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BOUNDED HANKEL FORMS WITH WEIGHTED NORMS
AND LIFTING THEOREMS

TAKAHIKO NAKAZI

Bounded Hankel forms with respect to weighted norms are studied.
The Nehari's theorem about the norms of the classical Hankel forms
is generalized. This is essentially a lifting theorem due to Cotlar and
Sadosky. Moreover a theorem about the essential norms of Hankel
forms is proved. This relates with a theorem of Adamjan, Arov and
Krein in the special case and gives a new lifting theorem which has
applications to weighted norm inequalities, and the F. and M. Riesz
theorem.

1. Introduction. Let
00

i=—oo j=—oo

where a and b are finite sequences. Then A[a, b] is called a ses-
quilinear form in the variables a and b .

Let & be the set of all trigonometric polynomials and m the nor-
malized Lebesgue measure on the unit circle T. If we put u —
Σn

j=-najzi f o r fl = (... , 0, Λ - Λ , . . . , αo, αi, . . . , α Λ , 0, . . .) then
u belongs to & and / \u\2 dm = Σ " = - Λ \aj\2 . Let

A(u,v)=A[a,b]

where u = Y%=-najZJ' and v = Σ ^ l _ m 6 / z 7 . Then we say that
A(u, v) is a sesquilinear form on & x & . It is clear that

A{βχux + β2u2, v) = βχA(uι, υ) + β2A(u2, υ)

and
A(u9 a\V\ +a2v2) = aιA(u, V\) + a2A(u, v2).

If Ajj = a(i + j) then A(u, v) is called a Hankel form on & x &

and we will write those forms φ(u,υ), ψ(u,v) or etc.
Let ^ = {fe^: f(j) = 0 if j < 0} and ^_ = {fe&>: f{j) = 0

if J > 0}. If A is restricted to ^ + x 30- then the restriction of A
is called a sesquilinear form on «̂ + x ^ _ . If ^ is a Hankel form on
^ x 3° then we will write

Hφ = the restriction of ^ to ^ + x ^ _

and φ is called a symbol of Hφ .
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A sesquilinear form A on &> x 3° is said to be bounded if there
exists a positive constant γ such that \A(u9 υ)\ < γ if f\u\2dm < 1
and J\v\2dm < 1. We will generalize this definition. Let μ and v
be finite positive Borel measures on Γ, A sesquilinear form A on
3° x & is said to be bounded w.r.t. (μ9v) if there exists a positive
constant γ such that

0 , v)\2 <γ2 \u\2dμ / |w|2rfi/ (u9

The smallest number 7 for which the inequality above is refered to
as the norm of the form A and we will write γ = || |^4|||, where the
pair of measures is fixed. Similarly for the norm γ of the form A on
^ + x 3P- we will write γ == ||^4||. When the form A(u, v) is bounded
on & x <P w.r.t. (μ, v) , it can be extended to a form on (the L2(μ)
closure of &>) x (the L2(z/)-closure of &>). Then we will still write
A(uf

9v') for u1 and υf in the closures. It is the same for the case of
&>+ x ^ _ .

For 0 < / ? < o o Hp = Hp(m) denotes the usual Hardy space, that
is, the Lp = LP{m)-closure of ^ + . C denotes the set of all continu-
ous functions on T. Then H°° + C is the closure of U^=i ΈnH°° [9,
Theorem 2].

Our program is as follows. In §2 we will give representations of
bounded Hankel forms on &ιx^ . In §3 generalizing Nehari's theorem
([13], [15, p. 6]) we will calculate the norms of bounded Hankel forms
on ê V x^_ . This is, in fact, the lifting theorem of Cotlar and Sadosky
[4] that appears as a corollary in §6. In §4 we will determine compact
bounded Hankel forms on <̂ + x 3P-. This relates with Hartman's
theorem [8] in a special case. In §5 we will give the distance between
a given Hankel form and the set of all compact sesquilinear forms.
In §6 as a result of the previous sections we will obtain a new lifting
theorem which contains one due to Cotlar and Sadosky [4]. In §7
we will apply results in the previous sections to problems in weighted
norm inequalities as in [3] and to get a quantitative F. and M. Riesz
theorem [16].

2. Bounded Hankel forms on & x &. For some pair μ and v
of finite positive Borel measures on T, there exist nonzero bounded
sesquilinear forms w.r.t. (μ, v) but in Corollary 1 it is shown that no
nonzero Hankel forms can exist.

PROPOSITION 1. If φ is a bounded Hankel form on 9° x & w.r.t.
(//, v) and \\\φ\\\ = y then the following are valid.
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(1) There exists a finite Borel measure λ on T such that

φ{μ, v) = / uvdλ (u, v

125

and

\λ(E)\<γ\μ(E)\\u(E)\

for any Borel set E in T.
(2) If μ = μa + μs and v — va + vs are Lebesgue decompositions

w.r.t. λ then φ can be assumed to be a bounded Hankel form on
3° x & with respect to (μa, va).

Proof. There exists a bounded linear operator Φ from L2(μ) to
L2{v) such that φ(u9 v) = f(Φu)υdu . Since φ{zι, ~zj) = φ{\, zi+j),

φ(u, v)= I

where k = Φl G L2{y). Set dλ = kdu; then

/ uvdλ <γ2 \u\2dμ I \v\2dv

for any u G L2(μ) and ^ G L2(v), and hence (1) follows. There
is a Borel set £ Λ in T with μs(Ea) = vs(Ea) = 0 on which λ is
concentrated. Then XEU G i^2(μ) C\L2(v) and so

<γ2 f\u\2dμa ί\v\2dva

= χEL2(y). Thisfor any t/ e L2{μa) = XEaL
2{μ) and i; e

implies (2).

COROLLARY 1. If φ is a bounded Hankel form on 3° x
(μ, i/), α«ί/ μ α«rf ^ ^r^ mutually singulary then φ = 0.

COROLLARY 2. // $? w α bounded Hankel form on & x
(w\dm, widm), then for some k in L°°

w.r.t

φ{μ, v) = /

Conversely such ^ is bounded w.r.t.

( M , ?;

rfm, wi dm).
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3. Bounded Hankel forms on ^ _ x 3?- . In this section we will give
a generalization of Nehari's theorem (see [13], [15, p. 6]) which was
proved in the case of μ = v — m. For any Hankel form φ on & x &>,
if Hφ is bounded on &>+ x 30- w.r.t. (μ, v) then there exists a finite
Borel measure 1 on Γ such that

φ(u , v) = /

The proof is similar to the proof of Proposition 1. Let λ = λa + λs,
μ = μa + μs and z/ = va + i/y be Lebesgue decompositions with respect
to m. Put

φa{u, υ) = / uvdλa and ^ 5 ( M , v) = I uvdλs

for any w, v in ^ . Then //« and //^ are bounded Hankel forms
Ya Ys

on c^+ x 3P- w.r.t. (//α, va) and (//5, ^ ) , respectively. Moreover

For set
H2(μ) = the L2{μ)-closure of &>+.

Then z ^ (μ) is the L2(//)-closure of 3d- . Suppose isy is a Borel set
with m(Es) = 0 where μ5 and vs are concentrated on Jζy, and Ea

is a Borel set with m{Ea) = 1 where μa and ι̂  are concentrated on
Ea . Ea can be chosen to be the complement of Es in T. Then both
the characteristic functions XEU and XE belong to H2(μ)(Λ~zH (v).
Moreover H\μ) = χEH2{μ)® χEH2(μ), and ^// 2 (//) = H\μa)
and χEsH

2(μ) = H2(μs) = L2(μs). This implies the above statement
about i/p and i/^ .

To prove the generalized Nehari's theorem, we need the following
lemma which will be used in later sections, too.

LEMMA 1. Let A be a boundedsesquilinear form on 3°+ x^_ w.r.t.
(w\ dm, wι dm) and Wj = \hj\2 for 7 = 1,2 where both h\ and hi
are outer functions in H2. If we put

then B is a bounded sesquilinear form w.r.t. (m, m, ) and \\B\\ =

Mil-

Proof. Let γ = \\A\\ then

\A(f, g)\2 < 72 j \f\2\h\2 dm j \g\2\h2\
2dm
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for any / G <̂ + and g e 3?-. For any / G ̂ + and # G ^ _ , set

F = hif and G = h2g. Then F G # 2 and G G z/7 2 . Hence

\A(h;ιF, hϊιG)\2 < γ2 f \F\2 drn f \G\2 dm.

Since both /*i and Λ2 are outer functions, we get the lemma.

The following theorem is a generalization of Nehari's theorem (cf.
[15, Theorem 1.3]) but this is the lifting theorem of Cotlar and Sadosky
in [4], with other notation. A new proof is given here (cf. [17]).

THEOREM 2. Let φ be a Hankelform on ^ x ^ . If Hφ is bounded
w.r.t. (μ9v) then there exists a Hankel form ψ bounded w.r.t. (μ9v)
on 3° x ^ such that

Hψ = Hφ and \\\ψ\\\ = \\Hφ\\.

Proof. Let γ = ||Hφ \\. By the remark above Lemma 1

\9s(f,g)\2<V2f\f\2dμsJ\g\2dvs

for all fe&>+ and ge&~. Since H2(μs) = L2(μs), this implies that
III^IH < y. Now we will prove that there exists a bounded Hankel
form ψa with respect to (μa, va) such that

HΨa = Hφa a n d \\\ψa\\\ = \\H9β\\.

Then setting ψ = ψa + φs, the theorem follows because φ = φa + φs

and max(||//pj|, \\H9s\\) = \\Hφ\\. Let dμa = wγdm and dva =
wι dm.

Case I. \o%W\ £ Lι or logW2 φ Lι. We may assume that
log^i φ. Lι. By the remark above Lemma 1,

\φa{f, g)\2 <72 f \f\2wxdm f \g\2w2dm (fe&+9 g G^_).

Since log^i $ Lι, H2(w\dm) = L2{w\dm) and hence for any
W G ^ and # G ^ L

\φa(M > S)\2 <Y2 I |w|2^i dm / | ^ | 2 ^ 2 ^ ^

Fix any neZ+. For any U\ G ̂  and ^1 G z π ^_ , there exists W G ^
and g G ̂ _ such that U\ = znu and g\ = zng. Hence

2 = l ^ ( ^ w ? z ^ ) | 2 = \φa(u9 g)\2

<ϊ2 \u\\2w\dm 1 \g\\2W
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By the same argument for any u, v e 30

\φa(u, v)\2 <γ2 \u\2W\ dm / \v\2u

This implies that \\\φa\\\ < γ. Put ψa = φa.

Case II. log^i e Lι and \ogw2 e L 1 . There exist outer functions
h\ and Λ2 in H2 such that ^ i = \h\\2 and tί;2 = |/z2|

2 (cf. [6, p.
53]). Let dλa = ^3 rfm. By Lemma 1

\f fg{hχh2)-ιw,dm\

<72 f \f\2 dm f \g\2 dm

Let s = w^hxhiY1 then by a duality argument there exists / e H°°
such that ||s + / | |oo<y.By Schwarz's lemma, this implies that

/ {s + / ) M I M 2 ^ ^ < 72 / |«iI2 ^ ^ /

1

Let v\ = /zj"1^! and ^2 = h2 w2 for any u\, w2 G ̂ . Then i^ €
and υ2 € L2(w2dm). Hence

/ vιv2w3dm+ / VιV

<γ2 \v\\2W\dm I

Since Aj"1^3 and Λ^1^9 are dense in L2(w\dm) and L2(w2dm),
respectively, if we put

w , v ) = ( I h γ h 2 ) u v d m {u,v

then 0>o is a bounded Hankel form on ^x^ w.r.t. (wi dm,
HφQ = 0 a n d | | | ^ + ^olll < y . P u t ψa = φ a + φ 0 .

Theorem 2 implies that \\Hφ\\ = inf{|| |^ + ^olll ^ 0 = 0}.
In Theorem 2 if dμ = dv = dm then Nehari's theorem follows

and if dμ = dp = w dm then the scalar version of a theorem of Page
[9] follows.

4. Compact bounded Hankel forms on ^ + x ^ _ . The ideas of this
section are closely related to those of [2]. In particular, the concept of
compact form and Theorem 3 are in Theorem la in [2]. Let A be a
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bounded sesquilinear form on ^ + x ^ _ w.r.t. (μ, i/). We say that
is compact if there exists a null decreasing sequence {γn} such that

\A{z»f,g)\2<y2f\f\2dμf\g\2dv

and

<γ2 f \f\2dμ f \g\2dv

for ft = 1,2,-.... When yw = 0 and yw_i ^ 0 for some ft, 4̂
is called finite n. In this section we will give a generalization of
Hartman's theorem [8] which was proved in the case of μ = v = m
and describes compact Hankel forms. However Theorem 4 does not
show Hartman's theorem (see Remark).

LEMMA 2. If A is a nonzero compact (finite n^O, resp.) sesquilin-
ear form w.r.t (μ9v) associated with {γn}, then it is a nonzero com-
pact [finite n Φ 0, resp.) sesquilinear form w.r.t. (w\dm, widm)
associated with {γn} where dμ/dm = W\ and dvjdm = wι. More-
over both \o%W\ and logw-i are integrable.

Proof. Let Ea and Es be Borel sets as in the remark before Lemma
1. Then XE and XE belong to H2(μ) Γ)~zH («/). Hence for n =
1,2, . . .

\A{χEsZ»f,g)\2<y2j\f\2dμsf\g\2dv {fe&+,ge&>-)

and

\A{f,χEτng)\2<γ2

nf\f\2dμf\g\2dvs (/€*>+,* 6 *L).

Since H2(μs) = L2(μs) and H2(vs) = L2{vs), for n = 1, 2, . . .

\A{χEu, g)\2 <γ2 f \u\2dμs f \g\2dv (ue&,ge&>-)

and

\A(f9 χEy)\2 < y2

nf\f\2dμf\v\2dvs

As « -> oo, it follows that A(χE/9 g) = A(f9 χE$g) = 0 for all
/ e &>+ and g e &>-. Hence A(znf, g) = A(χEaz

nf, χEag) and
A(f\~zng) = A(χE f\ XE ~zng) This implies that" A is a nonzero
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compact (finite n Φ 0, resp.) sesquilinear form w.r.t. (w\dm,
widm) associated with {γn}. If \ogw\ ^ Lι or logwι £ Lι then
H2(wχ dm) = L2(w\ dm) or H2(u)2 dm) = L2(vϋ2 dm). By the same
argument to the above, we can show that A is a zero form. Thus the
lemma follows.

THEOREM 3. Let n be a nonnegative integer.
(1) Hψ is finite n = 0 if and only if there exists a function h in Hι

such that φ(f, g) = f fghdm (fe^+,ge&>-).
(2) When nφO, Hφ is finite n if and only if there exists a function

h in -znHι and out of H1 such that φ(f, g) = f fgh dm (f e

Proof (1) There exists a finite Borel measure λ such that φ(f,g) =
ffgdλ (fe#>+,ge &>-). If Hφ is zero, by the proof of Lemma 2
φ(f9g) = φ(XEaf9 XEaS) and hence λ is absolutely continuous w.r.t.
dm. Let dλ = h dm then h dm annihilates z<̂ + and so h e Hι.
The converse is clear.

(2) Let Hφ be finite, n Φ 0. By Corollary 2, Theorem 2 and Lemma
2, there exists a nonzero function h in Lι such that

Since Z/̂  is finite, n Φ 0, by Lemma 2 there exist
with yw = 0 such that for 1 < j <n

2

zJfgh dmI
< γ] ί l/l2^! dm J \g\2w2 dm (fe<?+,ge &.

where w\ = dμ/dm and Wι = dv/dm. Moreover there exist outer
functions h\ and hi such that \hj\2 = Wj for j = 1, 2. By Lemma
1, for 1 <j <n

2

zjfg{hxh2)-ιhdmI
<γ]J\f\2dmJ\g\2dm

and hence \\zJ(hιh2)-χh + H°°\\ < yy . Since γn = 0, {hxh2)-xh e
~znH°° and hence h e ΊnHι and h <£ Hι because Hφ is rank n Φ 0.
The converse is clear because for such h, f znfgh dm = 0 (/ e



BOUNDED HANKEL FORMS 131

In the proof of Theorem 3, h\h2 € Hι and h = (hιh2)u where
u e ~znH°° . The following theorem is the generalization of this result.

THEOREM 4. Hφ is nonzero and compact w.r.t. (μ9v) if and only
if there exists a function h = hoxu in Hι x (H°° + C) and out of Hι

such that

9(f,g) = Jfghdm

and ho = h\h2 where hj is an outer function in H2, Wj = \hj\,
dμ/dm = W\ and dvjdm = w2.

Proof. Let Hφ be nonzero and compact. By Lemma 2, we may
assume that dμ = W\ dm and dv = w2 dm, and there exists an outer
function hj in H2 with Wj = \hj\2. By the proof of Theorem 3,
\\zJ(hιh2)~ιh + H°°\\ < γj and jj -> 0 as j -• oo. Thus {hxh1γ

xh e
H°° + C and hence h = {hχh2)u e Hι x (H°° + C) and out of Hι.
For the converse, put \\zJ'u + H°°\\ = γj then γj -> 0 as 7 -> oc and
for each 7 there exists ^ e H°° such that

Hence for each j

, g)\2 = JzJfghdm <γ]J\fg\\hιh2\dm

< γj / \f\2wχdm I \g\2w2dm

for all / e 3°+ and g e ^ L . This implies that //^ is nonzero and
compact w.r.t. (μ,v).

If h = h0 x w is in Hι x (i/ 0 0 + C) and p i ( / , g) = ffghdm
(/ € <^+, g e 90-) then Hψχ is compact w.r.t. (//i, v\) where ύf//i =

If /z is a complex finite Borel measure on T and μ(n) = / e~ιnθ dμ
= 0 for any negative integer n, then dμ = hdm for some h in H1.
This is the famous F. and M. Riesz theorem (cf. [11, p. 47]) and
a corollary of the following corollary which follows from Theorem 3
and 4. That is, it is just the case of ε0 = 0.

COROLLARY 4. Let μ be a complex finite Borel measure on T and

znFdμ F G^+, J \F\d\μ\ < l | .
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If εn->0 as n -> oc then μ = hdm and h is in H1 x (H°° + C). //
sn = 0 for some n > 0 ί/ẑ /t /z belongs to ~znHι.

Proof. By Schwarz's lemma,

supί I znfgdμ ;fe^+,ge^-,J\f\2d\μ\<l

and

Now apply Theorems 3 and 4 for φ(znf, g) = f znfgdμ.

5. Distance between //^ and the set of all compact sesquilinear
forms.

T H E O R E M 5. Let Hφ be a bounded Hankel form and A a compact
(finite n, resp.) sesquilinear form on ^ + x ^ _ w.r.t. ( μ , ^ ) . If
\\Hφ + A\\ <γ then there exists a symbol ψ such that Hψ is a compact
{finite n, resp.) Hankel form w.r.t. (μ, v) and \\\φ + ψ\\\ < γ.

Proof. By the remark preceding Lemma 1, we can decompose φ =
ψa + ψs where Hφ is bounded w.r.t. (μa, va) and Hφ is bounded
w.r.t. (μs, vs). If \\Hφ + A\\ < γ then by Lemma 2 and the proof of
Theorem 2 | | | ^ | | | < γ and | | i/^+^4| | < γ. Hence we may assume that
φ = φa 9 μ = μa = w\ dm and v = va = w2 dm. If log^i φ L2(m)
or logw2 ^ Lι(m), by Lemma 2 ^ ( / , ,?) = 0 (f e &+, g e &-)
and hence Theorem 2 implies the theorem. By Lemma 1

<y2 f\f\2dmj\g\2dm (fe&+,

and there exists a null decreasing sequence {yn} such that

<ylf \znf\2 dm I \g\2 dm (fe£?+,ge &>-).

Hence there exist bounded linear operators /// and s/ from H2(m)

to ~ΪΉ (m) such that

and
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where / G L°°(m) and ( , ) denotes the usual inner product with
respect to m. Let U be a unilateral shift on H2 then | | j/ί7w | | —• 0
because γn —> 0. By the same argument as in [10, p. 6], there exists a
function k G H°° + C such that ||/ + fc||oo < 1. Similarly to the proof
of Theorem 2 put

ψ{u, v) = / {kh\hi)uvdm (u, v e

Then ψ is a bounded Hankel form w.r.t. (wi rfm, widm) and by
Theorem 4 77̂ , is compact. Thus

Theorem 5 implies that inf{||/fy + A\\: A ranges over all compact
sesquilinear forms} = inf{|||p + ^ | | | : Hψ ranges over all compact
Hankel forms}. When dμ = dv = dm, this relates a theorem of
Adamjan, Arov and Krein (cf. [1], [15, p. 6]). However the former
does not imply the latter (see Remark).

6. Lifting theorem. In this section we obtain a new lifting theorem
which contains one due to Cotlar and Sadosky [2]. Let A\j (/, j =
1,2) be bilinear forms on & x & and suppose

A\ι(u,u)>0, A22(u,u)>0 and A\2(u, v) = A2\(u9 v).

Set

A(U,U)=

where u = (u\, uι) and u\ G ̂  for / = 1, 2. We write A = [Aij\.
If /?y (/, j = 1, 2) are finite Borel measures on Γ and

( n , v ) =

then 4̂y (i, j = 1,2) are bounded Hankel forms on ^ x ^ w.r.t.

(l/>ϋl' \Pij\) β y t h e hypothesis on [Ay]

Pn>0, P22>O and pi2 = ρ2ι-

We write A = [Ay] = [/?/7] = /? and we call p a matrix of measures.
A y 0 w.r.t. Γ means that A is positive w.r.t. Γ:

2

A(U , U) = J Γ Λy (M/ , W;) > 0 (U G Γ)

1,7=1

where Γ denotes & x ^ or ^ + x «̂ _ .
We say that A is compact (finite n, resp.) w.r.t. p iϊ An= A22 =

0 and A\2 is compact (finite ή) w.r.t. (/?n , P22) -
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THEOREM 6. Let p be a matrix of measures. If

p + A y 0 w.r.t. 3P+ x 3°-

where A is compact (finite n, resp.) w.r.t p, then there exists a
compact (finite n, resp.) matrix τ of measures w.r.t. p such that

p + τyθ w.r.t. 3P x&>.

Proof. Let

P12CΛ g) = Jfgdpn (fe^+,ge&>-).

Then ψ\2 + An is a bounded bilinear form on ^ + x 9°- w.r.t. (p\\,
P22) because p + A >• 0. Let | |^ 1 2 + ^nll < 7 . By Theorem 5, there
exists a symbol ψ such that /Γ^ is a compact (finite /?, resp.) w.r.t.
{Pu 9 P22) a n d |||^i2 + V̂HI < 7 . By Theorems 3 and 4, there exists a
function h in L 1 such that

Ψ(f,g) = J fghdm (fe&+9ge&-).

Then dτ\2 — h dm is the desired measure.

COROLLARY 3 (Cotlar and Sadosky). Let p be a matrix of measures.

If
p y 0 vv.r.ί. 3°+ x ^ L

a finite n = 0 matrix τ of measures such that

ρ + τ y 0 w.r.ί. ^ x^ 5 .

5y Theorems 3 αnrf 4, we can describe compact (finite n, resp.)
matrices of measures w.r.t. p.

7. Weighted norm inequalities. In this section we show known re-
sults in the L2 weighted problem, using the theorems of §§3, 4 and
5. For any fixed nonnegative integer n, we want to find the positive
measure μ for which there is a nonzero positive measure vn such
that

j\znf\2dvn< f\znf+g\2dμ {fe&>+,ge&>-).

The inequality above is equivalent to the following one:

Jznfgdμ < j\f\2d{μ-vn)j\g\2dμ (f € ̂  , g € &>-).
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Hence the problem is related with prediction problems when such a
measure μ arises as the spectral density of a discrete weakly station-
ary Gaussian stochastic process. The following proposition is due to
Arocena, Cotlar and Sadosky [3]. The Helson-Szegό theorem [10] and
the Koosis theorem [12] follow from the first part in it.

PROPOSITION 7. Let μ be a positive measure. There is a nonzero
positive measure u such that

j\f\2dv< f\f + g\2dμ (fe^^ge^.)

if and only if dv = udm and there is a nonzero k in Hι such that

\w + k\2 <(w — u)w

where dμ = w dm + dμs. Then if log(w - u) is in Lι then u <
(1 - γ~ι)w and γ > 1.

We can prove Proposition 7 using the lifting theorem of Cotlar and
Sadosky (Theorem 2 or Corollary 3) as that in [3]. The following
theorem is closely related to results in [3]. We will give a proof using
Theorems 3 and 4.

THEOREM 8. Let μ be a positive measure. For any fixed nonnegative
integer n, let vn be a nonzero positive measure such that

j\znf\2dvn< j\znf+g\2dμ

Suppose that there exists a positive measure λ and a decreasing se-
quence {en} such that vn — μ-enλ and 0 < en < 1.

(1) εn = 0 for some n if and only if dvn = dμ = w dm and w = sh
where h is an outer function with w = \h\ and s is in ~znH°°.

(2) εn —> 0 as n —• oo if and only if dvn = (w\ - εnw2)dm,
dμ = w\ dm, dλ = w^dm + dλs and w\ = sh\hι where hj is an
outer function with Wj = \hj\2 for j = 1, 2 and s is in H°° + C.

Proof. Set

φ{u ,v)= uv dμ (u, v e 30)

then by the remark before Theorem 7 Hφ is finite n and compact
w.r.t. (λ, μ) for (1) and (2), respectively. (1) follows from (2) of
Theorem 3. For if εn = 0 for some n then w e^nHι and hence
w = \h\ =~znqh where q is in H°°. (2) follows from Theorem 4.
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In Theorem 8, if λ = μ this was proved by Helson and Sarason
[10]. Theorem 8 is also a corollary of Theorem 6 which is a new
lifting theorem.

REMARK. Hankel operators from H2(μ) to ~zΉ (u). Let μ and v
be finite positive Borel measures on T. M% and Mv

z are multiplica-
tion operators by the coordinate function z on L2(μ) and L2{y), re-
spectively. Let Φ be a bounded linear operator from L2(μ) to L2{y)
and (Φu,v) = f(Φu)vdv for u, v in ^ . Then ΦM^ = Λ/J'Φ
if and only if φ(u,v) = (Φw, v) is a bounded Hankel form on
^ x ^ w.r.t. (μ,v). Let P and Q be the orthogonal projec-
tions from L2{μ) to H2(μ) and from L2(v) to zϊf (i/), respec-
tively. Put H = QΦP; then (///, g) = H9(f, *) for / in ^ +

and g in ^ _ . Put S% = PM?\H2{μ) and 5 | = QM^\iΉ2(u) then
^ 5 ^ = (S%)*H. Theorem 2 calculates the norm of H. In general,
even if H is a compact linear operator, /fy may not be a compact
sesquilinear form.

When μ = v = m, Φ is a multiplication operator Mφ by a func-
tion Φ in L°°(m) and | |Φ| | = ||Φ||oo = | | | p | | | . H is called a Hankel
operator and \\H\\ = \\HΨ\\. //^ is a compact Hankel form if and
only if H is a compact Hankel operator. For by Theorem 4 Hφ is
compact if and only if φ(f,g) = / fghdm (f e 3°+, f e 30-)
and h e H°° + C. By Hartman's theorem (cf. [15, Theorem 1.4])
H is compact if and only if Φ € H°° + C. Moreover the essential
norm \\H\\e of H coincides with inf{||if^ + A\\\ A ranges over all
compact sesquilinear forms}. For by a theorem of Adamjan, Arov
and Krein [1], \\H\\e = | |Φ + H°° + C\\. While by Theorems 4 and
5 inf \\Hφ + A\\ = inf{|||^ + ψ\\\: Hψ ranges over all compact Hankel
forms} = \\h + H°° + C\\ where φ(f, g) = f fghdm .
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