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MACKEY ANALYSIS OF INFINITE CLASSICAL
MOTION GROUPS

DouaG PICKRELL

Representation theory for infinite classical motion groups is formu-
lated in terms of invariant measure classes and cocycle cohomology.
It is shown that invariant measure classes are always represented by
invariant probability measures, and these classes are determined for
Cartan motion groups. The existence of “induced” cocycle cohomol-
ogy is established in this ergodic setting. Also it is shown that the
continuity properties of representations are rather rigidly determined.

1. Introduction. Let K XA denote a semidirect product of separable
topological groups, where A is abelian. If both K and A are locally
compact, then it can be shown that every separable unitary represen-
tation of KXA can be uniquely written as a direct integral of factor
representations of the following form: the Hilbert space is of the form

H=LX4", p) ® Zm,

where A” is the character group of A, u is an ergodic K-quasi-
invariant Borel measure, and #, is an m-dimensional Hilbert space
(1 £ m < 00); the action is given by

—1 1/2
(L) (e 8) )0 = 2ete 0| HEL] R (g,

for x € A, g € K, where ¢ is a unitary cocyle. Mackey showed that
if u is concentrated on a K-orbit, then the above representation is
equivalent to an induced representation—a tremendous simplication.
This leads to a relatively complete understanding of the representa-
tion theory for KXA4, at least in situations where all the K-ergodic
measures on A" are transitive.

The goal of this paper is to carry through some steps of the above
analysis for a class of infinite dimensional motion groups: representa-
tions are canonically decomposed into factors, the factors are realized
as L? spaces, K-invariant measure classes on 4" are determined,
and large classes of cocycles are described.

The principal difference between the finite and infinite dimensional
theories is that for the latter K-ergodic measures are essentially al-
ways purely ergodic. Despite this (and finite dimensional intuition),
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there are good reasons to believe that a cohomological classification
of cocycles is feasible (in particular Ol'shanskii has shown that finite
rank Cartan motion groups are type I). But a complete result has not
been attained for a single example.

The groups considered in this paper (modulo a technical reformu-
lation discussed below) are of the form KXH , where K is a finite
product of rotation groups of separable (R, C or H) Hilbert spaces,
and H is a separable representation of K. The groups K can be char-
acterized in the following way: they are the automorphism groups of
finite rank “compact type” Riemannian symmetric spaces. Because of
this finiteness, these groups are similar, in some respects, to compact
groups (in particular they have discrete spectra).

Section 2 of this paper contains a brief review of the representation
theory of groups K. The problem is also slightly reformulated: we
consider representations for an inductive limit subgroup K (oco)x H(00)
of KxH. This is technically convenient, but also, as it turns out,
for certain semidirect products we can prove that representations for
K(0o)x H(co) automatically extend to KxH (see (6.1) for a precise
statement). This has important consequences for anomalous commu-
tation relations in quantum field theory (see §6 and [Pi5]).

Aside from §6, the outline of the paper is straightforward. In §3
representations for K(oco)XH(oco) are realized in terms of measures
and cocycles on H(oo)", as in finite dimensions. A key fact about the
groups K is that their invariant measure classes are always represented
by invariant probability measures. This is presented in §4.

In §5 we consider K-invariant measures for linear actions. In finite
dimensions every ergodic measure for a compact group is an equivari-
ant image of Haar measure. This is very useful for cocycle analysis,
for any cocycle can then be pulled back to the standard affine action
of the group on itself (this is true more generally for any transitive
action of a separable locally compact group, and this technique is cen-
tral to Mackey analysis). For K there is a natural analogue of Haar
measure—a Gaussian measure on an appropriate space. It is not true
that every linear ergodic action is an image of this measure. How-
ever it appears to be true in an approximate sense for linear actions
(which is made precise). The point of this section is that we can-ac-
tually classify the ergodic probabilities in the most important cases.
The general picture we envision is true in these cases. In particular
this is carried out for Cartan motion actions. In the infinite rank
case it turns out that this classification result is essentially equivalent
to Schoenberg’s classification of Polya frequency functions, together
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with a result of Karlin in the general theory of total positivity. These
classification results are critical to understanding harmonic analysis
on infinite dimensional symmetric spaces, which is pursued in [Pi6].
The implications for random matrix theory are unclear at this point.

In the last section we present examples of cocycles. It appears that
finite rank cocycles behave as in finite dimensions. Our expectation is
that the finite rank cocycle cohomology for linear actions on Gaussians
(our substitute for Haar measure) will be zero, while for nonlinear
images of Gaussians the finite rank cohomology will be fully accounted
for by an induction process.

Infinite rank cocycle cohomology appears to behave in an opposite
manner. It appears that the infinite rank cohomology is relatively
complicated for linear actions on Gaussians, because cocycles pulled
back from equivariant images do not simplify. Our expectation is
that as one passes down the tree of equivariant maps, the infinite rank
cohomology simplifies. This is all pure speculation however—we do
not have any complete classification results.

NoTATION. In this paper, in dealing with representations of a semi-
direct product K x4, it will be convenient to let K act first. Thus we
will view KX A as the set 4 x K with the multiplication

(x, &), h) =(x(g-y), gh).

2. Infinite rotation groups. In this section we will briefly recall the
separable unitary representation theory of the class of groups which
are finite products of rotation groups of separable real, complex, or
quaternionic Hilbert space. This theory is mainly due to Kirillov and
Ol'shanskii ([Kir], [Ol1]). At the end of the section we will then be in
a position to say precisely what representations we intend to study in
the remainder of the paper.

This class of groups can be characterized in at least two ways. On
the one hand it can be viewed as the class of automorphism groups of
the finite rank “compact type” Riemannian symmetric spaces without
compact factors (the irreducible spaces of this type are precisely the
Grassmannians Gr(n, Hg), Gr(n, Hc), Gr(n, Hy) and the space of
real oriented n-planes (7 < o0)). On the other hand it is identical to
the class of groups which arise as isotropy groups for finite products
of irreducible infinite rank Riemannian symmetric spaces. From both
points of view one would expect these groups to be much like compact
groups.
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We will use the symbol K(oco) to denote the finite product of the
groups SO(oo, R), U(oo, C) and Sp(oo). If K(o0) = SO(o0, R),
then we will assume there is a fixed real Hilbert space H and a distin-

guished orthonormal basis &;, &, ..., sothat K(oo) =J,SO(n, R),
where we identify K(n) = SO(n, R) with those special orthogonal
transformations that fix €,,, &é,412,.... In this case K will equal

O(H), and K., = {g € O(H): g = 1+ compact operator}. Thus in
this case, the closure of K(oco) in the uniform operator topology will
equal (K)o, the identity component of K, in the uniform topol-
ogy. If K(o0) = U(oo, C), K will equal U(H), where H is now a
complex Hilbert space with a distinguished orthonormal basis, and so
on (if K(o0) is a product, K(n), K and K, will denote the corre-
sponding products viewed as groups of operators on the corresponding
product of Hilbert spaces).

The class of representations of K(oco) which we will consider is very
special, as our first proposition will show. We have natural maps of
topological groups

((KOO)O’ Tu) - (K: Tu) - (Ky TS) = (K: Tw)

and
(K, 19) = (K, t)

where 7, =uniform topology, 7, = strong topology, 7, = weak
topology, and 7, = discrete topology.

~

(2.1) ProposITION. The natural maps (K, t,)" = (K, 1)) —
(K, t,)" — (K)o, Tu)" are bijections, where G" denotes the set
of equivalence classes of strongly continuous separable unitary repre-
sentations of the topological group G.

We also conjecture that both
(K, )" = (K, 19)" and (Ko, T0)" = (Koo 5 7a)"

are bijective.

(2.2) DEFINITION. A strongly, continuous separable unitary repre-
sentation for K(oo) (or K or K) equipped with the strong uniform
topology will be called tame. A K(oo)-quasi-invariant measure will be
called tame if the corresponding L? representation is tame.

A fairly direct proof of (2.1) can be given in the following way.
To see that the first arrow is bijective, we observe that the strong and
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uniform topologies induce the same Borel structure on K. This is so
because

{g€K:|g— 1w <&} =[ K& €K:|g x; — Xj| <e&|x;|}
J
where {x;} is the countable dense set in our underlying product of
(R, C and H) Hilbert spaces. Now suppose that = € (K, 7,)". Then
n will be a Borel homomorphism from (XK, 75) to (U(H(w)), t5).
Since these are Polish topological groups, 7 is actually continuous, by
a theorem of Banach ([Mo]). This proves the first arrow is bijective.

Since K(oo) is dense in (K, 75), this argument also shows the sec-
ond arrow is injective.

The proof that the second arrow is surjective depends upon a lemma
of Kirillov, which actually gives another useful characterization of
tame representations. If K(oo) consists of a single factor, we let
K(00), denote the subgroup that fixes each of the first n basis el-
ements; in general it denotes the corresponding product.

(2.3) LEMMA. If nt € (Ko)", then H(m)X(®). # {0} for some n.

A short proof can be found in [OI11].

To complete the proof of (2.1), suppose 7 € (K)" . For definite-
ness suppose K = U(H). By (2.3) we can assume there is a cyclic
vector v € H(n)X(®). | The positive definite function (n(g)v, v) de-
pends only upon ge;, ..., g€, ; hence (n(g)v, v) is continuous for
the strong topology. Since U(oco, C) is dense in (U(H), 1), this
implies 7 € (K, 75)".

To describe the tame representations, we first consider the special
case of K = U(H), which is of special interest.

(2.4) DEFINITION. A tame representation 7 of K is holomorphic
if it extends to a holomorphic representation of % = ({L € & (H),
|Lloo < 1}, Ty) i€, € — F(H(T)) is a morphism and matrix coeffi-
cients are holomorphic.

I. Segal ([Se]) proved that (just as in finite dimensions) the holomor-
phic representations decompose discretely and the irreducible holo-
morphic representations are precisely those obtained by decomposing
the tensor algebra 7 (H). It follows coherently from finite dimen-
sional considerations that U(H) and Perm(n) act as a dual pair on
I "(H), so that the irreducible holomorphic representations are natu-
rally parameterized by partitions (this is also consistent with the orbit
method and Borel-Weil ([Bo])).
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To round out the picture, consider the embedding K — K, where
U(H) - UH)xU(H): g — (¢,8), O(H) — U(Hc), Sp(Hu) —
U(Hg).

(2.5) ProPosITION. Every tame representation T of K extends
uniquely to a holomorphic representation T of K. Here H(T) = H(T)
and T' =T (equality of commutants).

This point of view is advocated by Ol'shanskii in [012] (from which
the ideas below are drawn). Note that for K = U(H), this shows that
the separable representations of K are in bijective correspondence
with holomorphic contraction representations of # x & . This should
be compared with “Wick rotation” in conformal field theory, where a
similar correspondence is conjectured to exist with Diff *(S!) in place
of U(H) and a certain semigroup of Riemann surfaces in place of #
(see [Se2]).

If K does not contain unitary factors, then the proof is quite short.
Suppose K = O(H) for definiteness. By finite dimensional theory
there is a holomorphic extension of 7: SO(co, R) — U(H(T)) to a
morphism

T¢:{g €SO(c0, C):[gleo < 1} — {4 € Z(H(T)): |4l < 1}.

Since domain(7°) is weakly dense in {L € Z(H®):|L| < 1},
to prove existence and uniqueness of 7', it suffices to prove 7€ is
weakly continuous for (domain(7°C), Tw). This follows from Kir-
illov’s lemma (2.3), since it guarantees existence of a dense set of & €
H(T) such that the matrix coefficient (7(g)¢, &) depends only upon
a finite number of matrix coefficients of g € SO(oco, R). By holomor-
phy the same thing is true for (T¢(g)¢, &) for g € SO(c0, C).

To prove equality of commutants, suppose V' C H(T) is T invari-
ant. V' is then invariant for the extension of 7 to {L € Z(H):|L| <
1}. Complex analyticity of matrix coefficients then implies that V'
is invariant under {L € L(H®):|L| < 1} (forif ¢ €V, ne Vi,
(L -&, n) vanishes on real operators implies it vanishes on complex
operators). This implies V' is T invariant. Thus 7" = 7.

This proof also clearly works for Sp(H). The argument is shghtly
more complicated if K = U(H) (see [Ol1]).

It follows from (2.5) that tame irreducible representations for K(oo)
are parameterized by sequences of partitions, one for each orthogonal
and symplectic factor, two for each unitary factor. We will refer to
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the sum of the lengths of these partitions as the degree of the repre-
sentation. An irreducible holomorphic representation for U(H) has
degree d if and only if it is a summand of J¢(H). Also we say a rep-
resentation is homogeneous of degree d if each irreducible summand
has degree d . Proposition (2.5) has the following

(2.6) CorOLLARY. If T; is homogeneous of degree d;, then T\ ®T,
is homogeneous of degree d; + d, .

If m is a real orthogonal representation of K(oo), we will say n
is tame if the action on H(m)C is tame. Such representations are
discretely decomposable.

The basic setting of the remainder of the paper is now described by
the following

(2.7) DeFINITION. If 7 is a tame real orthogonal representation of
K(00) with finite multiplicities, then we set

H(n)o = |J H(m)K),

with the inductive limit topology. We then say that a separable uni-
tary representation of K(co)XH(m)q is admissible if its restriction to
K(o0) is tame.

The ultimate goal of this work is to determine all admissible rep-
resentations. We are not working directly with representations of
KX H(n), because we want to prove that under appropriate conditions
admissible representations automatically extend to KX H(n) (see §6).

Appendix. Some other products. The products we are considering
are analogous to products of the form .# X R”, where % is compact.
There is also an analogue for real semisimple Lie groups, to which
must of this paper may apply. We will occasionally refer to this in the
sequel.

Suppose G is the identity component of the automorphism group of
an irreducible infinite rank Riemannian symmetric space, K a stabil-
ity subgroup. Then (G, K) contains a covering of an inductive limit
pair (G(o0), K(00)), where each (G(n), K(n)) is a classical symmet-
ric pair of rank n with the usual embeddings (these are listed in (5.11)
below—the point here is that there are no exceptional infinite dimen-
sional symmetric spaces). For simplicity suppose G(c0) C G.

Now suppose 7 is a separable real orthogonal representation of G
with finite K-multiplicities. Representations of G are determined by
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their restrictions to G(oo) (see §5 of [P4]). The analogue of (2.7) for
GxH(n) is G(oo)XH(m)o, where H(n)g = U, H(n)X(®).. Here a
separable unitary representation is admissible for G(co)XxH(x) if its
restriction to K(oo) C G(o0) is tame.

Examples of how these semidirect products arise in field theory can
be found in [MR] and [Mi].

Other examples of semidirect products that arise in current alge-
bra include £X Affine(# ; R) and Diff(X)XC®(X; R). Here X is
a compact manifold, & = map(X, G) is a gauge group, and & is
a space of G-connections (again see [Mi]). The sort of questions we
are asking in this paper arise naturally in the context of field theory
for these groups, but essentially nothing is known about how to attack
them.

3. Preliminary Mackey analysis. Let p be an admissible representa-
tion of K(co)XH(m)y as in (2.7). A slight adaptation of an argument
of Ol'shanskii’s (Theorem 3.6 of [Ol1]) leads to the following

(3.1) PROPOSITION. p has a unique decomposition as a direct inte-
gral of admissible factor representations for K(oco)xH(m)g.

Proof. Let p' denote the commutant. Decompose H(p) relative to
the abelian algebra p' N p": H(p) = [©H({)dv({). Because K(oo0)X
H(m)y is a countable union of locally compact groups, if p(g) =
[ pe(g)dv(¢) for g € K(co)XH(m)o, then fora.e. ¢, p; is a unitary
representation for K(co)XH(n)o, and p = [ p dv({) as representa-
tions. Thus the existence and uniqueness of the decomposition into
factors follows from finite dimensional considerations.

The novel point is that the factors of the decomposition are admis-
sible (almost everywhere). To see this let P, denote the orthogonal
projection onto H(p)X(*). (asin (2.3)). We have P, € p". For if 4
is the normalized Haar measure for K(k), then p(4;) | Py strongly.
Thus Py € p”. A similar argument implies P, € p". Now write
P, = [ P,({)dv({). Then clearly P,({)H({) = H({)X®)n for ae. ¢,
and P, 17 1 strongly in H(p) if and only if P,({) 7 1 strongly in
H({) for a.e. {. Thus H(p) is admissible if and only if H({) jis
admissible for a.e. (. 3]

(3.2) REMARK. (3.1) is also valid for the more general class of semi-
direct products G(oo)xH(r)y described in the Appendix of §2. An
interesting question is whether (3.1) is valid for £x Affine(+ , R) or
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Diff( X)XC>®(X ; R). The remainder of this section does apply to
these groups.

In the remainder of this section we need to analyze an admissible
factor representation p for K(co)XxH(m)y. The upshot is (3.7) below,
which is a consequence of the very general considerations to follow.

Suppose A is a separable topological vector group satisfying the
following

(3.3) Hypothesis. Every continuous positive definite function on A
is the Fourier transform of a unique measure on A".

This is satisfied for instance if 4 = H(x)y (with the inductive limit
topology), by the Kolmogorov extension theorem, or if 4 is a nuclear
space, by the theorem of Minlos. It is not satisfied if 4 is a Hilbert
space.

This hypothesis is really equivalent to saying that 4 has a “good”
representation theory.

(3.4) ProposITION. If A satisfies (3.3), then the separable strongly
continuous unitary representations of A, up to equivalence, are in bijec-
tive correspondence with sequences of mutually disjoint measure classes
on AN, where if {[v,]} is such a sequence

H(n) =) oL}(A", va) ® %,
dimn(#,) = n, and A acts by multiplication:
a(X)(@)|¢ = -9 D).

For A locally compact this is the usual spectral theorem. The point
here is that (3.3) guarantees that the same argument applies in this
more general setting.

Now suppose that .7 is a topological automorphism group of 4. If
p is a representation of # XA, n = p|4, then % fixes the measure
class of each v, in (3.4), and in H(my,) = L2(A", vm)  #,

(3.5) p(x, k)(®)|; = " Den(k, PR -0) ae. L,

where cy(k, -): AN — U(#y,) is vyu-measurable and c,(ki, k) =
cm(k1)(ky - em(k2)) -

To make a precise statement about the classification of cocycles, we
recall some results from [Mo]. Equip U(%,) with the strong topology.
If X isa countably generated Borel space and v a finite Borel measure
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on X, welet F = F,(X, U(%#,)) denote the space of equivalence
classes of v-measurable functions, equivalence meaning equality a.e.
v . The topology of F is defined by the metric

a(f, 8) = [@(f(x), g(x))dz(x),

where w is a metric for (U(#,), t5) with finite diameter. F isthena
Polish group (for pointwise multiplication), and the topology depends
only on the measure class of ¥ and not on w.

Also, if %Z is a topological automorphism group of F, then
H!(x , F) is the set of continuous crossed homomorphisms (c(gh) =
c(g)(g - c¢(h))) modulo the equivalence relation c¢; ~ ¢, < there is
f € F such that fci(k) =cy(k)(k-f) forall ke % .

(3.6) PrOPOSITION. Let Z be a topological automorphism group
of A, A satisfying the hypothesis (3.3). The separable strongly con-
tinuous unitary representations m of I XA, up to equivalence, are
in bijective correspondence with sequences {([vm], [cm])}, Where the
[vm] are mutually disjoint % -invariant measure classes on A", and
[em] € H (7, F, (4", U(#))). (The representation corresponding
to this data is given by (3.5).)

Note that if the representation 7 is a factor, then n = 7w, and vy,
is ergodic.

(3.7) CorOLLARY. If p is an admissible factor representation of
K(co)XH(m)g, then there is a uniquely determined m, a tame ergodic
K (o0)-invariant measure class [v] on H(m)j, and a cocycle [c] €
HY(K, F,(H(n)}, U(#n))) suchthat H(p) = L>(H(n)} , v)®%, and
p acts by (3.5).

4. Quasi-invariant measures. Recall we say that a quasi-invariant
measure for K(oco) is tame if the corresponding natural L? represen-
tation is tame (see (2.2)).

(4.1) ProposITION. Suppose K(oco) acts on a standard Borel space
X. If u is a tame quasi-invariant measure for this action, then u is
equivalent to an invariant probability measure.

This result depends strongly on the assumption of tameness. We
will discuss some examples after giving the proof.
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Proof of (4.1). We can assume that u is a probability measure. For
each g € K(oo) there is a Borel function a(g, -) on X such that

a(g, x)du(x) = du(g™'x).

Our assumption that 4 is tame means that the natural representation
on L*(X, u),

n(g)y = a(g, x)'*y(g™'x)
is continuous for K(oco) in the strong operator topology.

To prove (4.1) it suffices to show that L2(X, u)X(®) is nontrivial.
For if y is invariant and nontrivial then |y| and {x:|y| > 0} are
invariant. On this set of positive u-measure, the restriction u. is
equivalent to the invariant finite measure |y|?4,. We now consider
the complement and continue reducing the mass, if any remains.

For each n let Q, denote the orthogonal projection onto
L2(X, u)X") | We then have Q, > Q0,11 > Qo , s0 that clearly
On — Qo strongly as n — co. Note

an/=/ a(g, x)?y(g7!x)dg.
K(n)

Because 7 is tame, by Kirillov’s Lemma (2.3), we can find a nonzero
w € L2(X, u)X(®) for some m (recall that if K(oco) is a single factor,
K(00),, 1is the stabilizer of the first m basis elements; in general it is
the corresponding product). We can assume y is non-negative. By
averaging y over K(m) we can then obtain a nonzero K(m)x K (0o),
invariant function ¢.

Now K/K(m)x Ky, is a finite product of finite rank (infinite dimen-
sional) Grassmannians (e.g., if K = U(H), the quotientis Gr(m, H),
the space of m dimensional subspaces of H). We can regard this
space as symmetric space in the usual way.

In polar coordinates for our symmetric space the spherical function

g — (6, n(g)g) = / a(g, x)2|p(x) du(x)

will depend only upon the radial variables, of which there is a finite
number (m times the number of factors). Thus this function is com-
pletely determined by its restriction to the compact submanifold

K(2m)/K(m) x K(2m)p, C K/K(m) X Kp,.
Thus we can find 6 > 0 such that

/ a(g, X)2(612(x) du(x) > &
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for all g € K(o0o0). This estimate then clearly implies that Q,¢ con-
verges to a nonzero limit. This concludes the proof. O

We now describe some delimiting examples.

On R* there are analogues of Lebesgue measure, i.e., measures
which are invariant under translations by R3°. These measures are
infinite and O(oo) invariant. They are not equivalent to finite O(oo)-
invariant measures (see [Y]). Thus (4.1) fails in a disastrous way for
K(o00) in the inductive limit topology.

A more subtle example is the following. First consider the action
of U(oco) on the finite rank Grassmannian Gr(n, C*). There is a
unique invariant probability measure for this action (see [Pil]). Thus
a corollary of (4.1) is that Gr(n, C*) carries a unique tame invariant
measure class (this is true more generally for any finite rank flag space
for K(00)).

We now try to pass to the infinite rank case. Consider the action of
U(200) on the infinite Grassmannian Grj described in [Pil] (this is
a certain completion of Gr(co, 200) = lim, Gr(n, C?*) in the same
way that Gr(n, C*®) is a completion of lim,,_,. Gr(n, C™)). For
this action there is a one parameter family of mutually disjoint quasi-
invariant probabilities u; (s > —1), and there is a unique invariant
probability, namely uo. Thus in this case there is at least a continuum
of invariant measure classes. This shows that it is not possible to relax
our finite rank assumption in (4.1) for a general nonlinear action. I
do not know of any counterexamples for linear actions however.

5. Invariant measures. If G is a compact group, then Haar mea-
sure is a universal measure for G, in the sense that every invariant
measure for G is a convex combination of equivariant images of the
left action of G on Haar measure. We conjecture that the situation is
approximately the same for tame actions of K(o0), in a sense which
we will make precise at the end of this section. In the first part of this
section we recall from [Pi3] the analogue of Haar measure for K(oo).
We then consider various situations where it is possible to classify all
of the invariant actions, in the process building up evidence for our
conjectures at the end.

Since we are principally interested here in linear actions, we first
note that in this context tameness is automatic.

(5.1) PropPosITION. If v isa K(oo) invariant probability on H(r)},
where T is a real tame action, then v is automatically tame.
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Proof. The functions in L2(v) which are based on H (n)g(w)" (ie.,
of the form ® = ®((x;, £)) with x; K(oo)p-invariant) and contained
in L?(v)K(),  Kirillov’s criterion (2.3) for tameness implies that

U, H (n)g(w) " is dense in H (7)o, and functions depending on finitely

many variables are dense in L?(v); hence |J, L?(v)X(®). is dense in
L(v). w
Let &,..., &, ... be an orthonormal basis for the real, complex,

or quaternionic Hilbert space H . If F denotes the scalar field (acting
from the right), we then have a natural action

(5.2) K(oo)x,‘ZF<i£jF,ﬁajF) x K(o0)
1 1
—).%:(ZSJ'F, HSjF)

given by composition, where K(oo0) = SO(o0), U(oo), and Sp(o0),
respectively. For a product we concatenate these actions. Let vg
denote the Gaussian measure on this linear space:

1 2
dvg(L) =] [ ze "l dm(L;)) ),
va(L) H(Z Fdm(Ly)
which is an infinite product measure in the coordinates of the space
(m(-) denotes Lebesgue measure and z is a normalization constant).
This measure is a good analogue of Haar measure for K(co). One
reason is the following Peter-Weyl type result.

(5.3) ProPOSITION. The decomposition of L*(vg) relative to the two
sided action of K(oo) is
Lvg)= > pxp*
where the sum is over all irreducible tame representations of K(oco).

The basic tools here are the Fourier transform and dual pair theory.
If V' is a real Hilbert space with orthonormal baasis v;, v5, ..., then
we have

Vo= Ru; CV C ¥V =]]Ru,.
The Fourier transform (followed by some scaling that is not important
to us) then defines an O(co0) equivariant map

00 1 5
L2<V0", ——e 5l dé‘) — S(V)C.
1—11 V27 /
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Thus if F =R, as representations of SO(oco0) x SO(o0),
LA (vg) = S(H(H)) = Y p % p.

The decomposition of the symmetric algebra follows from dual pair
theory as in finite dimensions.
If F=C

L (vg) = S(H(H)IR)® = S(H(H)) © S(H(H))
=N XARY XY A@nxARN =Y pept

where the sums in 4 and 7 are over the holomorphic tame represen-
tations of U(oo), so that the last sum is over all tame representations.

If F =H, viewing quaternionic linear operators as complex linear
maps which are the +1 eigenspace of the operator L — j~1-L -
(denoted by subscript +),

L*(v6) = S(%(H|c)+) ® S(H(Hlc)+)
= §(#A(Hlc)+) ® S(#A(Hlc)-)

=S(H(H|c) =D p®p

where the sum is over all tame representations of Sp(co) (which are
all self-dual).
The general case follows in an obvious way. O

Another sense in which the Gaussian is a natural candidate for Haar
measure is the following

(5.4) PropoOsITION. The invariant probability distribution on the
space \/nK(n) converges weakly to vg. Moreover the convergence
(of Fourier transforms) is uniform over finite dimensional spaces
Z(T1 &F, I11 ¢F).

This is proven in [Pi2] for U(oco), the other cases following by
essentially the same arguments.

We now want to take up the problem of classifying ergodic invariant
probabilities for various actions of K(oo). We first consider

(5.5)  K(co) x.‘Z(F”, ﬁst> —>£Z(F”, ﬁqF):L—»g-L.
1 1

For each g € Pos(F"), the space of positive semidefinite operators,
the map L — L-q is K(o0) equivariant. Let g.v; denote the image.
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(5.6) ProrosiTION. If u is a K(oo)-invariant probability for the ac-
tion (5.5), then

U= /qwc;dV(q)

where v is a probability on Pos(F") uniquely determined by u. In
particular the q.vg are the ergodic probabilities.

This is proven in [Pi2] using (5.3) and also in [Nes]. The striking
fact is that the ergodic measures are parameterized by the orbits of K
acting on Z(F", H), precisely as in finite dimensions.

This result, together with (3.5), has the following

(5.7) CorOLLARY. The irreducible spherical functions for the rank
n Cartan motion group pair ((K(oo) x K(n))XZ(F", H), K(00) x
K(n)) are parameterized by the orbits of K(n) in Pos(F"). If x €
Z(F", F®)\= Z(Y ¢;F, F") (via Retrace), and x*x has eigenval-
ues uf, .., U2, the spherical corresponding to A = diag(A,, ..., An) €
Pos(F") is given by

o) = —_detle ™)
g ;A2 = 22) (W2 — p3)’

This parameterization is proven in [Ol1] by different means.

By letting n — oo in (5.6) it is easy to determine all of the ergodic
probabilities for the left action of K(oo) in (5.2). The qualitative
conclusion is the same: the ergodic actions are all equivariant images
of v (in fact they are of the form g.vg (when properly interpreted),
where ¢ is now an oo X oo nonnegative matrix (see §3 of [Pi2])).

We now take up the classification of ergodic probabilities for ac-
tions of the form K(oo) x p(co0)”, where g(oo) = €(00) @ p(oc0) is the
Cartan decomposition for a classical infinite rank symmetric pair of
the noncompact type. It turns out that it suffices to work out one case,

gl(oco, C) = u(oo) ® herm(oo).

The basic fact is that if » isa U(oo) conjugation invariant probability
on herm(oo)", then it is ergodic if and only if its Fourier transform
has the form

¢(x) =[] r())
1

where {¢;} = spectrum(x), x € herm(co). More generally if
we choose a maximal abelian subalgebra a(oo) C p(oo) so that
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a(n) € p(n) is maximal for all n, and we identify a(oo) = ) Re;
by choosing an orthonormal basis ¢;, ..., &, for a(n), then we have

(5.8) LEMMA. If v isa K(oo) invariant probability on p(co)”, then
v is ergodic if and only if its Fourier transform is of the form

¢(x)=]r()
1

where x is K(oo) conjugate to (t;) € a(o0).

This follows by the argument for the analogous fact about the ir-
reducible spherical functions for (G(oo), K(o0)) (see §3 of [Pid] or
[Nes]).

(5.9) ProOPOSITION. The irreducible spherical functions for (U(oco)X
herm(oo), U(oo)) are of the form ¢(x) = [I7p(t)),

p(t) = e T [(1 + id;t)e™ 41!
1

where spectrum (x) = {t;}, w,d and d; are real numbers, d > 0,
and Ed} < 0o. This representation for p is unique.

REMARK. It is interesting to note that we can write ¢ as
o0

¢(x) = exp(iwtr(x) — dr(x?)) [ [ det2(1 + id;x) ™!
1

where det, denotes the Hilbert-Schmidt regularized determinant.
This shows that if w = 0, then ¢ extends continuously to herm,,
the Hilbert-Schmidt hermitian operators (see (6.1) below).

Proof of (5.9). By multiplying p(¢) by e~ if necessary, we can
assume

po=[ e f(ay di

o0
where f is analytic (and necessarily f >0, [f=1).

Because x — p(#)---p(t,) is a positive definite function on
herm(n), it is a convex combination of the irreducible spherical func-
tions for (U(n)x herm(n), U(n)). Our first task is to determine the
density in terms of f.
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The irreducible spherical functions are parameterized by the orbits
of U(n) in herm(n)". Because our pair corresponds to a complex
group, they have a simple form: if A = diag(4;,..., 4,), then

ikt~ det(e™ )
) = e itriktk dk = i .
valt) /U(n) [Lic; i(Ai — 4j)(2i — 1))

It follows that we have

I e =

i<j

where @ is a probability measure. The left hand side equals
[ { cert-0yn T e T £2)
= [ (TTe%){ aery~ TT £} TT s,
= > [ [ (TTe) deriri-va

aeperm(n)l 22 A

= / / det(e’) det(fU=V(4))) [ d4;.

/1(> >l

This determines the density for ®.
We now have determined the conditions for []{° p(¢;) to represent
an irreducible spherical representation:

(5.10) det(fY " VAN i<i, jcn 20, A > A > > An,

for all n. Since f is analytic we actually have strict inequality except
at a discrete collection of points.

We can now apply basic results of the theory of total positivity. The
equation (5.10) says that the kernel K(x, y) = f(x —y) is extended
totally positive (on intervals where we have strict inequality). Theo-
rem (2.5) of [Kar] asserts that K is actually totally positive. Schoen-
berg’s representation Theorem ((a) of (3.2) in [Kar]) now completes
the proof. o

To show how this classification can be extended to the other classical
infinite rank pairs, we observe that there is a maze of relations among



156 DOUG PICKRELL

them, some of which are indicated in the following scheme:
(5.11)
(SO(c0, 00), S(O(c0) X O(00)))

/

(GL(c0, R), O(c0)) = (Sp(o0, R), U(00)) = (U(o0, 00), U(oo) x U(00)) — (SO (400) , U(200))
(GL(c0, C), U(00)) = (SP(c0, C), Sp(c0)) = (Sp(c0, 0) , Sp(o0) X Sp(c0))
(SO(200, C), SO(20))

(GL(0oH), Sp(o0)).

Each arrow represents an injective map of symmetric pairs with the
property that it is an isomorphism of the radial subgroups exp(a(c0)).
The mappings we have indicated are dual to the ones constructed in
§3 of [Pid]. It follows from (5.8) that for each of the corresponding
maps of Cartan motion groups, the pullback defines an injection on
the set of irreducible spherical functions for (K (oco)xp(o0), K(00)).
Thus O(oco, R)x Sym(oco, R) is a sort of universal case. To illustrate
how these maps are used, we consider this case next.

B (5.12) ProPOSITION. The irreducible spherical functions for (O(oco, R)
X Sym(co), ¢(o0)) are of the form ¢(x) =TI°p(¢)),

oo
p(t) — eia)te—dt H [(1 + idjt)e—id]t]—l/Z
1

where the parameters are precisely as in (5.9).

Proof. Consider the natural maps

(5.13) O(00)x Sym(oco, R) — U(oo)X herm(oco, C)
— 0(200)X Sym(200, R)

where the first map is given by C linear extension of operators, the
second by reduction of the scalar field. Now suppose ¢ = [[p(¢;) is
an irreducible spherical function for O(co)x Sym(co, R). If ® is the
spherical function for O(200)x Sym(200, R) corresponding to p(),
then relative to the mappings (5.13)

<I)<x x>=¢(x)2 for x € Sym(co, R).
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This shows that ¢? extends uniquely to an irreducible spherical func-
tion for U(oco)x herm(co) .

To conclude the proof of (5.12) it suffices to show that each ¢(x)
in (5.12) does define a positive definite function on Sym(oco, R). It
suffices to consider p(¢) = 1_[11V (1+4d;1)!/2, for the others are limits of
these.

Let d = diag(d;, ..., dn, 0, ...) and consider the O(oo0)-equivari-
ant map

3(211«8,-, HRej> — Sym(co, R)":L — L-d-L*.

The image of v; under this map is ergodic, and it is easy to check
that the Fourier transform ¢ =[] p(¢;), with p as above. O

Now that the “universal case” is in hand, it is not difficult to use
the maze (and various ad hoc arguments) to classify the ergodic prob-
abilities in all cases. We will not pursue this beyond remarking that
in all cases, modulo characters and the Gaussian, there is a precise
correspondence with the orbits of K in p,, and stating the result for
the action (5.2) (this will be needed elsewhere).

(5.14) ProprosITION. The ergodic probabilities for the action (5.2)
have Fourier transform of the form v(x) =T]p(u;), where

p(u) = e~ T[(1 +d2u?)~*12,
1

spec(x*x) = {u?}, d 20, 3d} < oo, and k = 1,2 and 4 for
F =R, C and H, respectively.

We now turn to the general case, K(oo)xH(n)y, where 7 is a tame
real orthogonal representation. Let B denote the space of ergodic
K(oo)-invariant probabilities on H(rm)j with the weak*-topology
(which we can identify with the irreducible spherical functions of
(K (00)XH(m)g, K(co)) with the topology of convergence on compact
sets of H(m)y (with the inductive limit topology).

(5.15) PROPOSITION. S is a topological abelian semigroup with iden-
tity and involution, where the operation is convolution and the involu-
tion is conjugation.

Note that in terms of the Fourier transform, the operation is simply
multiplication of irreducible spherical functions.
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To establish this we note that
(5.16) HrzenX =HmnK e Hn)K

for tame representations 7 and 7 of K, which follows from the dis-
creteness of the spectrum and the infinite dimensionality of all non-
trivial irreducible tame representations. Therefore if 7 and # are
irreducible spherical, (5.16) shows that 7 ® # contains a unique ir-
reducible spherical summand. Therefore the product of the spherical
functions is still irreducible.

There is a simple way to generate measures in . We first con-
sider a specific example, the action of U(H) on A”H, the nth exte-
rior power. If H were finite dimensional, then the ergodic invariant
probabilities would simply be obtained by smearing Haar measure
over each of the orbits. To obtain ergodic U(oo)-invariant proba-
bilities in A"(C*), we consider equivariant images of the surrogate
Haar measure for U(oco): for each point & € A"(}" Ce;), the map
Z(3>_Cej, [[Cej) = A*(C>®):L — L-& is clearly well-defined and
U(oo) equivariant; the image of the Gaussian below (5.2) is then an
ergodic invariant probability (we choose this example partly because
in [Ver] it is claimed that the linear Gaussians are the only ergodic
probabilities in A"C , whereas these nonlinear images of Gaussians
show that there exist many other examples).

In the general case of K(oo) acting on H(m)y C H(n) C H(m)y , we
can consider equivariant images of our surrogate Haar measure cor-
responding to different points of &, € H(m),. A fairly safe conjecture
is that as we vary &, we obtain a dense subset of # modulo charac-
ters. This is true for all the Cartan motion actions. For example for
U(oo)X herm(oo), the “orbit measures” through points in herm(oo)
are those with Fourier transform of the form

x© n
p(x)=[]J](1 +dje)!
i=1j=1
in (5.9) and the classification shows that these are dense (the Gaussian
is a limit of these because exp(—dr?) = lim|1 + i(4)!/2¢-27).

A more difficult question is whether all ergodic probabilities for
K(o0) on H(m)y can somehow be viewed as equivariant images of.
Gaussians. Some motivation for viewing measures as equivariant im-
ages of canonical measures is provided by §7.

6. Some qualitative consequences. Suppose 7 is a tame real orthog-
onal action. Suppose v is an ergodic K(oo)-invariant probability on



MACKEY ANALYSIS OF INFINITE CLASSICAL MOTION GROUPS 159

H(m)y, and consider the natural representation 7':
T:K(co)xH(m)g — U(Ly(v)).
The constant function 1 € L?(v) induces a mapping
K (co)XH(m)o/K(c0) = H(m)o — B(L?): (x, g) — P(T(x, &) - 1).

Assuming this map is smooth, it is natural to pull back the Fubini-
Study metric and compare this with the metric for H(xn). In irre-
ducible situations these should be infinitesimally equivalent. When
this is the case the continuity properties of T are sharply constrained.
Because of the results in the previous section, we can apply this idea
to Cartan motion groups.

Let (g(o0), €(o0)) be a classical noncompact type infinite rank sym-
metric pair. For each 1 < ¢ < oo, we can complete p(co) in the
Schatten g-class to obtain a Banach space p, .

(6.1) PROPOSITION. Suppose p is an admissible unitary representa-
tion for K(oo)xp(00).

(a) if p extends continuously to K(co)Xp, for some q > 2, then p
vanishes on p(oo), so that p is simply a tame representation of K (o).

(b) p always extends uniquely to a continuous representation of
K §p1 .

(c) If p corresponds to the probability measures {v,,} as in (3.4),
and if Dy, is real for each m, then p extends uniquely to a continuous
representation of Kxp;.

By (4.1) we can assume the v,, are invariant probability measures.
It suffices to consider the case when p is spherical, since the cocycle
plays no role. One way to prove (6.1) is then to observe that the
arguments in §6 of [Pi4] apply without change to Cartan motion groups
(as opposed to the symmetric pairs themselves). Another is simply
to inspect the formulas of the previous section for the irreducible
spherical functions. o

I expect that this result actually holds for all actions 7 having a
finite number of irreducible components. This would follow from the_
arguments in [Pi4] if we knew that every measure v € B(n) had a
Fourier transform which is smooth on H(n)g.

Part (c) of (6.1) shows for example that every separable unitary rep-
resentation for the semidirect product (U(H,)xU(H-))X-A(H, , H-)
has a continuous extension to (U(H,) x U(H-))x%(H, , H-). This
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is used in [Pi5] to illuminate certain renormalization processes in field
theory.

7. Examples of cocycles. For a semidirect product KxA4 with K
compact, the K-ergodic measure classes in 4" correspond simply to
K-orbits, and for a K-orbit K - y C A", the cocycle cohomology is
equivalent to the representation theory of the stability subgroup K,—
the equivalence is gotten by assigning to a representation # of K, the
L? sections of K x, H(n), the bundle over the orbit K - x induced
by the representation.

Now consider one of our semidirect products K(co)XH(m)g, and
supose v is an ergodic K (oo)-invariant probability on H(m)y . By ex-
ample we will try to argue that one should compute the cocycle coho-
mology in the following way. To compute H (K, F,(H(n)}), U(#)))
for n < oo, we should proceed as in finite dimensions: realize v as an
equivariant image of a linear action on a Gaussian (the substitute for
Haar measure) and thereby determine the virtual stabilizer subgroup;
the n-dimensional representations of this virtual subgroup should then
exhaust the cohomology. To compute H'(K, F,(H(n)}, U(#%))),
we look the other direction—we determine the equivariant image of
v and pull the cocycles back. In particular since we can always push
v to a point mass, we are claiming that the infinite cohomology is
never zero. This is the content of (7.1) below.

Let Hom(G; 4) denote the set of equivalence classes of continu-
ous homomorphisms from G to 4, when G and A4 are topological
groups.

(7.1) PrROPOSITION. Let v be an ergodic K (oo)-invariant probability
on H(m)y. The natural map

Hom(K ; U(#%,)) — HY(K , F,(H(n)}), U(#)))

(where we regard a homomorphism as a constant function on H(m)y
is injective.

Proof. This is equivalent to showing that if p is an irreducible tame
representation for K(cc), then 7, ®p isirreducible for K(co)xH(n)g,
where 7, is the irreducible spherical representation on H(7,) =
L%(H(n)}, v) corresponding to v .

Consider the decomposition

Ty k(o) = Cl® (C1)*.
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All the irreducible pieces in (C1)1 have degree > 0. Thus by (2.6)
T, ® plx(oo) = H(p) ® H(p)*

where all the irreducible pieces in H(p)* have degree > degree(p).
Thus p has multiplicity one.

Since the constants H(p) C L?>(v) ® H(p) generate the representa-
tion space for K(oo)XH(m)g, it follows that T, ® p is irreducible. O

We next consider a measure which has only a point as equivariant
image. Consider the Cartan motion group U(co)X herm(co) and the
“orbit measure” through ) [de; ® € = diag(d,...,d,0,...) (in
the sense of §5). The “orbit” in this case will (measure theoretically)
turn out to be a Grassmannian (if we considered the “orbit measure”
through a general point ) {°dje; ® €}, we would obtain a flag mani-
fold).

We can take d = 1. To describe the map that gives the “orbit
measure”, for L € Z(3Ce;, [[Ce;) write L = (5 %), where a is
n x n, etc. The map is then

% — herm(oco)": L — Ldiag(1,...,1,0,...)L*

a B aa* ap*
(? 5>_'(?a* 0 )
This map does not depend upon S and ¢, so by throwing away a set
of measure zero we can view the “orbit” as the image of

(7.2) 3<Cn ’ H(ng)/U(n) — herm(oo)": (3) — (jz: ag*>

where the prime means we consider nonsingular maps only, and we
have cancelled out the right U(n) action k: () — (%) . A basic fact
is that the map

.S?(C, HC&j)/U(n) -—>.£’<C”, HCsj)I/GL(n) = Gr(n, C®)

induces a measure algebra isomorphism, where both spaces are
equipped with the image of the Gaussian (see (3.8) of [Pi3]). Thus
what we are considering is the cohomology for U(co) acting on
Gr(n, C*) relative to the unique tame invariant measure class. We
should therefore expect to obtain “induced” cohomology from repre-
sentations of U(n) x U(H),, in addition to the cohomology pulled
back from a point (by (7.1)).

or
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Since in (7.2) we have described the “orbit” as a quotient of the
U(n) principal bundle .2’ = Z'(C", [I{° Cgj), it is clear that there
is an injection of the U(n) representation theory (this is finite rank
cohomology coming from viewing our measure as an image of a
Gaussian). Moreover there is clearly a version of Frobenius reci-
procity. If n is a representation for U(n), then the induced module
for U(oo) is given by

(7.3) L&' x5 H(m)) = (L&', vg) ® H(m))V™.
When 7 is irreducible this leads to
(7.4) L&' x5z H(m)) = Z m(p*®@n)p*®n,

where the sum is over all irreducible tame representations of U(oco)
(which are of the form p*®#, p and 5 being holomorphic), and the
multiplicity is given by the usual reciprocity formula

(7.5) m(p*®@n) =m(n x 1, p*®n|U(n) x U(co)n).

For we have

L? (.?(ZCsj, H(Csj) , ug)U(OO)" =L? <.<Z<<C” , HC8j) , VG)

where U(oo), is acting on the right of # (3" Ce;, [[Ce;). By (5.3)
with F = C it follows that

LA, v) =Y p*@nx (p@n*)Vh,

Inserting this into (7.3) then yields (7.5).

Since the representations of U(H), are always infinite dimensional
(if nontrivial), as are the cocycles provided by (7.1), it seems reason-
able to insert the following

(7.6) Conjecture. The map
Hom(U(n) x U(H),, U(N)) — H'(U(H), F(Gr(n, C*), U(N))

defined by the induction process above (which we know is injective)
is an isomorphism.

Note that all this cohomology vanishes when pulled back to .&’.
We will see that this is not so for the infinite dimensional induced
representations we will now construct.

To induce a general time representation of U(n)xU(c0), , it suffices
(as we will see below) to consider 1xH_, where H_ =Sspan{e;:j > n}
is the defining representation for U(oco),. Intuitively this should be
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the L? sections of the bundle U(H) xymxuw ) H- — Gr(n, H).
The problem is that the measure is not supported on Gr(n, H). It
turns out that this bundle extends in a U(oo)-equivariant manner to
a Hilbert bundle over the space Gr(n, C*). We will check this by
observing that the cocycle extends.

For this purpose we consider graph coordinates at the basepoint
C"e Gr(n, H):

Z(C", H-) - Gr(n, H): z — graph(z).

A (carefully chosen) unitary trivialization over this coordinate patch
is then given by the map

Z(C", H-) x H- — U(H) xymxu_) H-

o[z )

where the square brackets denote equivalence classes of pairs, and
X1 = x1(z), y = y(z) are defined by the following criteria:

(7.7) xiVxit=1+2"z, yVyl=1+zz",

y:H_ — H_ has positive diagonal entries and is triangular, i.e.,
y:H_ — H_ has positive diagonal entries and is triangular, i.e.,
y(XCM Cej) € M Ce; for all M (x; can be defined in a simi-
lar manner, but this is not so important). We claim that the action of
g=(4%) € U(c0) is given by

(78) Z—>g-z=(c+dz)(a+bz)—l,
v—ogv=d(g, g z)v

where

(7.9) d(g, g 2)=y(g- 2)"1(d(g) — c(g)z")y(z).

It will follow from this that the action on sections, in these coordinates,
is given by

(g-B)(2)=d(g, 2)B(g™" - 2).
This calculation is of course straightforward, but there is an important
observation to be made. If g € U(n + m) C U(oo), the matrix of
d(g) — c(g)z*, relative to splitting the basis of H_ into {gj:n < j <
n+ m} and {¢j:n+m < j}, is of the form

d—cz*= (8 *).
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When we multiply this on the right by y(z), we obtain a matrix
which is upper triangular except in the upper m x m block, thus
d(g, g-z)~', which is the unitary matrix that brings (d —cz*)y back
into the upper triangular form y(g-z), is of the form 1+ finite rank.
Furthermore, d(g, g-z) only depends upon a finite number (m?) of
the entries of z. For all the calculations are “local”: the upper m x m
block of d — cz* depends upon finitely many z;;, the entries in y
depend upon finitely many z;;, since y is obtained by Gaussian elim-
ination and inverting a triangular matrix, etc. This essentially proves
the following

(7.10) LEMMA. For g € U(oo) the cocycle d(g, z) defines a class
in HY(U(H), F(Gr(n, C®), U(H.))) (relative to the unique tame in-
variant measure class).

The only remaining point to check is that the representation corre-
sponding to d(g, z) is tame (this implies the extension from U(oo)
to U(H)). This follows from noting that for g = (¢ ;), d(g, z) =d,
and using Kirillov’s Lemma (2.3).

We will denote the tame representation of U(H) corresponding
to d(g, z) by Ind(1 x H-), the “representation induced by 1 x H_
of U(n) x U(H-)”. For an arbitrary irreducible tame representation
p* ® n of U(H-), the induced representation corresponding to
1 x p* ® n is defined the cocycle

p*(d(g, z))®n(d(g, z)).

Combining this with the inducing mechanism which we described for
U(n) earlier, we obtain a map

Hom(U(n)xU(H-), U(%,)) = H'(U(H), F(Gr(n, C*), U(%))),
where for irreducible representations
xp*®n—Ind(n x p*®n).

These representations cannot be decomposed by the standard kind
of argument we employed for Ind(zx 1) above. It is natural to suspect
that the standard reciprocity formula holds, but I have made little
headway in confirming this.

There are two remarks which should be added. The first is that
these cocycles do arise naturally, despite their mysterious appearance
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here. If one considers the action of U(co) in the cotangent bundle
of Gr(n, C*®), it is possible to define an invariant inner product in
the fibers by a renormalization process ([Pi6]). The cocycle that arises
is one of those appearing here. This renormalization process yields a
Laplace operator, and decomposing the representation corresponding
to the cocycle would decompose the operator.

The second remark is that these cocycles do not simplify when
pulled back to .#’. This is easily verified by restricting the corre-
sponding representation to U(n) x U(H-). Thus the classification
problem is quite complicated even for elemental actions such as

U(oo) x (C*, Gaussian measure).
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