 : If P is a positive perturbation supported in
Bc (resp. B), then as before we must have

> 0 (resp. < 0 )
dK

when K = 0. As in (2.15) we find

L P(x)(ψ2 - ψ\) dx>0 (resp. < 0),
Ω

and (2.16) is established a.e. by the Lebesgue Density Theorem.
Suppose, finally, that there are two orthonormal vectors, ψ2,a

ψ2)b in the second eigenspace, and that x 0 is a point on dB Π Ω, so
that we may take ψ2,a(xo) = Ψ2,b(χo) = ViC*o) Φ 0 Then the vector

V(*) = - Έ ( f t ) f l W - ^2,^W) = 0 w h e n x = xQ.

It would follow that ψϊ(x) > Ψ2(x) on part of Ω \ B, contradicting
(2.16). D

We now turn to the cases where n/2 < p < oo.

Step 4. Theorem II.5, (b), assuming nondegeneracy: It is clear that
the minimizing potential satisfies \\V\\P = M, as otherwise every
bounded perturbation is admissible, and we would find as in Step 1
that ψl(x) = Ψ\(x) throughout Ω, which is impossible. In addition,
any bounded, measurable perturbation such that

(2.17) supp(P) c Ω\supp(F)

is admissible, so the same argument implies that supp(F) = Ω.
Perturbations admissible for both positive and negative K are tan-

gential to dSp^M i n Lp in the sense that

(2.18) / \V(x)\p-2V(x)P(x)dx = 0,
JΩ

according to an easy calculation. According to (2.5), at optimum,

(2.19) f P(x)(ψϊ-ψ2)dx = 0
JΩ

for all bounded, measurable P satisfying (2.18). It is not difficult
to see that this implies the proportionality (2.10) for some constant
(cf. [3, p. 1773]). Actually, for an arbitrary minimizing potential this
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proportionality need only hold a.e. Nonetheless, since ψ\ and ψ\
are both continuous and changes of Ftt on sets of measure 0 do not
affect anything, we shall always choose the gap-minimizing potential
as the distinguished member of its equivalence class such that the
proportionality (2.10) holds everywhere. It is this assumption that
allows us to assert in (d) that F 8 e C(Ω). Similar comments apply to
F b in Theorem II.6. To see that the proportionality constant -c is
negative, note that P(x) = Xτ(x) is admissible for any measurable set
T c supp(Ff-) and negative K , or for Γ c supp(F_) and positive K .
In the former case Γ < 0 and in the latter Γ > 0. We now argue as in
Step 2 to conclude the switching principle and concluding statement
of Property (b). The fact that \ψ2\ φ ψ\ on int(2?ί_) is proved as in
Step 2. D

Step 5. Theorem II.5, (a): To establish nondegeneracy in this case,
we once again consider the cluster of eigenvalues {E2^m(κ)} into
which E2 splits under perturbation. Let {ψ2im(κ)} denote the as-
sociated orthonormalized eigenfunctions. Since E2>m(κ) are chosen
to be analytic in a neighborhood of K = 0, we argue as in Steps 3 and
4 to conclude that on Ω

ψ2 - ψf = -c\V\p~2V

for every normalized ψ in the eigenspace of E2 and some constant
c > 0, which may in general depend on ψ. In particular, any such ψ
satisfies the switching principle, and we can obtain a contradiction as
in Step 3. D

Step 6. Theorem II.5, (d): The regularity claim for V follows from
the regularity of ψ\ and ψ2 and the algebraic relationship (2.10) of
part (b), which holds everywhere on Ω by virtue of our convention
for the choice of F J discussed in Step 4 above. The integral iden-
tity results from integrating (2.10) and recalling that ψ\ and ψ2 are
normalized. D

Step 7. Theorems II.3 and II.5, (c) ("Gap-minimizing potentials
have no islands"): For this proof we denote both 2?' and B\. by
B. Clearly the nodal set {x : ψ2{x) = 0} belongs to a connected
component of B. The nodal set separates Ω into two nodal domains,
so suppose that B were to contain two disjoint regions Ωi and Ω2,
one of which, say Ωi , includes the nodal set, while Ω2 lies within
one of the nodal domains. Without loss of generality, we assume that
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Ψ2 > 0 on Ω2. We have established that ψ\ > ψ2 a.e. on Ω2 and
ψx = ψ2 on ΘΩ2. We use u{x) := ψ\(x) - Ψi{x) as a trial function
for the Dirichlet eigenvalue problem for H restricted to Ω 2 , noting
that the lowest eigenvalue of this restriction lies above E2 because Ω2
lies within a nodal domain. Hence the Rayleigh-Ritz inequality would
imply that

E2 I (Ψi - Ψifdx < I (ψ{- ψ2)H{ψx - ψ2)dx
JΩ2 JΩ2

= / (Ψι-Ψ2)(E\Ψ\-E2ψ2)dx
JΩ2

= E{ (Ψι-Ψ2)2dx-(E2-E{) {ψ\
JΩ2 JΩ2

<EX I (ψι-y/2)
2dx,

JΩ2

which would contradict E2> E\. D

III. Optimal potentials in one dimension. In this section Ω = (0, 1)
and H = -d2/dx2 + V acts on the subspace of L 2 (0, 1) correspond-
ing to Dirichlet boundary conditions. We consider V e SPtM(Ώ)
initially for 1 < p < 00, leaving the case p = 00 for later. There
are several properties special to one dimension that make our prob-
lem easier to handle and allow us to push the results in §11 further.
One useful fact is that all eigenvalues of H are nondegenerate, so the
results of the previous section stated for maximizers will always hold.

Let us begin with a discussion of K", a gap minimizer for Sp, M ( Ω ) .
Let ψ\ and ψ\ denote the corresponding ground state and the first
excited state. It is not hard to see from the proof of Step 7 that in one
dimension ψ\{x) = lί^JMI a t m o s t a t t w o points in (0, 1) (see also
[9]), so the positive support of the minimizing potential is an interval
[a, b] for 0 < a < b < 1. The minimizer is a double-well potential
provided that a > 0 and b < 1. We shall show that this is indeed
the case.

We start by recalling the relation (2.10):

which holds throughout [0, 1]. Since ψχ^2 are continuous, so is Ktt,
and in fact by elliptic regularity we conclude that it is infinitely differ-
entiable in the interior of supp(F^) and supp(FJ). (It is easy to see
that for p = 1 + 1/ra, m = 1,2, ... , V* e C°°(0, 1), but otherwise
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there may be nonsmoothness at the points where V = 0.) Differenti-
ating both sides of (2.10) on supp(F^) and supp(KJ) and substitut-
ing from the Schrόdinger equation we obtain a non-linear differential
equation connecting K" with its wave functions ψj , 7 = 1,2.

THEOREM III. 1. Let V^ minimize the fundamental gap in SP9M(Ω)

for fixed M > 0 and 1 < p < oc. Then

(3.1) _ ^ _ ( c | j ^ - 2 F t t ) + U-- j c\Vψ = 4(E\ψ\2 -E^ψl2) + C,

where

(3.2) C = -

= 2

Proof. Once again we drop the ' for convenience. On supp(K,.),
(2.10) becomes

(3.3) ψl - ψ\ = -cVp-χ.

Differentiating both sides in the interior of this set we get:

(3.4) 2ψ'2ψ2-2ψ[ψx=-^c

(3.5) 2ψl

2

2-2ψ[2 + 2ψ2ψ'{-2ψxψ'{ = -Έζ:ί,

Now we substitute for ψ" 2 from the Schrόdinger equation (2.1) and
use (3.3). This yields

ψ2 - E2ψ
2) = -

Differentiating again,

(3.6) 4{ψ'2Ψ2 - ψ'lΨΪ) - 2V^-[cVp~i] - 2V'[cVp~ι]

x ψ[ - Elψ2ψ'2) = - £ L 2
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Once again we substitute for ψ'j and this time use (3.4). The result
is

The first two terms on the left can be rewritten:

-4Vd[cVp-i] _ 2V'[cVp~l] = - (4 - -) 4-l
dx \ p ) dx

Integrating (3.6) then yields

" ( 4 " ϊ ) [ c V P ] + 4 { E { ψ l χ " E l ψ ^ + c = "έ
where C is the constant of integration.

Similarly, on the interior of supp(F_) we find that

" (4" I) [C{'V)P]+4{Eι ψlχ ~
That the constant of integration C is the same throughout [0,1]
follows from the continuity of V and ψ\^ at both a and b. The
equations can therefore be combined, yielding equation (3.1) on the
whole interval. D

REMARKS. 1. An interesting special case is p = 2, for which (3.1)
becomes

(3.7) -cV" + 3cV2 = 4{Exψl - ElΨ\) + C.

2. Obviously we can use equation (2.10) to eliminate either ψ\ or
ψ2 from (3.1).

3. A gap maximizer F b for £P>Λ/(Ω) is connected with its eigen-
functions ψj (7 = 1, 2) via a similar non-linear differential equation.

COROLLARY III.2. Let F s be a gap minimizer for *SPjJ/ι/(Ω), 1 <
p < oc. Then

supp(F_) = [0, α]U[6, 1] and supp(F+) = [α, b]

for some 0 < a < b < 1. In other words, F ' consists of two wells
separated by a barrier.

Proof. Integrate both sides of (3.1) from 0 to 1:
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(as usual we drop the *). Therefore, since

- ^ ( c | F r 2 K ) | έ = 2{ψ2ψ'2 - Ψιψ[)\l = 0,

it follows that

(3.8) E2 - E{ = +\c " ( l " ^

Since c > 0 and E2 > E\, this shows that C is strictly positive.
Suppose now a = 0, i.e., V < 0 on a single interval (ft, 1) and

thus there is only one well. (The case b = 1 is handled similarly.)
Choose the sign of ψ2 to be positive to the left of the node. Then
^ ( 0 ) = ψ2(0) = 0 and by Theorem II.5, ψ\(x) > Ψi(x) > 0 for
small x > 0. Therefore, ^j(O) > ^ ( 0 ) > 0, but that contradicts
(3.2), since C > 0 . D

A similar and somewhat more involved argument proves a related
fact about gap maximizers.

COROLLARY III.3. Let F b be a gap maximizer in SPfM(Ω)> 1 <
p < oo. Then for some a, b, with 0 < a < b < 1, supp(F^) = [a, b],
and supp(Kj!) = [ 0 , Λ ] U [ £ , 1 ] .

In other words, Vb consists of two barriers with a single well in
between.

Proof. As usual, we drop the superscript b . Suppose that the claim
were false. Then we may assume without loss of generality that
supp(K^) = [0, a] and supp(F_) = [a, 1] (recall Theorem II.6 (c')),
and we take ψ2 to be positive to the left of its node. From Theorem
II.6 (b ;), 0 < ^I(JC) < ψ2{x) in a small right neighborhood of 0
(where both functions are increasing), while 0 < -ψ2{x) < ψ\{x) on
a small left neighborhood of 1 (where both functions are decreasing).
Therefore, ^{(0)2 < ^ ( 0 ) 2 and ^ ' ( l ) 2 > ^ ( l ) 2 . This implies that

(3.9) C = 2 ( ^ ( 0 ) 2 - ^'(0) 2) = 2 ( ^ ( 1 ) 2 " Vί(l)2) = 0,

i.e., ^{(0) = ψ2(0). Let Xo denote the node of ψ2, and consider the
original equations on [0,

j ) - E j ) Ψ j = 0, .7 = 1 , 2 ,

with ^ ( 0 ) = ψ2(0) = 0, and ^{(0) = Ψ2(O). Observe that with
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our choice of sign, ψj(x) > 0 on (0, XQ) . Let W(x) := ψ\ψ'2 -
ψ2ψ[. Then W\x) = (E\ -E2)ψ\ψ2 < 0 on this open interval. Since
W(0) = 0, W(x)<0 on (0, jco].

Now define

f(x) = ̂ 4 4 for 0 < x < x0, and /(0) = 1.
Ψ\\X)

Because of (3.9), / e Cι[0, Xo], and since

it follows that f(x) < 1 on a right neighborhood of 0. This, however,
contradicts Theorem II.6. D

We next draw on ideas of [18] to strengthen Proposition II.2 in the
one-dimensional situation:

PROPOSITION III.4. The sets M(T^) and dSPyM{&) have a common
tangent space at V^, i.e., for P e Z/(Ω),

/ \v^\p-2\
Jo

if and only if

f
Jo

Proof. The special fact about one dimension is that the functional Γ
is Frechet differentiate for any 1 < p < oc, and for any P e Z/(Ω),

dyT(P) =

where ψ\ and ψ2 are the ground state and first excited state associated
with V [18]. The functional p defined in §11 (considered on all of
LP(Ώ)) is similarly Frechet differentiate, and

dvp(P)=p ί \V\p~2VPdx.
Joo

The set M(F*) is a level surface of the functional Γ, while the set
<9S P ? M(Ω) is a level surface of p. By Proposition II.2, V^ belongs to
both of them. Moreover, both surfaces are real analytic submanifolds
with tangent spaces at V^ given by
(3.10)

: ί
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and

(3.11) Ty*dSP9M = terdvp=<PeLp: ί \V\p~2VPdx = θ\

[18, pp. 153-154] (our convention is to shift the tangent space to the
origin in LP).

That the functional p is minimized (or maximized) at V^ means
that dv\p\τ M,p, vanishes. In other words, any P satisfying (3.10)

also satisfies (3.11), and thus belongs to TvtdSp>M Similarly, since
Γ is minimized (or maximized) at Fh we have dv*T\T dS ^ =

0. Thus any P satisfying (3.11) also satisfies (3.10) and belongs to
α

For p = 2 we can be more precise:

PROPOSITION III.5. If p = 2, then V^ is an even function, i.e.,
) = V\\-x).

Proof. We continue to follow [18]. It is shown there (p. 44, Theorem

8) that for any eigenfunction ψh of V^,

Jo ~dxψmψj ' J~ '

Therefore (dropping the superscript),

IQ ax

and by Proposition III.4, this implies that

for all m = 1, 2, . . . .
But this quantity can also be calculated as in [18, p. 74, Lemma 1],

according to which

/ V-£-
Jo ax

(3.13) / V£ψmdx = 2 \
Jo ax y1[\,tm)

where yι{x 9Em) is a multiple of ψm(x) normalized so that y'2(09Em)
= 1. The final key fact is that κm(V) = 0 for all m if and only if V
is an even function [18, p. 62, Lemma 4], so the proposition is proved
by comparing (3.12) and (3.13). D
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We conjecture that this is true for all p > 1. (The conjecture is
settled affirmatively below for p = oo by entirely different methods.)
For the remaining values of p, we can prove a weaker statement,
namely:

PROPOSITION III.6. Given a gap-optimizing potential V* e P,
for 1 < p < oo, there exists a continuous, even function V9 e L2(Ω)
such that

, and

Proof. From (2.10) we know that V^ is continuous and therefore
belongs to L 2 (Ω). We consider a submanifold Af(Γ) = {V eL2(Q):
Γ(V) = Γ(F^)} and the functional p on M{Y) defined by p{V) :=
||K||^. As before, p attains a minimum on Af(Γ), which we denote
by Vφ, and we know that Vm is even. The first inequality follows.
The second inequality holds because V^ is an optimal potential in
SP,M(Ω). a

Now we deal with the case p = oo. The reason for having to con-
sider it separately is that the functional p(V) = \\V\\QO is not Frechet
differentiate. On the other hand, some things are easier here because
gap minimizers have a particularly simple form, and were already dis-
cussed to some extent in [9]. We shall prove below that an optimal
potential in S'^ M is a symmetric square barrier of height M, by
using the Sturm comparison theorem and Sturm Separation Theorem.

THEOREM III.7. Let FB be a potential in S'^ M minimizing the

fundamental gap. Then V^ = MχBt, where

Proof. We have already shown that B is connected and B = {x :
\ψ2(x)\ < Ψi(x)} - What is left to show is that B is symmetric.

Suppose that the barrier B were not symmetric. For convenience
we shift the interval from [0,1] so that the node of ψ2 is at 0,
and denote the shifted interval [~c<, c>]. Let -α< denote the left
end of the barrier and ά> the right end. We assume without loss of
generality that a< <a>.

Write U(x) := V(c>-c<-x) and φ2(x) := ψ2(c>-c<-x). Note
that ψ2 has a node at 0, while φι has a node at cy - c< . Using the
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Sturm Comparison Theorem we conclude that

cκ - aκ > c > - α > , c < < c > , and α < < α > .

There are now two possibilities to consider:
(1) c > - α > = 0, i.e., the barrier stretches on the right all the way

to the end of the interval; and
(2) c>-a>>0.

The first possibility will be eliminated by showing that such a potential
cannot minimize the gap. Suppose that indeed c > - a> = 0. Then we
observe that:

(a) Eι > M for ψι must have a node somewhere in the interior of
B* and

(b) E\> M as well: Otherwise ψ\{x) = ύvάι{y/M - E\(c> -x)) in
the barrier (up to a constant), and would thus be a decreasing function.
Hence

Ψ\{a<) < Ψι(-a<) = \ψ2(-a<)\ = \ψ2(a<)\9

where the latter equality arises from the reflection symmetry of \ψ2\
about 0. Since α < e B, this leads to a contradiction.

(c) Therefore ψ\ (x) must have a single maximum occurring at some
point on m. By comparing Prufer angles for ψ\ (x) and its reflection
φ(x) := ^ r

1(c> - c < - x) on the interval [-c < , c>] with both angles
initialized to 0 at x = -cκ, we see that m lies closer to - c < than
to c > . It must also lie within the barrier, for otherwise ψ\(x) would
be decreasing in B and that would lead to the same contradiction as
in (b). Finally, m > 0, since if m < 0, then by symmetry

which is impossible.
(d) Consider the interval [-c < , m]. On this interval we can de-

crease E2 if necessary until the node of ψι coincides with m. Then
we reflect symmetrically about m. This new problem has a smaller
fundamental gap and a smaller interval length. If we scale the length
back to 1, we decrease the gap even further, while also decreasing the
|| K||oo . This produces a symmetric potential that has both a smaller
L°°-norm and a smaller fundamental gap than the given potential.
Therefore, a potential that stretches all the way to the end of the in-
terval in one direction cannot minimize Γ.

The only remaining possibility is that c > - α > > 0. In this case
either ^ i ( - α < ) < ^i(α > ) or ψ\{-aκ) > ^ r i (α > ) . Note that we
can write down the wave functions ψj(x)9 j = 1, 2, explicitly. If
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M - Ej < 0, then ψj(x) is a trigonometric function (sin or cos) in
the barrier, while if M - Ej> 0, then ψj{x) is a hyperbolic function
(sinh or cosh), and, finally, if Ej = M, then ψj is a linear function.
Combining this with the fact that ψ\(x) > \ψ2(x)\ i n the barrier, with
equality only at —aκ and α > , we notice that the second possibility,

a**) > ψiia?) can occur only if E2 > E\ > M.
Now suppose ψ\{—aκ) < ψxia?). Let

v{(x) ;= ψx (x + #>) and

Then

> ) = v2(-a< -a>);

- a>) = 0 < v2(c< - aκ).

Therefore the function w(x) := ^i(x) - v2(x) solves the differential
equation

on the interval [-α< - α > , (:> - a>] and vanishes at least twice there
(in fact, w(-(a<+a>)/2) = 0 and w vanishes again on [0, c>-a>]).
On the other hand, v\(x) is another solution of this equation in the
same interval, linearly independent from w(x) and nonvanishing in
the interior. This contradicts the Sturm Separation Theorem. (The
general fact here is that two independent solutions to a linear, homo-
geneous, second-order ordinary differential equation can cross at most
once on any node-free interval.)

If the second possibility arises, i.e., ^ i ( - α < ) > ψ\(a>), then, as
already observed, E2 > E\ > M. The part of the proof above used
to rule out cy - a? = 0 can be repeated word for word to show that
such a potential cannot be a gap minimizer. This finally covers all the
cases and proves the theorem. α

IV. Conclusions. The main goal of showing that optimally small
gaps can be attributed to tunneling through barriers, as in double-
well problems, has been attained with varying degrees of analytical
success, depending on the geometry and the nature of the constraints
imposed, by Theorems II.3-Π.6, III. 1 and III.7, characterizing the gap-
optimizing potentials. These theorems appear sufficiently definitive to
allow numerical estimates of Γ in many cases in one and two di-
mensions. The one-dimensional cases are straightforward, especially
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Sptoo9 which is amenable to several numerical methods, including one
that uses a dimension-independent algorithm: The basis of the algo-
rithm is to regard the optimizers as fixed points of a mapping on SPiM
or S'PiOO:

V-^EU2 and ψu2,

followed by

E\ 2 a n d ψ\ 9 2 —> V.

Theorems Π.3-Π.6, III. 1, III.7 provide useful formulae for the latter
step, while for the former one can discretize the eigenvalue equation
and call upon standard matrix solving packages. While we have no
proof that the fixed point or points are attractive, preliminary numer-
ical work on rectangular domains [10] seems to indicate that iteration
of the mapping is convergent to a plausible optimizer. For large M,
numerical instabilities arise because of the exponential smallness of
the gap and the values of the eigenfunctions in the barrier, but, at
least in one dimension, this can be compensated for by asymptotic
analysis (cf. the asymptotics for S'poo as M —• oo in [9]).
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