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EQUIVARIANT NIELSEN FIXED POINT THEORY
FOR G-MAPS

PETER WONG

Let / : V -^ X be a G-map defined on an open invariant subset V
of a ΰ-ENR X where G is a compact Lie group and the G-actionon
V is not necessarily free. In this paper, we introduce the notion of an
equivariant Nielsen number NQ{/, V) which is an ordered /c-tuple
that depends on the isotropy types (H\), . . . , (Hk) of V. When
G is finite, iVg(/, V) gives a lower bound for the minimal number
of fixed points in the (restricted) G-homotopy class of / and this
lower bound is sharp when the G-action on V is free. We relate
Ng(f, V) to a local equivariant obstruction to G-deforming a map
to be fixed point free and we discuss the relationship between the
equivariant Nielsen number and the ordinary Nielsen number.

1. Preliminaries. Let G be a topological group and X be a (left) G-
space. For any subgroup H of G, we denote by NH the normalizer
of H in G and by WH = NH/H, the Weyl group of H in G.
The conjugacy class of H denoted by (if) is called the orbit type
of H. If x G X, then Gx denotes the isotropy subgroup of x, i.e.,
Gx = {g e G\gx = JC}. For each subgroup H of G, XH = {x e
X\hx = x for all h e H} and XH = {x e X\GX = H}. An orbit
type (H) is called an isotropy type of X if H appears as an isotropy
subgroup of some x in I . Suppose X has a finite set of isotropy
types denoted by {(Hi)}. If (Hj) is subconjugate to (Hi), we write
(Hj) < (H{). We can choose an admissible ordering on {(Hj)} so that
(Hj) < (Hi) implies i < j . Then we have a filtration of G-subspaces
XιC'-cXk = X where Xt = {x e X\(GX) = (Hj) for some j < /}.
Also, X ( / / ) = GXi/ = Xi - Xi-ι with (iί) = (Hi). By a free G-subset
of X, we mean a (/-invariant subset on which the action is free.

Let G be a compact Lie group. A G-space X is a G-absolute
neighborhood retract (C7-ANR), if Λf is a metric space and for any
G-embedding h: X -> Y is a metric G-space Γ such that h(X) is
closed in Y, the image /z(X) is a G-retract of some open invariant
neighborhood in Y. If X is a G-ANR then XH is an ANR for
every closed subgroup H < G. Moreover, if 7 is a G-ANR and
/ : X -> Γ is a G-equivalence then / * = / |JΓ^: X ^ ~> 7 ^ is a
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homotopy equivalence for every closed H < G. A G-space X is a
G-euclidean neighborhood retract (G-ENR) if X can be G-embedded
as a G-retract of a G-neighborhood in some Euclidean G-space V.

Let X be a finite dimensional separable metric G-space. Then X
is a G-ENR if and only if X is locally compact, has a finite number
of isotropy types, and for every isotropy subgroup H < G, the fixed
point set XH is an ENR. If X is a G-ENR then X[H) is a G-ENR
for every closed H < G and the orbit space X/G is an ENR (see
[tD]).

Given any admissible ordering (#1), . . . , (Hk) of isotropy types
of a G-space X, we obtain the associated filtration X\ c c X^.
Then any G-map / : X —• X preserves the filtration, i.e., /(X/) C X/.
Also, the inclusion ΛΓ, _i <-• Λf, is a G-cofibration.

Let G be a finite group and K a G-(simplicial) complex (see
[B]). K/G is a simplicial complex such that the orbit map p: \K\ —•
|A |̂/G « |i^/G| is simplicial and p maps each simplex of \K\ home-
omorphically onto the corresponding image simplex of \K/G\9 where
\X\ denotes the underlying space of X. Any G-complex is a G-ENR.
We will not distinguish K as a simplicial complex and K as the un-
derlying space.

In §2, we define G-compactly fixed maps. We show that every self
G-map of a compact G-ENR can be G-deformed to a G-compactly
fixed map. In §3, we first define an equivariant Nielsen relation on
the fixed point set Fix fa of fa = f\ VH : VH —• XH for each isotropy
type (H) of V. We obtain a MW-Nielsen number nwn{fa> % )
which is a lower bound for the number of orbits of fixed points of
fa. Then the equivariant Nielsen number Nfc(f9 V) of / is the tu-
ple {nwπifa 9 VH)} and it is invariant under G-compactly fixed ho-
motopy. We give a local version and hence an equivariant analog of
the Hopf construction in §4. We prove in §5 a minimality theorem
for a certain class of G-spaces satisfying the equivariant Shi condition
when the action on V is free. The basic technique here is an equivari-
ant version of the "Wecken Trick" (see [Br]) of coalescing fixed points
of the same class. We relate in §6 the equivariant Nielsen number
to a local equivariant obstruction to G-deforming a map to be fixed
point free. In §7, we define another equivariant Nielsen type invariant
Ng(f) which enjoys the usual properties of the ordinary Nielsen num-
ber. Finally, in §8, we give an example in which / is G-deformable to
be fixed point free but not G-compactly fixed deformable to be fixed
point free.
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suggestions.

2. G-compactly fixed maps. Throughout this section, G will denote
a compact Lie group.

2.1. DEFINITION. Let J b e a space and F c l b e a n open subset.
A map / : V —• X is called compactly fixed if the fixed point set
Fix/ = {x 6 V\f(x) = x} is compact in V. If, in addition, X
is a G-space, V is invariant and / is a G-map then we call / a
compactly fixed G-map. A compactly fixed G-homotopy is a G-map
F : F x / - > I (the G-action on the unit interval / is trivial) such
that \Jt Fix Ft is compact in V.

2.2. DEFINITION. Let V be an open invariant subset of a G-space
X such that V has a finite number of isotropy types. A G-map
/ : V -+ X is called a G-compactly fixed map if for each isotropy type
(if) of V, /H — Ϊ\VH'' VH —• ^ ^ is compactly fixed. A G-compactly
fixedhomotopy is a G-map i 7 : Vxl -+X such that Ur Fix(i7 |P^x{ί})
is compact in % for each if.

2.3. REMARK. Any G-compactly fixed map is a compactly fixed
G-map but not the converse. For example, take G to be a finite group
and V = X, a compact semi-free G-space. Then the identity map \χ
is a compactly fixed G-map but not a G-compactly fixed map.

2.4. PROPOSITION. Let Y be a G-ENR and X be a G-space. If
ho, h\\ X —• Y are G-maps and A c X is a closed invariant subset
such that h$\A = H\\A, then there exist an invariant neighborhood W
of A in X and a G-homotopy Γ: Wxl -* Y such that ΓQ = ho, T\ =
hi and Γt\A = ho\A for all t e l .

Proof. Let r: U -• /(y) be a G-retraction of an invariant neighbor-
hood of i(Y) in some euclidean G-space, where / is a G-imbedding.
Let W be the set of points gx, g e G such that the line segment
from i(ho(x)) to i{hx\x)) lies inside U. Define Γ: W x I-> Y by

Γ(x, t) = r[(l - /)ί(*o(*)) + «(Λi(*))]• π

2.5. PROPOSITION. Let X and Y be G-ENRs, AcX be a closed

invariant neighborhood retract, and f: X —• Y be a G-map. Then

there is an invariant neighborhood U of A in X and a G-homotopy
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(relative to A) from f to a map f such that f\U = f\A o r where
r: U -+ A is a G-retraction.

Proof. Let r: V —> A be a G-retraction of an invariant neighbor-
hood V of A. By 2.4, there exist an invariant neighborhood W of
A and a G-homotopy Γ (relative to A) such that Γo = / and T\ =
for\W. Choose invariant neighborhoods U cU cW oϊ A where U
is closed. Let p: V —• / be an invariant function such that /?|C7 = 1
and p\V- W = 0. Define

v ' ; I Γ(JC,/>(*)/), x e f F .

The map F ( x , 1) is the desired G-map D

2.6. PROPOSITION. Let X be a compact G-ENR and f: X -> X
a G-map. Then f is G-homotopίc to a G-compactly fixed map.

Proof. Choose an admissible ordering (H\), . . . , (Hn) with the as-
sociated filtration of compact G-ENRs X\ c c Xn. Since XHX =
XHχ > /HX = f\%Hx is compactly fixed. We assume inductively that fa

rj

is compactly fixed for j < k. Since Xklx is a ffϊ/^-invariant closed

neighborhood retract in XHk, there exist using 2.5 a WH^-invariant

neighborhood U of X ^ t and a PfΉ^-homotopy (relative to X^lx)

to a map ^ such that ψ\U = ^ l - ϊ ^ ! ° ^ where r: ί7 —• X^χ is a
-retraction. Since ^ is fixed point free on U-Xfc^ι, ^

is compact in X ^ . We extend this WTί^-homotopy (relative to Xkl{)
to a G-homotopy (relative to Xk-\) from / to a map which is fixed
point free in an invariant neighborhood of Xk~\ (see [F-W, Prop.
2.1]). Induction completes the proof. D

2.7. REMARK. When given two G-homotopic maps f,g:X->
X, each of which is G-compactly fixed, one asks if they are G-
compactly fixed homotopic to each other. We will see in the next
section that the answer is negative.

3. Equivariant Nielsen numbers. Let W be a compact Lie group,
X be a W-ENR, U be an open invariant subset of X such that the
W-action of U is free. Suppose f:U->X is a compactly fixed
W-map and Fix/ Φ 0 .
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3.1. DEFINITION. Let x and y be fixed points in Fix/ . Then
x and y are said to be W-Nielsen equivalent, denoted by x ~w y,
if either (i) x = wy for some w e W or (ii) there exists a path
α: / —• U such that α(0) = x, α(l) = wy for some w e JV and α
is homotopic to / o a (relative to endpoints) in X.

With this definition, it is easy to show the following

3.2. PROPOSITION. ~W is an equivalence relation to Fix/.

3.3. PROPOSITION. Let f:U-+X be a compactly fixed W-map
defined on a free open invariant subset U. The set of W -Nielsen classes
is finite.

Proof. If two fixed points are locally Nielsen equivalent, they are W-
Nielsen equivalent. Since there are a finite number of local Nielsen
classes, the assertion follows. D

Let / : V —• X be a G-compactly fixed map defined on an open
invariant subset V of a G-ENR X, where G is compact Lie and
the G-action on V is not necessarily free. Recall that VJJ = V^ =
{xeV\Gx = H}.

3.4. DEFINITION. Let x and y be points in Fix/ . Then x and
y are said to be G-Nielsen equivalent, denoted by x &G y if (i) for
some H <G, x and y lie in XH, and (ii) x ~WG j ; where WGX is
the Weyl group of the isotropy subgroup Gx .

Note that when the action on V is free, 3.4 reduces to 3.1. We also
obtain

3.5. PROPOSITION. &Q is an equivalence relation on Fix/.

3.6. REMARK. The set of equivariant Nielsen classes is not finite
in general unless [G : Hi] is finite for each /, for example, when G
is finite.

In classical Nielsen theory, the Nielsen number of / is defined as
the number of essential Nielsen classes. We will also define essen-
tial classes on the set of W77/-Nielsen classes (which is finite by 3.3)
instead of the set of G-Nielsen classes which may be infinite.

3.7. DEFINITION. Let f:U-+X be a compactly fixed W-map
defined on a free open invariant subset of a W-ΈNR X. Then the
set of W-Nielsen classes is finite. A W-Nielsen class N is essential
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if / ( / , N) Φ 0 where / is the local fixed point index. Define the W-
Nielsen number denoted by Πw{f\ U) to be the number of essential
W-Nielsen classes.

3.8. DEFINITION. Let / : V —• X be a G-compactly fixed map
defined on an open invariant (not necessarily free) subset of a G-ENR
X. Define the equivariant Nielsen numbers, denoted by Nfc(f9 V) to
be the /c-tuple

(nw^fu VHι),..., nWk(fk, % , ) )

where {(H\), . . . ? (Hk)} are the isotropy types of V and nw^fi, VH)
is the Wi = ^ - N i e l s e n number of ft = f\ VHι.

3.9. REMARK. For every isotropy type (AT), the W/f-Nielsen num-
ber nwii{f\VH> VH) is finite and hence iV£(/, V) is well defined.
Since VH (resp. XH) is homeomorphic to VK (resp. Xκ) if K is
conjugate to H in G, nWH{f\VH, % ) is independent of the choice
of the representative of (//") and hence so is NQ(/9 V).

Of any Nielsen type invariant, the most important property is the
invariance under homotopy. Our next objective here is to verify this
property for Nfr(f, V).

3.10. PROPOSITION. {G-Compactly Fixed Homotopy Invariance.)
Let f: V —• X be a G-compactly fixed map. The G-Nielsen number
Nfc(f9 V) is invariant under G-compactly fixed homotopy.

Proof. Since V is a disjoint union of V^jj) where H appears as an
isotropy subgroup, it suffices to show that given a G-compactly fixed
homotopy F: V -+ I -> X, nWH(F0\VH, VH) = ΠWH(F0\VH, VH) =

^WH(F\IVH, VH) for every isotropy type (H). Let F = F\VH x / .
Let yy(Ft) denote the set of Wi/-Nielsen classes of Fti t € I.

Suppose Λb G yy(Fo), Nx e yy{Fx) then we say No and Nx are F-
related if there exists Xo G Λ̂o ? *i G iV"i, and a path C = {xj^/ i n

VH such that {^(Xί)} ~ {xj (rel. endpoints) in XH. Let F: VH x
I —• Z 7 7 x / be the yαί homotopy defined by

If JVo and iVi are F-related then they belong to the same ^//-Nielsen
class of F because {Ft(xt)} ~ {xt} is equivalent to {F(xt,st)}
~ {(xt 9 st)}. Also, each WΉ^-Nielsen class of F is open (and closed)
in FixF and hence an isolated fixed point set of F. Following [Jl,
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1.3.10] we conclude that
(1) No and N{ are F-related =* I{F0, No) = I(F{, N{).
(2) N e J^iFo) is not F-related to any N' e Jf{F\) => I(F0, N)

= 0.
Hence there is a one to one correspondence between the essential

WH-Nielsen classes of Fo and those of F\. Thus ΠWH{FO, VH) =
for every type (H) of V. D

When the action on V is free, JV£(/, V) = n G ( / ? V). When
G = {1}, N%(f, V) = π ( / , F) the local Nielsen number of / on
V. When V = X, we write #£(/) = 7V^(/5 X).

3.11. PROPOSITION {Lower Bound), Let f: V -+ X be a G-com-
pactly fixed map. If f is G-compactly fixed homotopic to f then for
every isotropy type (H) of V with WH finite, we have

{h, VH)<

Proof. nwH(fH> VH) is the number of essential W/ί-Nielsen classes
each of which contains at least one fixed orbit (orbit of a fixed point),
i.e., at least \WH\ many fixed points. D

We will now illustrate by an example that two G-homotopic maps
each of which is G-compactly fixed, need not be related by a G-
compactly fixed homotopy.

3.12. EXAMPLE. Consider X = Sι the circle of radius 1/2 cen-
tered at (1/2,0) in R 2 . Let G = Z 2 = {±1} and the action be given
by

where ξ e G. Thus XG = {(0, 0), (1, 0)}. Define a homotopy

H:XxI->X

by

(2x, \δ{y){\ - {Ax - I) 2 ) 1 / 2 ), 0<x<ί,

{2x - 1, \δ{y){\ - {Ax - 3)2)1/2), ψ < x < 1,

where δ{y) = 0 if y = 0 and δ{y) = y/\y\ otherwise.
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It is easy to see that H is a G-homotopy and

FixH{=XGU{(l/2, 1/2), (1/2, -1/2)}.

Both HQ and H\ are G-compactly fixed but HQ is fixed point
free on X - XG whereas Hx has fixed points (1/2, 1/2) and (1/2,
-1/2) each of which has index 1. Thus nG(H0, X - XG) = 0 and
nG(Hι, X - XG) = 1. By 3.10, we conclude that Ho and Hx cannot
be G-compactly fixed homotopic.

4. Equivariant Hopf s construction. In this section, we modify the
proof of the classical Hopf construction given in [Br] and obtain a
local version of it. Then we apply the Covering Homotopy Theorem
to obtain the equivariant Hopf s construction.

4.1. PROPOSITION. Let U be a connected open subset of a con-
nected locally finite simplicial complex X. Let f: U —• X be a com-
pactly fixed map. Then given e > 0, there exists a finite polyhedron
L c U with F i x / c intL and a compactly fixed ε-homotopy Ht {rel-
ative to U - int L) so that HQ = f and H\ has finitely many fixed
points, each lying in the interior of some maximal simplex.

Proof. Since / is compactly fixed and X is locally compact, we
can find a compact set C c U such that Fix/ c i n t C . Let N be a
finite polyhedron so that N is a neighborhood of C inside U. Let
K be a regular neighborhood of N and L be a regular neighborhood
of K. We may choose K and L so that both of them lie inside U
and their boundaries dL9 dK in X are disjoint (dL and dK are
finite polyhedra). Therefore, / is fixed point free on L-intK. Let
min{d(x, f(x))\x e L - intK} = 2δ > 0, where d is the metric oh
X.

By the simplicial approximation theorem (with a subdivision of L)9

there exists a small homotopy F: Lx I —• X given by
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for some simplicial map φ. Also, Ft(x) lies in the same simplex as
f(x) for every t E / . Choose a continuous function ρ: L-+ I such
that ρ\dL = 0 and ρ\K = 1. Define

G(Λ:, ί) = ̂ ( x , ρ(.x)ί)

Then we have
Q(γ C\\ = f(γ\ y c Γ

W ^•V , \J J J yJV J , *Λ» ̂  -*-> ,

G(x,t) = f(x), xedL,

G(x9 t) = F(x, t)9 xeK.
The map Gt is fixed point free on L - in\K for all t. To see

that, we first subdivide L such that mesh(L) < δ. If G(JC , t) = Λ:
for some x in L - intAΓ then /(x) and x would have to lie in the
same simplex since G(x, t) = Fρ^X)t(x). However, d(x9 f(x)) > 2δ
and thus a contradiction. Thus, Ft is fixed point free on dK. We
now apply the Hopf s construction (see [Br]) to F\ on K and obtain
an e-homotopy H[: K-+X such that H't\dK = Fx\dK and H[ has
finitely many fixed points, each lying inside some maximal simplex in
K. Define H:UxI-+X by

( f(x), xeU-L,

H(x,t) = l Gt(x)9 xeL-K,
(Hl(x)9 xeK.

By making mesh(L) sufficiently small, the homotopy {Gt} can be
made to be an e-homotopy and hence {Ht} is the required compactly
fixed e-homotopy. D

Next we prove an equivariant analog of 4.1.

4.2. PROPOSITION. Let G be a finite group and X be a locally finite
G'Simplicial complex. Suppose U is a free open invariant subset of X
and / : U —• X is a compactly fixed G-map. Given any e > 0, there
exists a finite G-complex L c U with F ix/ c intL and a compactly
fixed G ε-homotopy H: U x / —• X (relative to U - intL) such that
HQ = f and Fix H\ is finite. Furthermore, each fixed point of Hi lies
in the interior of some maximal simplex.

Proof. Let & = /?(Fix/) where p: X —• XjG is the orbit map.
Since Fix/ is compact in U >& is a compact subset of U/G. Denote
by / the induced map of / on U/G. Let {(-fiΓi), . . . 5 (Hk)} be an
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admissible ordering on the isotropy types of X with the associated
filtration X{ c -- C Xk = X. Since Fix/ cX- f-\Xk-ι), & C
(X - f~ι{Xk-\))/G - Without loss of generality, we may assume that
(X - f~ι(Xfc_ι))/G is connected. Applying 4.1 to / restricted to
(X -f~ι(Xk-ι))/G> we obtain an ε-homotopy which can be lifted by
the Covering Homotopy Theorem. Since U -+ U/G is a finite cover,
the lifted homotopy can be made to be an ε-homotopy. D

4.3. THEOREM (Equivariant Hopf's Construction). Let G be a
finite group, X be a finite G-simplicίal complex and f:X—>X
be a G-map. Given ε > 0, there exists an equivariant ε-homotopy
/ : I x / ^ I such that 3% = f and %\\XH has finitely many fixed
points each lying in the interior of some maximal simplex in XH for
each isotropy type (H) of X.

Proof. By 2.6, / is G-homotopic to a G-compactly fixed map and
the homotopy can be made arbitrarily small. Without loss of gener-
ality, we may assume that / is G-compactly fixed. Choose an ad-
missible ordering (H\),..., (Hk) on the isotropy types of X with
the associated filtration X\ c - c Xjc Q X. We assume inductively
that /|ΛΓ, : ΛΓ, -» X/ has finitely many fixed points each lying in the
interior of some maximal simplex in the corresponding subcomplex,
for i < j . Since XH is a free open WH}-invariant subset of XHJ , we

apply 4.2 to f\XHj: XHJ -> XHj to obtain WHj-homotopy Γ relative
to XH — intϋΓ for some WH\ invariant compact polyhedron K con-
taining Fix f\VHj. Extend Γ to a G-homotopy on X^H) relative to
X(H) - int GK. Since Xj = Xj_ι u l ^ . ) , we extend the homotopy to a
G-homotopy P on Xj. Finally, we can extend V to a G-homotopy
on X because Xj <-• X is a closed G-cofibration. The inductive step
is complete. D

4.4. REMARK. Let G be a compact Lie group and f:M^M
be a G-map on a compact smooth G-manifold M. Since M/G is
also a triangulable manifold, we can use the techniques in the proofs
of 4.2 and 4.3 to show that / can be G-deformed to a map with
finitely many fixed orbits. This is also proved in [Wi] using a different
approach.

5. Minimal number of fixed points. In this section, we study the
minimal number of fixed points in the G-compactly fixed homotopy
class of a G-compactly fixed map. When X satisfies a certain con-
nectedness condition and the G-action on U is free, any compactly



NIELSEN FIXED POINT THEORY FOR G-MAPS 189

fixed G-map f:U->X can be equivariantly deformable to a Cr-
ump with the minimal number of fixed points in its compactly fixed
(j-homotopy class.

5.1. DEFINITION. A locally finite simplicial complex K is of type
S if (i) there is a 3-simplex, and (ii) for every 0- or 1-simplex σ, the
link lk(σ, K) is path connected.

5.2. DEFINITION. Let G be a finite group and X a G-complex.
Then X is said to satisfy the equivariant Shi condition or is a G-
complex of type S if every connected component of XH is of type S
for every isotropy type (H) of X. In the case when G is compact
Lie, acting smoothly on a smooth G-manifold M, we call M a G-
manifold of type S if every connected component of MH is of type
S for every isotropy type (H) of M with WH finite.

Note that if X is a G-complex of type S, then X/G is a complex
of type S. In [Br, VIII.D], a space of type S is defined to be a
simplicial complex satisfying the conditions of Definition 5.1 except
that the link of a 1-simplex is not required to be path connected. The
following is easy to verify

5.3. PROPOSITION. Every maximal simplex of a complex of type S
is at least three dimensional

Next we show how to coalesce fixed points of the same class using
an equivariant analog of the Wecken trick.

5.4. LEMMA. Let f:U->X be a compactly fixed G-map where
X is a G-complex of type S and U is a free invariant subset of X.
Suppose 0\ and @2 are isolated fixed orbits belonging to the same G-
Nielsen class such that each fixed point in <9\ \J@i lies in the interior of
some maximal simplex of X. Then f is G-homotopic via compactly
fixed G-homotopy to a map φ with one less fixed orbit

Proof. Since <9\ and ^ 2 belong to the same G-Nielsen class, there
exist X\ G <9\, X2 E ^2 and a path a in U from x\ to xι so that
a ~ / o a in X (rel. endpoints). Let a denote the image of a in
U/G. We first cover the path a by a finite number of open vertex-
stars. By taking the closure of these open stars, a lies inside a closed
simplicial neighborhood. Following [Br, VIII.D. 1], a is homotopic
(rel. endpoints) to a polygonal path β so that the interior of each seg-
ment lies inside some maximal simplex and each endpoint lies in some
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simplex of dimension at least one. Moreover this homotopy can be
made arbitrarily small so that the track of the homotopy stays inside
U/G. Since X/G is also of type S, each maximal simplex is at least
three dimensional. If s and s' are maximal simplices intersecting at
a one dimensional face, by the connectivity of \k(s n sf, X/G) there
is a finite chain of maximal simplices s = s\, . . . , s^ = s' such that
s Π sf c Si and Sj Π s/+i is at least two dimensional for i = 1, . . . ,
k - 1. So β lies inside the union of the closed simplices clfo ) . By
taking a fine equivariant subdivision of X and hence a fine subdivi-
sion of X/G we may assume that 57 c U/G for all /.

We deform the path β slightly to a polygonal path γ (rel. end-
points) so that the interior of each segment lies inside some maximal
simplex of dimension at least three and each endpoint lies in the inte-
rior of some simplex of dimension at least two. By general position,
we may assume that γ is simple. Thus a ~ γ (rel. endpoints) in
U/G. Lifting this homotopy to a G-homotopy a ~ γ (rel. endpoints)
in U, we have γ ~ / o γ (rel. endpoints) in X. We then coalesce the
fixed points X\ and x2 along γ by the Wecken method ([Br, VIII]).
The path γ being simple implies that γ is a cross section. By taking
all the (/-translates of γ we unite the fixed orbits ff\ and ^2 along
gγ, for each g e G (also see [F-W]). Hence / is G-homotopic to a
map φ with one less fixed orbit. Since φ coincides with / outside
a small contractible neighborhood of Gγ, this G-homotopy is indeed
compactly fixed. D

5.5. DEFINITION. Let / : V -• X be a G-compactly fixed map
where V is an open invariant subset of a G-ENR X and G is com-
pact Lie. We define the minimal number of fixed points in the G-
compactly fixed homotopy class of f to be

mc

G{f', V) = min{| Fix/z| \h is G-compactly fixed homotopic to / } .

5.6. THEOREM {Minimality). Let f: U -+ X be a compactly fixed
G-map where X is a G-complex of type S and U is a free invariant
open subset of of X. Then f is G-homotopic via a compactly fixed
G-homotopy to a G-map φ such that

Proof. By 4.2, / is G-homotopic via a compactly fixed G-homotopy
to a map f with finitely many fixed points each lying in the interior
of some maximal simplex. Applying 5.4 finitely many times, each
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(z-Nielsen class contains only one fixed orbit which can be removed
if the index is zero (see [F-W]). Thus we arrive at a G-map φ with
«(?(/> U) many fixed orbits and hence \G\ nG(f, U) many fixed
points. The minimality follows from 3.11. D

5.7. COROLLARY. Let X be a G-complex of type S and A c X
be a closed invariant subset such that the G-action on X - A is free.
Suppose that f: X -> X is a G-map and f\X - A is compactly fixed.
Then nG(f, X - A) = 0 if and only if f is G-homotopic (relative to
A) to a G-map which is fixed point free on X - A.

5.8. REMARK. Note that for any finite group G, we have from
3.11 the following:

[G : Ht] nwHtf, VH) < mc

G(f, V).
I

We have equality when G acts freely on V. It would be interesting
to know when equality can be achieved in general.

6. G-deformation via obstruction theory. A local obstruction to de-
forming a map to be fixed point free has been defined and calculated
in terms of the local Nielsen number in [F-H]. Moreover, equivari-
ant obstructions have been used to prove an equivariant analog of the
converse to the Lefschetz fixed point theorem [V]. In this section, we
define a local obstruction in terms of nwπ(fH> VΉ) to deforming fa
to be fixed point free equivariantly.

6.1. LEMMA. Let M be a compact smooth manifold of dimension
> 3 and f: U —• M be a compactly fixed map on an open set U c M.
Suppose that L is a connected compact codimension 0 submanifold
with boundary dL such that L c U and FixfndL = 0 . Then
there exists a local (primary) obstruction o(f,L)e Hm(L, dL\πm)
of f on L in U such that f\L is deformable in M (relative to
dL) to a fixed point free map if and only if o(f,L) = 0, where
m = dimL = dimM, πm = πm(L x M, Lx M - Δ ) .

Proof. This follows from 2.6 and 5.4 of [F-H]. α

We now give an obstruction theoretic proof of 5.7.

6.2. THEOREM. Let G be a finite group acting smoothly on a con-
nected compact smooth manifold of dimension > 3. Suppose that
A c M is a closed invariant subset of M so that the G-action on
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M - A is free. Suppose that f: (M, A) —• (M, A) is a G-map so that
f\M — A is compactly fixed. Then f is G-homotopic {relative to A)
to a G-map f such that f is fixed point free on M - A if and only
if nG(f,M-A) = 0.

Proof. By 4.2, we may assume without loss of generality that /
has only a finite number of fixed points. Let JV be a G-Nielsen
class. Choose a representative fixed orbit @ c JV. For any fixed orbit
&' Φ & in JT, there exist x e @, xf e &' and a path a(x, *') in
Λf - ,4 such that α(x, x')(0) = χ9 a(x, x')(l) = x' and α ~ foa
relative to the ends in M . As in 5.4, we may choose a(x, x1) to be
a cross section and a(x, x1) Π (Fix/|Af - A) = {x, x'} . Now fix this
point X G ^ . For all the other fixed orbits &1 in JV , we form a wedge
of paths

= V a(x9x')

with wedge point x.
We can take a small closed invariant tubular neighborhood L of

G3d{x) of the form GL where L is a connected compact submanifold
of codimension 0 with boundary dL such that 3°{x) c intL and
Fix fnL = J/'. Now consider the fiber bundle

Since L is a product, /? is in fact the product bundle

LxM-+L.

There is also a one-to-one correspondence (see [tD, 1.7]) between

{ G-maps: L —• M} and {cross sections of p }.

Thus the fixed point free G-maps correspond to the sections lying in

where d: L/G —• LxM is the section corresponding to the inclusion
/: L c-> M and hence to those sections lying in

If £ is the section corresponding to f\L, then there exists a primary
obstruction o(f, L) for i to be deformable (relative to dL) into
Tx M - A and

o(f,L)eHm(L,dL; πm(LxM,LxM-A)).
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By 6.1, o(f,T) has a cochain representation

where the sum is over the local Nielsen classes {iV/} of f\L.
Since L = GL is a disjoint union of the translates of L and there

is only one local Nielsen class in L, then |G| / ( / , N\) = / ( / ,
and from 6.1,

We then apply the above argument to every G-Nielsen class Jf. D

6.3. REMARK. We can now define a sequence of local obstructions
{o(fH,T,(H))} associated with {ΠWHUHI VH)} Thus a necessary
condition for / to be deformable to a fixed point free G-map via
a G-compactly fixed homotopy is the vanishing of these obstructions.

6.4. REMARK. In the case where M is simply connected and Af-
A is connected, there is exactly one (j-Nielsen class Jf of f\M - A.
If the relative Lefschetz number L(f\(M9A)) = L{f) - L(f\A) = 0,
then JV must have index 0 and hence no(f \ M - A) = 0. Thus 6.2
reduces to the main result in [V].

6.5. REMARK. Suppose that M-A and M are connected and

- A)-±

is surjective. Let x, y e Fix/ n (M - A). If x and y belong to
a Nielsen class of / then they belong to a local Nielsen class of
f\M - A. Thus, as in the main theorem of [F-W], if the codimen-
sion of AffjΊ in MHι is at least 2, then the Nielsen equivalence of
fHi restricted to M# coincides with the local Nielsen equivalence
of fn on A/// . Therefore if / is fixed point free in M/_i then
n(fHi) = 0 & nwH^fiί^ MH) = 0. Hence 6.2 gives an alternative
proof of [F-W, 2.2]!

7. An equivariant Nielsen type invariant. There is another natu-
ral equivariant Nielsen type invariant Ng(f) which enjoys the usual
properties of the ordinary Nielsen number. We may also extend to a
local definition Ng(f9 V). Throughout this section, G will denote a
compact Lie group unless further restricted.

7.1. DEFINITION. Let M be a compact G-ANR and & = {H\H
closed subgroup of G with MH Φ 0 } . For any (/-map / : Jkί —•
M, the G-Nielsen invariant of f on M, denoted by NQ(/)9 is the
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function given by N^(f)(H) = n(fH) for all H e MT where n(fH)
is the ordinary Nielsen number of fH = f\MH: MH —• MH.

7.2. REMARK. For any orbit type (H), if K e (H) then MH is
homeomorphic to Mκ by the assignment χ\-> g~xx where x e MH

and K = g-ιHg, geG. Hence N*G(f)(K) = Λβ(/)(#). So ^ ( / )
does not depend on the choice of representatives of orbit types.

We now give an equivariant analog of the homotopy invariant prop-
erty for N*G(f).

7.3. THEOREM (G-homotopy invαriαnce). Ng(f) is invariant un-

der G-homotopy, i.e., if f is G-homotopic to f then NQ(/) = NG(f).

Proof. If / is G-homotopic to / then for every closed subgroup
H < G with MH Φ 0 , the map fH is homotopic to fH. Thus,
N*G(f)(H) = n(fH) = n{fH) = N*G(f)(H) by the homotopy invari-
ance of the ordinary Nielsen number n(fH). D

7.4. THEOREM (Commutativity). Let X and Y be compact G~
ANRs and f:X->Y, g:Y-+X be G-maps. Then,

N*G(g o f) = N*G(f o g).

Proof. This follows from the commutativity of the ordinary Nielsen
number. D

7.5. THEOREM (G-homotopy type invariance). Let X and Y be a
compact G-ANRs. Given the following commutative diagram

f

where all maps are G-maps and h is a G-homotopy equivalence with
inverse k, then N&f) = N

Proof. Since / is G-homotopic to k oh o f we have N£(f) =
^(kohof). Similarly, Λ£(g) = N£(hokog).By 7.4, we have

N*G(kohof)=N*G(ko(hof)) = N^((hof)ok)

N((hk)) NG(hokog). a
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7.6. REMARK. Theorem 7.5 can also be proven directly from the
homotopy type invariance of n{fH) for each H < G. Also in 7.5,
suppose X and Y have isotropy types Iso(X) and Iso(7) respec-
tively, and Iso(X) uϊso(Γ) = {(H{), . . . , (Hk)}; then N&f){Hi) =

for / = l , . . . , f c .

7.7. DEFINITION. Let V be an open invariant subset of a G-ENR
X and f:V—*X be a compactly fixed G-map. Then for every
closed subgroup H <G with VH Φ 0 , we define the local G-Nielsen
type invariant, denoted by Ng(f9 V), to be the function given by
7V*(/, V)(H) = n(fH, VH) the local Nielsen number as defined in
[F-H].

Note that if / is compactly fixed then fH: VH -» XH is compactly
fixed. It is clear that when V = X, N%(f, X) = N%(f) and when
G = {1}, iV*(/, F) = «(/, F ) . If Γ: V x / -> X is a compactly
fixed (j-homotopy, then Γ^: VH x / -• Z F is compactly fixed and so
by the homotopy invariance of the local Nielsen number, we obtain
the following

7.8. THEOREM (G-homotopy invariance). NQ(/9 V) is invariant
under compactly fixed G-homotopy.

Next we illustrate the relationship between N£(f) and iV£(/) which
was first explored implicitly in [F-W].

7.9. LEMMA. Let G be a finite group and X be a G-complex. Let
f: V —• X be a G-map on an open invariant subset V with finite
number of fixed points. Suppose that (H) is an isotropy type of V and
JV is a WH-Nielsen class of fH = f\VH. If N is a local class of fu,
then either N cJ^ or NΠJ^ = 0 . Furthermore, in the case N cJ^,

N) = 0, if and only if I(fH,^) = 0.

Proof. From the definition of WH-Nie\sen relation and that of or-
dinary local Nielsen relation on Fixfπ, if two fixed points are locally
Nielsen equivalent then they are WH-Nietecn equivalent. It follows
that / * is a disjoint union of local Nielsen classes. Therefore, if
Nnyrφ0 then N cJf. Otherwise NΓ)J/' = 0.

If N = JV then the last assertion is trivial. Suppose that iV is a
proper subset of Jf. Let p # : VH —• VJJ/WH be the orbit map. Since



196 PETER WONG

VH is a free W/f-space, PH is a finite covering map. We also have
PH(N) C PH(^) If x,y ey^ belong to distinct orbits then pπ(x)
and PH{y) are locally Nielsen equivalent fixed points of the induced
map fH on Vχ/WH. Thus any two points in PH(^) are in the
same local Nielsen class of fH, so PH{N) = PH{^) Since we may
assume that / # has isolated fixed points, it follows that I(fH, iV)
is an integer (nonzero) multiple of I(fH, PH(N)) while I(fπ, JV) =
|FWf | I(fH,pH(N)) = \WH\. I(fH,pH(^)) Hence I(fH, N) = 0
if and only if /(///, JT) = 0. D

7.10. THEOREM. L^/ G be a finite group and X be a G-cornplex.
Let f: V -+ X be a G-map on an open invariant subset V with
finite number of fixed points. Let (H\), . . . , (H^) be an admissible
ordering on the isotropy types of V. Suppose that F ix/ c V^. If
nwHk(fHk,VHk) = 0 then N&f, V)[Hι) = 0 for i=l,...,k.k

Proof. Since Fix/ c V(Hk), f is fixed point free on V^i. Thus
JV* (/, F)(i//) = 0 for / = ί, . . . , k - 1. Let F be a Nielsen class of
/ ^ . Since F c VH and if two points are Nielsen equivalent in VH

they are Nielsen equivalent in VH*, i 7 is a disjoint union of Nielsen
classes of ///^. By 7.9, nWHk(fHk, VHk) = 0 implies F is of index
zero. D

8. An example with JV£(/) = 0 but 7V£(/) ^ 0. Consider the
figure-eight PQ\

bι

Define a self-map / 0 : Po -* ^b so that /o(6i) = ό2

 2 , fo(b2) =
^Γ 1 , Mh) = ^-^f1^, /o(*4) = ^4*3^4. Put a = ^ 2 , jί = hb*.
Then /o(α) = c r 1 , /0(jί) = a" 1 )? 2 and Fix/0 = {x, y, z}. Since

λb^) = bib^b?, = δ " 1 ^ , x and y are Nielsen equivalent.
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Let P be the disk with two holes and the embedded figure-eight:

Let / ' = i o f0o r: P —• P where r is a retraction of P onto Po
and i: PQ —• P is the inclusion. (The map / ' is the same map as in
Jiang's example in [J2].) Furthermore we require that r contracts the
line / to the point z.

Let X{\) be P9 /(1) = / ' and let X{2) be another copy of P and
f(2)=f with Fix/ (2) = { * ' , / , * ' } .

Let W be the wedge of two 2-spheres:

and the map g\ W -> W which is a 180° rotation about the axis
through x \ z" and y" with Fix^ = {x", y", z"}.

Let X(3) be the following space:
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which is the union of W and a 2-disc with a subset removed whose
boundary is the figure-eight Po.

Take / ( 3 ) : X(3) -> X(3) to be i o g o f where r: X(3) -> W is the
retraction which sends the line /" to the point z" and i: FT —
is the inclusion.

Let X(4) be the unit circle

and /(4): ΛΓ(4)' —> X(4) to be the composition λoκ where K is a flow
on X(4) so that α is a "source" and zm is a 'sink' and λ is a re-
traction which takes the line segment /'" to the point z1". Therefore,

We now let X be the union U?=i * ( 0 with the lines I, V, I", V"
all identified so that z = z' = z" = z'". Embed X in R3 and let
G = Z2 act on X by reflection in the plane containing X(4) = S1.

Let / : X -+ X be f{ψF{2)Uf{3)Uf{4) so that F i x / = {x, y, x', y',
x",y",z,a}.

Let Y be a symmetric regular neighborhood of X in R4 and extend
/ t o φ = iχoforγ where z^: X <—• Γ is the inclusion and ry: 7 —• X
is a G-invariant retraction. Note that Y is a finite G-complex of type
S and Fix $? = Fix / .
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We are now to calculate Ng(φ) and Nfc(φ). Since φ = ιx o / o rγ

and / G = f\X(4) = /(4), the Lefschetz number

L{φG) = , α) , z)

Thus the Nielsen number /i^^) = 0 since YG & D2 x Sι is a solid
torus which is a Jiang space (see [Br] or [Jl]). Recall on X(l),
/(!)(α) = α" 1 f(\)(β) = oΓxβ2 and /(4) is homotopic to the identity
on Λf (4). Hence

is given by
/ - I 0 0 0 0^

- 1 2 0 0 0
0 0 - 1 0 0
0 0 - 1 2 0

. 0 0 0 0 1
and the trace tr(/*i) = 3. We also have

/*2 = (/(3))*2 =

since / ( 3 ) is homotopic to the identity on X(3). Thus, tr(/*2) = 2.
Hence

L(/) = 1 - tr(ΛO + tr(/φ2) = 1-3 + 2 = 0.

Thus, L(^) = L(/) = 0.
An easy computation shows that x and xf are fixed points of / of

index 1 while y and y' are of index - 1 . Also, x and x' are Nielsen
equivalent to y and y; respectively. Since W is simply connected
the fixed points x", y" and z are Nielsen equivalent to each other.
Since L(f) = 0 then {x" ,y",z,a} has index zero. Therefore / has
at most three Nielsen classes each of which is of index 0. It follows
that n(φ) = n(f) = 0 and hence N£(φ) = 0.

Since φ has only a finite number of fixed points, it is G-compactly
fixed. The subspace Y - YG consists of two disjoint components
each of which contains three fixed points whose index sum is nonzero.
In fact, the fixed orbits of φ in Y - YG are {x, c'}, {y, y1} and
{x", y"}. So nG{φ, Y - YG) = 1 φ 0 and thus Nc

G{φ) φ 0.
Since z and a are Nielsen equivalent in YG, the fixed point a

can be coalesced with z. We can also move x" to z along a path γ
so that y - {z} is connected in Y - YG. Then we can move x" and
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y" to z equivariantly. The fixed point z has index zero. Therefore
it can be removed locally. We are now left with fixed points x, y,
x1, yf. Since each component of 7 - YG has no local cut points,
x and y can cancel and hence the fixed orbits {x, y} and {xf, / }
can be removed equivariantly. We then conclude that the map φ is
G-deformable but not G-compactly fixed deformable to be fixed point
free.
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