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AN INDEPENDENCE PROPERTY
OF CENTRAL POLYNOMIALS

CHEN-LIAN CHUANG

Let @, be the ring of 7 x n matrices over a commutative field ®.

Let fi(x1,...,Xm) and g(»1,...,¥m) (i =1,...,k) be poly-
nomials with coefficients in ® and with noncommuting indetermi-
nates in the disjoint sets {x;, ..., x»} and {y1, ..., Ym}. Assume
that fi(xi, ..., Xm), ..., fi(x1, ..., Xm) are ®-independent mod-
ulo the T-ideal of polynomial identities of @, . Consider the follow-
ing two statements: (1) whenever Zﬁ;, Jis s Xm)&W1s oov s Ym)
is central on ®,, then sois each g;(y1,...,ym) (i=1,...,k);
(2) whenever Ef;, filx1, oo s Xm)& W1, ..., Ym) is a polynomial
identity for ®,, then so is each g(y1,...,ym) (i=1,..., k).

It is shown here that statement (2) is always true and that statement
(1) holds but for the exceptional case: » = 2 and ® is the ring of
integers modulo 2.

I. Results. Throughout, ® always denotes a (commutative) field
and, for n > 1, ®, denotes the ring consisting of all »n x n matrices
over ®. Let Z be an infinite set of noncommuting indeterminates
and let ®{Z} be the free P-algebra generated by the set Z . By a poly-
nomial, in noncommuting indeterminates in the set Z and with its
coefficients in the field ®, we mean an element of the free ®-algebra
®{Z}. A polynomial f(zy,..., z,) € ®{Z} is said to be a polyno-
mial identity of ®, if forany a;,...,a,€®,, fla;,...,an)=0.
A polynomial f(zy,..., z,) € ®{Z} is said to be central on ®,,
if for any ay,...,an € ®,, f(a;, ..., an) is always in the center
of ®,. We let %, denote the set of all polynomial identities of ®,.
Then %, isa T-ideal in ®{Z}.

As we will consider polynomials in indeterminates in two disjoint
sets, we make this notion precise as follows: Let X and Y be two
disjoint sets of noncommuting indeterminates. Polynomials in ®{X}
and polynomials in ®{Y'} are said to be in noncommuting indetermi-
nates in the disjoint sets X and Y respectively. Set Z = XUY . The
free ®-algebras ®{X} and ®{Y} can be regarded as ®-subalgebras
of ®{Z} in a natural way. Hence the products and sums of elements
in ®{X} UP{Y} can be taken in ®{Z}.
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Assume that @ is an infinite field. Let f(x{,..., x»n) and
g1, ..., ym) be two polynomials in noncommuting indeterminates
in the two disjoint sets {x;, ..., x»,} and {y1, ..., Ym} respectively.
It is proved in [2] by Regev that, if f(x;, ..., Xm)&(V1s ..., Ym) is
central on ®,, then both f(x;,...,x,) and g(y;, ..., Ym) must
be also central. Our primary objective here is to prove the following
natural generalization

THEOREM. Let @, be the ring of n x n matrices over a field ®
and let %, be the T-ideal of polynomial identities of ®,. For i =
sk, let fi(xy,...,xm) and g;(yy, ..., Ym) bepolynomials with
their coefficients in ® and in noncommuting indeterminates in the dis-
joint sets {xy,...,Xm} and {y1, ..., Ym} respectively. Assume that
the polynomial Eé‘zl filx1, oo Xm)&W1>s ..., Ym) is central on ®,,.
Then, except only when k > 2, n =2 and ® is the Galois field with
only two elements, the following hold.

() If filx1,...,Xm), i =1,...,k, are ®-independent modulo
S, thenall gi(y1,...,¥m), i=1,..., k, must be central on ®,.

2)If gWiy.e.sVm), i =1,...,k, are ®-independent modulo
S, then all fi(xy, ..., xm), i=1,..., k, must be central on ®,.

(3) If both the sets {fi(x1,...,Xm): i = 1,...,k} and
{g(y1, ..., ym):i=1,..., k} are ®-independent modulo .%,, then
all fi(x1, ..., xXm) and g(y1, ... ,Ym), i =1,..., k, must be cen-
tral on ®,.

Unlike the result of [2], our field ® need not be infinite. The only
exception in our theorem is the ring of 2 x 2 matrices over GF(2),
the integers modulo 2, and even in this exceptional ring, our theo-
rem above still holds when k = 1. Thus, the special instance of our
theorem above when k = 1 already generalizes the result of [2] by
removing the assumption that ® is infinite.

An interesting immediate consequence is the following

COROLLARY. Let ®,, %, fi(X1,...,Xm) and gi(Y1s .. s VYm),
I = 1 , k, be as explained in the theorem above. Assume that
Z, i xl, ey Xm)&W1s oo, Ym) € S . Then, without any excep—
tionon k, n and ®, the following hold always:

() If fi(x1s...,Xm), i =1,...,k, are ®-independent modulo
Sy, then gi(¥Vi, ..., Vm) €% forall i=1,...,k.

) If gW1s--sVm), i =1,...,k, are ®-independent modulo

o then filyi, ..., ym) €5 forall i=1,...,k.
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It is interesting to observe that, in the notation of the corollary

above, if both the sets {fi(x;,...,xm): i = 1,...,k} and
{gW1s...,Yym):i=1,..., k} are ®-independent modulo .%,, then
the polynomial Eﬁ;l filxts ..., Xm)&(V1, ..., Ym) can never be an

identity of ®,,.
Before proceeding to the proofs, let us give an example showing that
the exceptional case of our theorem above really happens:

ExAMPLE. Let @ the Galois field with only two elements 0 and
1. Let A be a new indeterminate intended to range over ®,. The
possible minimum polynomials for elements in ®, are A, A -1,
A=A, A2, (A-=1)2 and A2+ A+ 1. Let h(A) = A2(A —1)2. If the
minimum polynomial of ae ®, is 4, A—1, 22—4, A2 or (A—1)2,
then A(a) = 0. If the minimum polynomial of a € ® is A2+ 1 +1,
then, since A(L) = (A2+4+1)2+1, we have h(a) = 1. Hence A(A) is
a central polynomial of ®, and, for a € ®,, h(a) =1 when and only
when the minimum polynomial of a is A2+ A+ 1. It is also easy to
see that there are only two elements whose minimum polynomials are
A2+ A+ 1, namely, a; = (1)) and ay =1+a; = (91). Let x, y
be two distinct indeterminates. Set fi(x) = xh(x), f2(x) = (fi(x))?,
81(y) = yh(y) and g (y) = (81(y))?. Observe that, for a € @,,

L a, ifa=a ora=a,,
ah(a) = { 0, otherwise.
Thus none of fi(x), fo(x), &1 (y), &(») can be central on ®,. Also
if a=a; orif a =a,, then fi(a) = g;(a) =a and f,(a) = g(a) =
a?. Since a and a? are ®-independent, both the sets {f;(x), f2(x)}
and {g;(y), &2(¥)} are P-independent modulo .%5. We show that
the polynomial f)(x)g;(¥) + f2(x)g2(y) is central. If a # a;, a; or
if b+#ay, ay, then fi(a) = fr(a) =0 or g(b) = g(b) = 0 respec-
tively and hence fi(a)g;(d) + fr(a)g(b) = 0. If a = b = a,, then
fi(a)gi(a) + fr(b)g2(b) = a? + a} = (a1 + a?)? = 12 = 1. Similarly,
if a=0b=ay, then fi(a)g(a) + f2(b)g2(b) = a3 + a5 =1 also. If
a=a; and b =a,, then fi(a)g(b) + f2(a)g:(b) = aja, + a?a3 =0.
Similarly, if @ = a; and b = qa;, then fi(a)g:(b) + f2(a)g:(b) =0
also. Thus we have constructed a counterexample for £k = 2. For
k > 2, we pick new indeterminates X3, ..., Xx, ¥3, ..., Vk, SO that
they are distinct from each other and also distinct from x,y. Set
fi(xi) = h(x;) and g;(y;) = h(y;) for i = 3,...,k. Since all
fi(x;) and gi(y;) (i = 3,..., k) thus defined are central on @,
and since fi(x)g1(¥) + f2(x)g2(y) has been already shown to be cen-

tral on @,, so must be f,(x)g1(¥) + (X)) + T filx) &) -



240 CHEN-LIAN CHUANG

Since fi(x;) (i = 3,..., k) involve indeterminates distinct from
each other and also from x, y, fi(x;) (i =3,..., k) must be ®-
independent from each other and also from f;(x), f>(x) modulo .%.
So fi(x), fo(x), f3(x3), ..., fi(xx) are ®P-independent modulo % .
Similarly, g(y), &), &3(»3), ..., &(¥x) are also ®-independent
modulo % . We have constructed the desired example for any £ > 2.

I1. Proofs. As our results are trivial when »n = 1, we assume through-
out that n > 1. We will let ¢;; € ®, denote the n x n matrix unit
with 1 in its (7, j)-entry and O elsewhere. Our argument is based on
the following two simple facts:

Fact 1. Assume that n > 2 or ® contains more than two elements.
If a € &, is not central, then there exist finitely many invertible
elements u;, ..., u; such that e;; = Y5_; uau;!.

Proof. Let A be the additive subgroup generated by all conjugates
of a. Then the set 4 is obviously invariant under conjugations by
invertible elements of ®, and A4 is also noncentral since a € 4 is
noncentral. Since [®,, ®,] is the only proper (noncentral) Lie ideal
of ®,, A must contain [®,, ®,] by Theorem 1 [1] and Theorem
2 [1] together. But e;; = ejzey — exer € [@,, D] C 4. So there

exist finitely many invertible elements u;, ..., u; € ®, such that

R e\ -1
€12 =) i Wau; .

For a € ®,, the centralizer of a, denoted by C(a), is defined to
be the set {x € ®,: ax = xa}. For simplicity of notation, we denote
the center of @, by ®.

Fact 2. Assume that n > 2 or @ contains more than two elements.
If a € ®, is such that uau~! —a € ® for all invertible elements
ue C(epy), then a =a+ feyy for some a, f€d.

Proof. Let a = 3¢ ,_j asess € P, be such that, for all invertible
elements u € C(eyy), uau™! —a € ®, that is, ua — au = yu for
some y € ®. First, consider the case n > 3. For j > 2, since
e;; € Cley) and (ej;)> = 0, 1+ ey, is an invertible element in
C(e12). So ejja—ae ;= (1+ejj)a—a(l+e;) =y(1+e;) for some
y € @. Since both e;;a and ae;; are of rank at most one, e;;a—ae;;
is of rank at most two and hence cannot be invertible in ®, (n > 3).
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So ejja — ae;j = 0. By direct computation,

n n
elja - aelj = Zaﬂelt - Zaslesj = 0.
t=1 s=1

By comparing the coefficients of both sides, we have aj; = a;; and
a;; =0 forall ¢ # j. Now, consider e;;, where i # 2. As before,
we have 0 = ejpa —aep = > 7| axyei — o asi€s» and hence, by
comparing the coefficients, a;; = 0 for all s # i. In particular, a;; =
0 for all i > 3. Combining all these together, we have a = a + fe,
where aA=01] =0 =" "=y and ﬂ=a12.

Now consider the case n = 2. By our assumption, ® contains
an element, say J, other than 0 and 1. Since both 1+ e;; and
0 + ejp are invertible elements in C(e;;), we have ejpa — ae;p =
(1+e3)a—a(l +e3) =7y(1+ep;) for some y € @, and similarly,
enna —aepy = (0 +epp)a—a(d+ep) = Y (0 + e for some Y €
®. Hence y(1 + ey3) = ejpa — aeyy = y'(0 + e12). This can happen
only when y = 9’ = 0, since 1+ e, and J + e;, are obviously ®-
independent. Now, as before, let

2
o (67
a= Y auen= (21 22).

s, t=1

Then

(6] a -
eppa —aeypp = < 61 22_a21”) =0.

So a1 =0 and a;; = ay;. Thatis, a = a + Be;, where a = a;; =
[e%)) and ﬂ =Qa12.
For brevity, we introduce the following definition:
DEFINITION. For ay,...,ax, by, ..., by € ®,, we write
<ala cee ak)*<bla cees bk) €

if the following condition (x) is satisfied:

k
(*) > (uau")(wbv~') e d
i=1
for any invertible elements u, v € ®,,.

By conjugation (x) by u~!, we have Y5 a;(u~'v)b;(u~lv)"! €
®. Since u~lv also ranges over all invertible elements of ®,, (*) is
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equivalent to:
k
(%)’ > a;(vbjv™') € @ for all invertible elements v € ®,.
i=1
Symmetrically, () is also equivalent to
k
(x)" Z(uaiu“)bl- € @ for all invertible elements u € ®,.
i=1

In the following fact, we collect some simple properties about the
condition (*), which will be needed in the sequel:

Fact 3. Assume that a;, ..., a, by,..., b, by, ..., b, €Dy,

(1) If both (ay,...,ar) *(by,...,b) € ® and (ay,..., ay) *
(by,..., b)) €@, then (ay, ..., a ) x(b1+b],..., b +b,)€D.

(2) If (ay,...,ax) x (by,...,b;) € ®, then {(aj,...,a) *
(vbjv=1, ..., vbv~!) € ® for any invertible element v € @, .

(3)If (a1, ..., ) * (b, ..., b) €® and by = Y%7 B;b;, where
Bie® (i=1,...,k-1),then (a; + frax, ar+ Prar, ..., ax_1 +
Bi—1ax) * (b1, by, ..., br_1) €D.

Proof. Immediate.

Our Fact 3 above is concerned about variations of (by, ..., b;) in
the condition (x). The corresponding properties concerning about
variations of (a;, ..., a;) in the condition (x) can be formulated

and proved similarly.
We start the proof of our main theorem with the following:

LEMMA 1. Assume that n # 2 or the field ® contains more than two
elements. Let by, ..., by € , be P-independent. For ay, ..., a; €
o, if(al, ceesy ak)*(bl, ceey bk) € ®, then ay, ..., ag e€P.

Proof. If n = 1, then all elements of ®, are central and Lemma
1 holds trivially. So let n > 2. Assume on the contrary that Lemma
1 is false. Let k£ be the minimal integer such that the assertion
of Lemma 1 fails. First, assume that kK = 1. Write ¢ = a; and
b = b, for brevity. By our assumption, a is not central and, since
ab € @, b cannot be central either. By Fact 1, there exist invertible el-
ements #y, ..., Us, Uy, ..., v € P, such that e;; =37, u,-alui‘1 =
Yo vibivyt. By Fact 3, (X5, wiau;')+ (¥4, v;bv;!) € ®. So we
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have (e;) * (e12) € . Let

01 O 0

. 10 0 0
’U=€12+€21+Z€J‘j= 0 0 1
j>2 S N

00 ... 01

Then v is an invertible element of ®, and ve;,v~! = e5;. Since
(e12) * (e12) € @, we have e = ejze5; = e2(vepv~!) € @, a contra-
diction.

Now, assume k > 2. By reindexing a;, b; (i=1, ..., k) if nec-
essary, we may assume that a; is not central. By Fact 1, there exist
invertible elements v, ..., vs € ®, such that e;; = Zj-=l 'ujak’vj‘1 .
By Fact 3, (Zj_,vja1v;', ..., Sjo vj@v; ') * (by, ..., by) € @.
Replacing each ay, ..., @ by Y5, 'Ujal’Uj—l, s X 'Ujak'Uj—l re-
spectively, we may assume that a; = e;; to start with. Let u be
an invertible element of C(e;,). By Fact 3, (uaju™!, ..., uggu=!) *
(bi, ..., b) € ® and hence also (uaju™' —ay, ..., uqu™' — a;)
(by,...,b) € ®. Since uau~! —a;p = 0, we have (ua;u=! —
ap, ..., uag_u~ ' —ag_y) * (by, ..., by_;) € ®. By the minimal-
ity of k, uaqu™' —ay, ..., uap_u~! — ax_, are all central. Since
this holds for any invertible elements u € C(e;;), and since n > 2 or
Iq)l > 2,byFact 2, a; = a; + fie12, .-, p—1 = 0)_1 + Br_1€12 for
SOme aj, ..., -1 P1s--- Pr—1 € P. By (3) of Fact 3, (1, e;3) *
(a1by + - + ag_1bg—1, B1br + -+ + Br—1bk_1 + by) € @. Set b =
aiby + -+ ap_1br_; and bé = B1by + -+ + Br_1bx_1 + br. Then
(1, epz) * (b}, by) € ®. Since by, ..., by are assumed to be P-
independent, b} is ®-independent of b and, in particular, must
be nonzero. Let v be an arbitrary invertible element of ®,. By
Fact 3 again, (v(1)v™! — 1, vejv~! — ey3) % (b}, b)) € ®, that is,
(vejv~! — ey3) * (b}) € ®. By our result for the case k = 1 in the
previous paragraph, ve;,v~! —e;; € ®. Nowlet v =1+ e5;. Then
v™1 = 1—e;,. We compute vej,v~—ejn = (1+e31)en(1—e3)—epn =
—eq1 — e31 + ey, . But, obviously, —e;; — ep; + €33 cannot be central,
a contradiction. This completes our proof of Lemma 1.

LEMMA 2. Assume that n # 2 or ® contains more than two el-
ements. Let fi(Xi,...,Xm)s oes Ju(X15 .0y Xm) € D{xy, ..., Xm}
be ®-independent modulo #,. For any by,...,b, € ®@p, if
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Eﬁ‘:l filx1, ..., Xm)b; € ® for any assignment of values in ®, to
X1s.evsXm, then by, ..., by €®.

Proof. For any invertible element u € @, and for any assignment
of values in®, to x;, ..., Xm, we have, by our assumption, that

k k
Z(uf,-(xl s e Xmu Db = Zfi(uxlu‘l yoess Uxmu Db € @,

i=1 i=1

Hence, for any assignment of values in &, to x;, ..., X, we have
([iX1s eee s Xm) s ovvs Jt(X1s oee s Xm)) % (b1, ..., bg) €D.

First assume that by, ..., by are ®-independent modulo P, in
the sense that for any By, ..., fx € ®, B1b1 + - + Prbr € @ im-
plies gy = .- = B = 0, ie., {1, by, ..., b} are linearly inde-
pendent. Then, by Lemma 1, for any assignment of values in P,
t0 X1, eee s Xms S1(X1seees Xm)seens f(X15.or, Xm) € @ and, by
our assumption on the P-independence of by, ..., by modulo @,
filxr, ooy Xm) = - = fi(x1,...,Xm) = 0. This is a contradic-
tion to the ®-independence of fi(X1, ..., Xm), .--» fut(X15-er s Xm)
modulo .%,. Thus {1, b, ..., b;} are linearly dependent. By rein-
dexing by, ..., by if necessary, we may assume that {1, by, ..., bs},
where 0 < s < k, forms a ®-basis of the ®-subspace spanned by
{1,by,...,b}. For j=s+1,..., k,write b; = Y5_, BB, +y1),
where, for i=1,...,s, ﬂf’), yU) € ®. Hence

fl(xl, ...,xm)b1+---+fk(x1,...,xm)bk

k .
= (fl(xl’-"axm)'l' Z .f}'(xl,”-axm)ﬂfj)) bl+"'

Jj=s+1

k o
+ (fs(xl, s Xm) Y filx, ...,x,,,)/}é”) by

J=s+1

k
+ ( > filxr, .., xm)y(f)) 1.

Jj=s+1

By Lemma 1 again, for any assignment of values in ®, to x;, ey
Xm, the matrices fi(xy,...,XxXm) + E§=s+l fitx1, ..., xm),Bl.(’),
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(i=1,...,s), as well as the matrix Z§=s+l fi(X1s oe s Xm)pW), are
all central in ®, and, since 1, b;, ..., b; are assumed to be P-
independent modulo ®, we have

k .
Silxts ooy Xm) + E fi(xy, ...,xm)ﬁf’)=0,

j=s+1

k .
f;(xl"“ ,xm)+ Z ﬁ(xl,...,xm)ﬂéj)zo,

Jj=s+1

But this contradicts with the ®-independence of f;(xi, ..., Xn),

s Jiu(X1, ..., X;m) modulo % . Hence s must be 0 and the unit 1
spans the ®d-subspace spanned by {1, b;, ..., b;}. This is equivalent
to the fact that by, ..., b, € ®, as desired.

As with Lemma 1, there is also a symmetrical version of Lemma 2,
which can be formulated and proved analogously.

Our last lemma treats the special case when n =2 and ® contains
only two elements.

LEMMA 3. Let ® = {0, 1} be the ring of integers modulo 2.
(1) For a, b € ®)\{0}, if (a) x(b) € D, then a,bec®.

(2) Let fi(X1, cev s Xm)sevoes Ji(X1s eees Xm) €EP{X1, ..., Xm} be
®-independent modulo % . For by, ..., by € ®,, if

k

Z (X1, ..., Xm)bi =0
forall xi, ..., xym € ®,, then by =---=b, =0.

Proof. (1) Let us determine the conjugacy classes of ®,. Two ele-
ments in @, are similar if and only if they have the same minimum
polynomials. The possible minimum polynomials in ®, are 4, A+1,
A2, 22+1, 2244, A2+ i1+ 1. For a polynomial ¢(4), in the in-
determinate A and with coefficients in @, let B(¢(4)) denote the
set consisting of all elements in ®, whose minimum polynomials are
#(A) and also let A(¢(4)) denote the additive subgroup generated by
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B(¢(4)) . By direct computation, we have the following list of all pos-
sible B(¢(4)) and A(p(A)):

B(4) = {0},
B(A+1)={1},

5={(0 0)- (1 6)- (i 1))
sien=1(01) (1 7). (1 o)}
2+9={(5 ) (0 o) (1 0) (o 1)

(1) 9)}
B(,12+/1+1)={(} é)(? i)}
A(4) = {0},
A +1) =10, 13,

an={(§ 9).(8 )2 9)-( 1)-(24)
(067060
wen={(§ ). )-( - (0 )

A(A% +2) = D,
aeien={(59). (1 5). (0 1) (5 9))-

For x, y € ®,,if (x)*(y) € ®, and if one of x, y is central, then the
other must also be central. So let us assume, towards a contradiction,
that neither of a and b is central. Since (a)* (b) € @, (a') x(b') € D
for any &' in the additive subgroup generated by the conjugates of a
and for any b’ in the additive subgroup generated by the conjugates
of b. Observe that in the above list of A(¢(4)), all but 4A(A) and
A(A? + 1) contain the identity 1. If the minimum polynomial of b
is not A2+ 1, then {(a) * (1) € ® and hence a must be central, a
contradiction. So the minimum polynomial of b is A2+ 1. Similarly,
the minimum polynomial of a is also A2+ 1. But then (@) * (b') € ®
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for any a’, b' € A(A? +1). This is absurd: For instance,

10 0 1 )
(1 0). (0 Deastsn b

1 0\ /0 1 01
() 0)=(01)¢e
This contradiction completes our proof of (1).
(2) Suppose not. Let k > 1 be the minimal integer such that the

assertion of (2) of this lemma fails. By (1) of this lemma, k > 2. We
divide the argument, into three cases.

Casel. Forsome i=1, ..., k, b; = 1: By reindexing if necessary,
we may assume b; = 1. For any invertible element u € ®,, we have

k
Y Sy, s Xm)(ubiu™t — by)
i=2

k
=u ( filu xu, ..., u‘lxmu)bi) u!
—

l

=Y filxt, s Xm)b
i=1
=0.

By the minimality of k, ubju~!=b; (i=2,..., k). Hence, for any
invertible element u € ®,, ub; = bju (i =2,...,k). By a direct
computation, b,, ..., by must be all central. This contradicts with
the ®-independence of fi(x1, ..., Xm), ..., f(X1, ..., Xm) modulo
5.

Case 2. The minimum polynomial of some b; (i=1,..., k) isnot

A%+ 1: By reindexing if necessary, we may assume that the minimum
polynomial ¢(4) of b, is not A2+1. By the list of all possible 4(¢(4))
in the proof of (1), 1 € A(¢(4)). So there exist invertible elements

Ui, ..., Us € ®y suchthat 335_, u;bju;' = 1. Set b = 35_ u;bu;!
for i=1,..., k. Then we have Ei-;lf,-(xl, ver s Xm)b; =0 for any
assignment of values in ®, to x;, ..., x,». But b =1 and, by Case

1, this is impossible.
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Case 3. The minimum polynomial of each b; (i = 1,...,k) is
A2+ 1: Without loss of generality, we may assume b; = (}!). Smce
b; is invertible, we have

k
Y filxis oo, Xm)(bibib]! - by)
i=2

k
(Zf,b Yibyy .., by xmb,)b)b—

1

—

Zﬁ xl,---,xm)bi

i=1

=0.

By the minimality of k, byb;b;' = b;, that is, byb; = b;b. Since
b; € B(A* + 1) and the only element in B(4% + 1) which commutes

with by = ({]) is by itself, we have by = b, = --- = b;. Hence
(Eé‘:lfi(xl, cees Xm))by = 0 for any Xx;,...,Xx, € ®. By (1) of
this lemma, Ef?:lf,-(xl, vees Xm) = 0 for any x;,...,xn € ®;.
This contradicts with the ®-independence of fi(x1, ..., Xm), ...,
fe(x1, ..., Xm) modulo % and completes our proof.

Proof of Theorem. Observe that (3) follows from (1) and (2). As
(1) and (2) can be proved analogously, we give here only the proof of
(1): If n # 2 or the field ® contains more then two elements, then
our theorem follows immediately from Lemma 2. If n =2 and ®
contains only two elements 0 and 1, then, according to the hypothesis
of our theorem, k must be one and the assertion of our theorem
follows immediately from (1) of Lemma 3.

Proof of Corollary. If n # 2 or ® contains more than two elements,
then our corollary follows immediately from our theorem. If n = 2
and @ contains only two elements 0 and 1, then our corollary follows
immediately from (2) of Lemma 3.
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