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BOUNDED HANKEL FORMS WITH WEIGHTED NORMS
AND LIFTING THEOREMS

TAKAHIKO NAKAZI

Bounded Hankel forms with respect to weighted norms are studied.
The Nehari’s theorem about the norms of the classical Hankel forms
is generalized. This is essentially a lifting theorem due to Cotlar and
Sadosky. Moreover a theorem about the essential norms of Hankel
forms is proved. This relates with a theorem of Adamjan, Arov and
Krein in the special case and gives a new lifting theorem which has
applications to weighted norm inequalities, and the F. and M. Riesz
theorem.

1. Introduction. Let

o0 [e.¢]
A[d, b] = Z Z A,ja,-bj
i=—00 j=—00
where a and b are finite sequences. Then A[a, b] is called a ses-
quilinear form in the variables a and b.

Let % Dbe the set of all trigonometric polynomials and » the nor-
malized Lebesgue measure on the unit circle 77. If we put u =
Z};_najzf for a=(..,0,a_,...,a0,4a1,...,a,,0,...) then
u belongsto & and [|ul*dm=3__, |aj|*. Let

A(u,v) = Ala, b]

where u = Y7__,a;z/ and v = Y7L b;z/. Then we say that
A(u, v) is a sesquilinear form on & x #. It is clear that

A(Bruy + Pauz, v) = BrA(uy, v) + BrA(uz, v)
and

A(u , @1V + az’Uz) = EIA(u s ’Ul) + EzA(u s 'Uz).
If A;j = a(i+ j) then A(u,v) is called a Hankel form on & x &
and we will write those forms ¢(u, v), w(u, v) or etc.

Let #Z, ={feP: f(j)=0if j<0} and Z ={feP: f(j)=0
if j > 0}. If 4 is restricted to &, x Z_ then the restriction of A4
is called a sesquilinear form on %, x #_. If ¢ is a Hankel form on
P x P then we will write

H, = the restriction of ¢ to &, x Z_

and ¢ is called a symbol of H, .
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A sesquilinear form 4 on &£ x £ is said to be bounded if there
exists a positive constant y such that |A(u, v)| <y if [|u>?dm <1
and [|v|?dm < 1. We will generalize this definition. Let 4 and v
be finite positive Borel measures on 7. A sesquilinear form 4 on
P x P 1is said to be bounded w.r.t. (u, v) if there exists a positive
constant y such that

A(u, v)2 3y2/|u|2du/lv|2dv (U, v €P).

The smallest number p for which the inequality above is refered to
as the norm of the form A and we will write y = |||4|||, where the
pair of measures is fixed. Similarly for the norm y of the form 4 on
P x P_ we will write y = ||4||. When the form A4(u, v) is bounded
on # x % wurt (u,v),itcan be extended to a form on (the L2(u)-
closure of &) x (the L?(v)-closure of ). Then we will still write
A(', v'") for ' and v’ in the closures. It is the same for the case of
P X P,

For 0 < p < 0o HP = H?(m) denotes the usual Hardy space, that
is, the L? = LP(m)-closure of #,. C denotes the set of all continu-
ous functions on 7'. Then H* + C is the closure of |J,2; Z"H* [9,
Theorem 2].

Our program is as follows. In §2 we will give representations of
bounded Hankel forms on #x.% . In §3 generalizing Nehari’s theorem
([13], [15, p. 6]) we will calculate the norms of bounded Hankel forms
on Z, x%_ . This is, in fact, the lifting theorem of Cotlar and Sadosky
[4] that appears as a corollary in §6. In §4 we will determine compact
bounded Hankel forms on %, x #_. This relates with Hartman’s
theorem [8] in a special case. In §5 we will give the distance between
a given Hankel form and the set of all compact sesquilinear forms.
In §6 as a result of the previous sections we will obtain a new lifting
theorem which contains one due to Cotlar and Sadosky [4]. In §7
we will apply results in the previous sections to problems in weighted
norm inequalities as in [3] and to get a quantitative F. and M. Riesz
theorem [16].

2. Bounded Hankel forms on & x & . For some pair 4 and v
of finite positive Borel measures on T, there exist nonzero bounded
sesquilinear forms w.r.t. (4, v) but in Corollary 1 it is shown that no
nonzero Hankel forms can exist.

ProvrosITION 1. If ¢ is a bounded Hankel form on P x P w.r.t.
(u,v) and |||p||| =y then the following are valid.
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(1) There exists a finite Borel measure A on T such that
¢(u,v)=/uvdﬂ (u,veP)
and

[A(E)| < v|u(E)||v(E)|

for any Borel set E in T.

(2) If u = pg + us and v = v, + vs; are Lebesgue decompositions
w.r.t. A then ¢ can be assumed to be a bounded Hankel form on
P x P with respect to (Ug, Vg) -

Proof. There exists a bounded linear operator ® from L*(u) to
L?(v) suchthat ¢(u, v) = [(®u)vdv. Since ¢(z', Z/) = (1, z'*/),

q)(u,v)z/uﬁkdv (u,v € &)

where k = ®1 € L?(v). Set dA = kdv ; then

2
'/u?;’dl < yz/lulzduflvlzdu

for any u € L?(u) and v € L?(v), and hence (1) follows. There
is a Borel set E;, in T with us(E,;) = vs(E;) = 0 on which 4 is
concentrated. Then xg € L2(u) N L?*(v) and so

2
l/uvdz < y2/|u|2dua/|vlzdya

for any u € L*(us) = xg L*(u) and v € L?(vy) = xg L*(v). This
implies (2).

COROLLARY 1. If ¢ is a bounded Hankel form on & x # w.r.t.
(u,v), and u and v are mutually singular, then ¢ =0.

COROLLARY 2. If ¢ is a bounded Hankel form on & x % w.r.t.
(widm , wodm), then for some k in L

p(u,v)= /uvk\/wlwz dm (u,veP).

Conversely such ¢ is bounded w.r.t. (w;dm, wydm).
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3. Bounded Hankel forms on &2, x &2_. In this section we will give
a generalization of Nehari’s theorem (see [13], [15, p. 6]) which was
proved in the case of 4 = v = m. For any Hankel form ¢ on #x%,
if H, is bounded on £, x #_ w.rt. (u, v) then there exists a finite
Borel measure 4 on T such that

(o(u,v)=/uﬁdi e ver)

The proof is similar to the proof of Proposition 1. Let A = A, + 4;,
U= Uuz+us and v = v, +v, be Lebesgue decompositions with respect
to m. Put

0a(u, v) =/uﬁdia and ¢s(u, v) =/uﬁd/ls

forany u, v in &#. Then H, and H, are bounded Hankel forms
on P, X P_ wrt. (Ug, V) and (s, vs), respectively. Moreover
max(||Hy ||, ||Hy,I) = [ Hll.
For set
H?(u) = the L?(u)-closure of &, .

Then 7ﬁz(u) is the L2(u)-closure of #_. Suppose E; is a Borel set
with m(E;) = 0 where u; and v; are concentrated on E;, and E,
is a Borel set with m(E,;) = 1 where u, and v, are concentrated on
E,. E, can be chosen to be the complement of E; in 7. Then both
the characteristic functions yz and xr belong to H*(u) NZH (v).
Moreover H*(u) = xg H*(u) ® xg H*(u), and xg H*(u) = H*(1q)
and yg H*(u) = H*(us) = L*(us) . This implies the above statement

about H¢ and H, .
To prove the generahzed Nehari’s theorem, we need the following
lemma which will be used in later sections, too.

LEMMA 1. Let A be a bounded sesquilinear form on P, x P_ w.r.t.
(wydm, wydm) and w; = |h;|* for j =1, 2 where both h, and h,
are outer functions in H?. If we put

B(f,8) =AMl f By g) (fe?, , ges)

then B is a bounded sesquilinear form w.rt. (m,m, ) and ||B| =
14| )

Proof. Let y = ||A]; then
A &) <92 [ 11PImPdm [ 1gPihaf dm
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forany f € #, and g€ # . Forany f € %, and g € &#_, set
F=hf and G=h,g. Then F € H? and G € ZH" . Hence

AT'F, b\ G)? < y2/|F|2dm/|G|2dm.
Since both A; and A, are outer functions, we get the lemma.

The following theorem is a generalization of Nehari’s theorem (cf.
[15, Theorem 1.3]) but this is the lifting theorem of Cotlar and Sadosky
in [4], with other notation. A new proof is given here (cf. [17]).

THEOREM 2. Let ¢ be a Hankel form on # x . If H, is bounded
w.r.t. (u,v) then there exists a Hankel form y bounded w.r.t. (u,v)
on P x P such that

Hy =H, and [||y||]=][H,l.
Proof. Let y = ||Hyp||. By the remark above Lemma 1

0s(f 5 Q)P < 7 / /12 dus / 12 dvy

forall f €%, and g € #_. Since H?(us) = L?(us), this implies that
[llgs|l| < y. Now we will prove that there exists a bounded Hankel
form y, with respect to (u4, v;) such that

Hy =H, and [[|y.lll=[H,,.

Then setting ¥ = v, + ¢, , the theorem follows because ¢ = ¢, + ¢;
and max(|Hp, ||, |Hp,I) = |Hyll. Let dus = widm and dv, =
wrdm.

Case 1. logw, ¢ L! or logw, ¢ L!. We may assume that
logw; ¢ L!. By the remark above Lemma 1,

0alf, @ <9* [ 7P dm / gPwadm  (fe?,, geR).

Since logw; ¢ L!, H*(wydm) = L*(w;dm) and hence for any
UERP and g € Z#-

10au, )2 < 72 / juPw, dm / Ig[2w; dm.

Fixany ne€ Z, . For any u; € # and g, € z"%_, there exists u € &
and g € #_ such that u; = z"u and g; = z"g. Hence

1021 81)1* = |9a(z"u, 2"g)|* = |pa(u, &)
< y2/|u1|2w1dm/|g1|2w2dm.
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By the same argument for any u, v € #

9, V)P <7 [ juPuwrdm [ Pwzdm.
This implies that [|[@.|| < 7. Put y, = ¢,.

Case 11. logw; € L! and logw, € L!. There exist outer functions
h; and A, in H? such that w; = |A|? and w, = |hy|* (cf. [6, p.
53]). Let dA, = w3dm. By Lemma 1
2

I/f?(hlhz)_lws dm

< y2/|f|2dm/|g|2dm (feP., geP).

Let s = w3(hihy)~!; then by a duality argument there exists / € H*®
such that ||s + /||cc < 7. By Schwarz’s lemma, this implies that

2
<y / w12 dm / wlPdm  (ur, us € ).

/(s + Duyiydm

Let v; = h7'u; and v, = F;luz for any wu;, u, € #. Then v, €
L?(wydm) and v, € L?(w,dm) . Hence

’/v1v2w3dm+/v1ﬁ2(lh1h2)dm

< y2/|v1|2w1dm/|112|2w2dm.

Since k!9 and h;'% are dense in L% (w;dm) and L*(w,dm),
respectively, if we put

po(u,v) = /(lhlhz)m‘)dm (u, v e P)

2

then ¢¢ is a bounded Hankel form on #x&# w.r.t. (widm, wodm),
H, =0 and |||gs + @oll| £ 7. Put w, = 9a+ 9.

Theorem 2 implies that ||H, | = inf{|||¢ + ¢ol||: H,, = 0}.

In Theorem 2 if du = dv = dm then Nehari’s theorem follows
and if du = dv = wdm then the scalar version of a theorem of Page
[9] follows. )

4. Compact bounded Hankel forms on £, x #_. The ideas of this
section are closely related to those of [2]. In particular, the concept of
compact form and Theorem 3 are in Theorem 1a in [2]. Let 4 be a
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bounded sesquilinear form on £, x #_ w.r.t. (4, v). We say that 4
is compact if there exists a null decreasing sequence {y,} such that

A S, R <9 [ 1fPdu [1gPdv  (fes, ges)
and
A 2P < [1fPdu [1gPdy (e, ges)

for n =1,2,.... When y, = 0 and p,_; # 0 for some n, A4
is called finite n. In this section we will give a generalization of
Hartman’s theorem [8] which was proved in the case of u = v =m
and describes compact Hankel forms. However Theorem 4 does not
show Hartman’s theorem (see Remark).

LEMMA 2. If A is a nonzero compact (finite n # 0, resp.) sesquilin-
ear form w.r.t. (1, v) associated with {y,}, then it is a nonzero com-
pact (finite n # 0, resp.) sesquilinear form w.r.t. (w;dm, w,dm)
associated with {y,} where du/dm = w, and dv/dm = w,. More-
over both logw; and logw, are integrable.

Proof. Let E, and E; be Borel sets as in the remark before Lemma
1. Then xg and xg belong to H2(p) 07_172(1/). Hence for n =
1,2,...

Az 21 8P <7 [\Pdus [18Pdv  (feo, ges)
and
AL 7P <33 [ 1P du [IsPdvs  (fesr, ges)
Since H?(us) = L*(us) and H?(vs) = L*(v5), for n=1,2, ...
|A(xeu, &) < %3/ Iulzdusflglzdv (ueP, ge?)
and
AL g 0P <R [1Pdu [l dv (feo ves)

As n — oo, it follows that A(xg f, g) = A(f, xg,g) = 0 for all
f€eP and g € #_. Hence A(z"f, g) = A(xg,z"f, xg,g) and
A(f,z"¢) = A(xe,f» x£,z"g). This implies that 4 is a nonzero
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compact (finite n # 0, resp.) sesquilinear form w.rt. (w;dm,
wydm) associated with {y,}. If logw; ¢ L! or logw, ¢ L! then
H*(wydm) = L*(w, dm) or H*(w,dm) = L*(w,dm). By the same
argument to the above, we can show that A4 is a zero form. Thus the
lemma follows.

THEOREM 3. Let n be a nonnegative integer.

(1) H, is finite n =0 if and only if there exists a function h in H!
such that ¢o(f, g8)=[fghdm (feP.,g€F).

(2) When n #0, H, is finite n if and only if there exists a function
h in Z'"H' and out of H' such that ¢(f, g) = [fghdm (f €
@4. , g€ cga_) .

Proof. (1) There exists a finite Borel measure A such that ¢(f, g) =
[fgdi (feZP,geP ). If H, is zero, by the proof of Lemma 2
o(f, 8)=o( XE, f, XE, g) and hence A is absolutely continuous w.r.t.
dm. Let di = hdm; then hdm annihilates z#, and so h € H!.

The converse is clear.
(2) Let H, be finite, n # 0. By Corollary 2, Theorem 2 and Lemma
2, there exists a nonzero function # in L! such that

o(f, g)=/f§hdm (feP. , geP).

Since H, is finite, n # 0, by Lemma 2 there exist y;, y2, ..., ¥n
with y, =0 such that for 1 <j<n

l/szgharm2

< y}/lflzwl dm/lglzwzdm (feP , geP),

where w; = du/dm and w, = dv/dm. Moreover there exist outer
functions 4, and A, such that |A;|> =w; for j=1,2. By Lemma
I,for 1<j<n

l/sz‘g(hlhz)‘lh dm

sy}/ldem/wdm (fe?, geP)

and hence ||z/(h1hy)"1h + H®|| < y;. Since y, = 0, (hihy)"h €
Z"H> and hence # € Z"H! and h ¢ H' because H, isrank n#0.
The converse is clear because for such s, [z"fghdm =0 (f €
P, 8EP).

2
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In the proof of Theorem 3, hh, € H! and h = (hihy)u where
u € Z"H* . The following theorem is the generalization of this result.

THEOREM 4. H, is nonzero and compact w.r.t. (i, v) if and only
if there exists a function h = hyxu in H' x (H® + C) and out of H'!
such that

¢(f,g)=/f§hdm (fe, ges)

and hy = hihy where h; is an outer function in H?, w; = |hj|,
du/dm =w, and dv/dm = w,.

Proof. Let H, be nonzero and compact. By Lemma 2, we may
assume that du = w; dm and dv = w,dm, and there exists an outer
function h; in H? with w; = |h;|*>. By the proof of Theorem 3,
”Zj(}llhz)_lh +H°°l| <7y and Vi — 0 as j — oo. Thus (h]hz)_lh €
H* 4+ C and hence & = (hihy)u € H' x (H*® + C) and out of H!.
For the converse, put ||z/u + H®|| = y;; then y; - 0 as j — co and
for each j there exists g; € H* such that

|z7h + hihagj| < yjlhihal.

Hence for each j
. . 2
021, 9P =| [ 2/ rgham| <33 [ 11l dm

<7? / 2w, dm / \g[2w; dm

for all f € . and g € #_. This implies that H, is nonzero and
compact w.r.t. (u, v).

If h=hyxuisin H' x (H® + C) and ¢,(f, g) = [ fghdm
(f€P,, g €P-) then H, iscompact w.r.t. (u1,v;) where du; =
dl/l = |h0|2 dm.

If u is a complex finite Borel measure on T and 2(n) = [e~"9dy
=0 for any negative integer 7, then du = hdm for some 4 in H!.
This is the famous F. and M. Riesz theorem (cf. [11, p. 47]) and
a corollary of the following corollary which follows from Theorem 3
and 4. That is, it is just the case of ¢y =0.

COROLLARY 4. Let u be a complex finite Borel measure on T and

/z"qu ;Fe%,/IFIdIuISI}.

&n = sup{
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If ey — 0 as n— oo then p=hdm and h isin H' x (H® +C). If
e, =0 for some n >0 then h belongs to z"H'.

Proof. By Schwarz’s lemma,
sup{‘/Z”f?du fea ges, [I/Pdul<
and /lglzdlul < 1} <en.

Now apply Theorems 3 and 4 for ¢(z"f, g)= [z"fgdu.

S. Distance between H, and the set of all compact sesquilinear
forms.

THEOREM 5. Let H, be a bounded Hankel form and A a compact
(finite n, resp.) sesquilinear form on P, x #_ w.rt. (u,v). If
|[Hy+ A|| <y then there exists a symbol y such that Hy is a compact
(finite n, resp.) Hankel form w.r.t. (u,v) and |||l¢ + v||| < 7.

Proof. By the remark preceding Lemma 1, we can decompose ¢ =
9a + ¢s where H, is bounded w.r.t. (uq, Va) and H, is bounded
w.r.t. (us, vs). If ||Hy, + A|| <y then by Lemma 2 and the proof of
Theorem 2 |H¢SH| <7 and ||H,, +A4|l < 7. Hence we may assume that
0 =04, h=U;=w;dm and v = v, = wydm. If logw; ¢ L*(m)
or logw, ¢ L'(m), by Lemma 2 A(f,g) =0 (fe€e P ,geR)
and hence Theorem 2 implies the theorem. By Lemma 1

_ 1 _ _
lo(hT' f by &)+ AT f, by 8)P
<3 [1fPdm [|gPdm  (fez., ges)

and there exists a null decreasing sequence {y,} such that

AR 2" 1, hy ' g))?

<3 [I2"fPdm [|sPdm  (fes, ges)
Hence there exist bounded linear operators H; and .« from H?(m)
to ZH (m) such that
(Hf,&)=(f,8) =o' f, h'g)

and

[, 8)=AMhT'f, hy'g)
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where / € L*(m) and ( , ) denotes the usual inner product with
respect to m. Let U be a unilateral shift on H?; then | U"|| — 0
because y, — 0. By the same argument as in [10, p. 6], there exists a
function k € H*® + C such that ||/ + k|lc < 1. Similarly to the proof
of Theorem 2 put

v(u,v)= /(khlhz)uﬁdm (u, v eP).

Then y is a bounded Hankel form w.r.t. (w;dm, w,dm) and by
Theorem 4 H, is compact. Thus |||¢ + y||| < 7.

Theorem 5 implies that inf{||H, + A||: A ranges over all compact
sesquilinear forms} = inf{|||¢ + y|||: H, ranges over all compact
Hankel forms}. When du = dv = dm, this relates a theorem of
Adamjan, Arov and Krein (cf. [1], [15, p. 6]). However the former
does not imply the latter (see Remark).

6. Lifting theorem. In this section we obtain a new lifting theorem
which contains one due to Cotlar and Sadosky [2]. Let 4;; (i, =
1, 2) be bilinear forms on & x & and suppose

Ay (u, u) 20, Axp(u,u)>0 and Ajx(u,v) = Ay (u, v).

Set
2

Aw,u)= > Aj(u;, uj)
i,j=1
where u = (¥, u3) and u; € # for i =1,2. We write A = [4;/].
If p;j (i,j=1,2) are finite Borel measures on T and

A,-j(u,'v)=/uﬁdp,-j (MePF, ,vePr),
then 4;; (i, j =1, 2) are bounded Hankel forms on & x & w.r.t.
(101jl 5 1pijl) . By the hypothesis on [4;;]
p11 20, pp>0 and pp=7py.

We write A =[A4;;] =[pij] = p and we call p a matrix of measures.
A > 0 w.r.t. I means that A is positive w.r.t. T":

2
A(usu)"_‘ Z Aij(uia u})ZO (uer)
i,j=1
where I denotes Z# x # or P, X Z#_.
We say that A is compact (finite »n, resp.) w.r.t. p if A;; = Ay =
0 and A, is compact (finite n) w.r.t. (p11, p22).
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THEOREM 6. Let p be a matrix of measures. If
p+A>0 wrt P xP_

where A is compact (finite n, resp.) w.r.t. p, then there exists a
compact (finite n, resp.) matrix v of measures w.r.t. p such that

p+t>=0 wrt P xR,
Proof. Let
oulf. 0= [ f2dp:  (fes, ge)

Then @13 + Ay, is a bounded bilinear form on £, x Z_ w.r.t. (pyy,
p22) because p+ A > 0. Let ||p12 + A4;2|| < 7. By Theorem 3, there
exists a symbol y such that H, is a compact (finite n, resp.) w.r.t.
(p11, p22) and |||@12 + v||| < y. By Theorems 3 and 4, there exists a
function 4 in L! such that

v(f )= [ fehdm  (fe2, ges)
Then dt,, = hdm 1is the desired measure.

CoRrOLLARY 3 (Cotlar and Sadosky). Let p be a matrix of measures.

If
p>=0 wrt P xXP_

then there exists a finite n = 0 matrix t© of measures such that
p+t>0 wrt P xP.

By Theorems 3 and 4, we can describe compact (finite n, resp.)
matrices of measures w.r.t. p.

7. Weighted norm inequalities. In this section we show known re-
sults in the L2 weighted problem, using the theorems of §§3, 4 and
5. For any fixed nonnegative integer n, we want to find the positive
measure u for which there is a nonzero positive measure v, such
that

/ |2 £ doy < / f+gPdu  (feP, ger).

The inequality above is equivalent to the following one:

y [ = fedu < [1Pdw=m) [1gPdu  (fes, gesn).
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Hence the problem is related with prediction problems when such a
measure 4 arises as the spectral density of a discrete weakly station-
ary Gaussian stochastic process. The following proposition is due to
Arocena, Cotlar and Sadosky [3]. The Helson-Szego theorem [10] and
the Koosis theorem [12] follow from the first part in it.

PrOPOSITION 7. Let u be a positive measure. There is a nonzero
positive measure v such that

/|f|2dus/|f+g|2du (fe, ge?)

if and only if dv = udm and there is a nonzero k in H' such that
lw + k|? < (w - u)w

where du = wdm + dus. Then if log(w — u) is in L' then u <
(1—yYw and y > 1.

We can prove Proposition 7 using the lifting theorem of Cotlar and
Sadosky (Theorem 2 or Corollary 3) as that in [3]. The following
theorem is closely related to results in [3]. We will give a proof using
Theorems 3 and 4.

THEOREM 8. Let u be a positive measure. For any fixed nonnegative
integer n, let v, be a nonzero positive measure such that

/ " fRdu < [12°7+gPdu  (fe2 ges),

Suppose that there exists a positive measure A and a decreasing se-
quence {€,} such that v, =u—¢eyA and 0<¢, <1.

(1) &, = 0 for some n ifandonly if dv, =du =wdm and w = sh
where h is an outer function with w = |h| and s is in Z"H>® .

(2) ¢, = 0 as n — o if and only if dv, = (w; — g,w;)dm,
du = wydm, diA = wydm+dAi; and wy = shihy where h; is an
outer function with w; = |hj|*> for j=1,2 and s isin H® +C.

Proof. Set
w(u,v>=/uvdu (U, v € P);

then by the remark before Theorem 7 H, is finite » and compact
w.r.t. (4, u) for (1) and (2), respectively. (1) follows from (2) of
Theorem 3. For if ¢, = 0 for some »n then w € Z"H! and hence
w = |h| =Z"qh where g is in H*. (2) follows from Theorem 4.
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In Theorem 8, if A = u this was proved by Helson and Sarason
[10]. Theorem 8 is also a corollary of Theorem 6 which is a new
lifting theorem.

REMARK. Hankel operators from H2(u) to 7_1172(1/). Let u and v
be finite positive Borel measures on 7. M} and MY are multiplica-
tion operators by the coordinate function z on L%(u) and L2(v), re-
spectively. Let ® be a bounded linear operator from L2(u) to L?(v)
and (®u,v) = [(Pu)vdv for u, v in &#. Then ®M; = M/
if and only if ¢(u,v) = (®Pu,v) is a bounded Hankel form on
PxP wrt. (u,v). Let P and Q be the orthogonal projec-

tions from L2(u) to H2(u) and from L2(v) to ZH(v), respec-
tively. Put H = Q®P; then (Hf, g) = Hy(f, g) for f in &,
and g in #_. Put S¥ = PM¥|H?(u) and S% = QMZ|zH (v); then
HSY = (S¥)*H . Theorem 2 calculates the norm of H. In general,
even if H is a compact linear operator, H, may not be a compact
sesquilinear form.

When 4 =v = m, ® is a multiplication operator Mg by a func-
tion ® in L®°(m) and ||®| = ||P|lcc = |||@]||. H is called a Hankel
operator and ||H|| = ||H,||. H, is a compact Hankel form if and
only if A is a compact Hankel operator. For by Theorem 4 H, is
compact if and only if ¢(f, g) = [fghdm (f € #., f € %)
and 2~ € H® + C. By Hartman’s theorem (cf. [15, Theorem 1.4])
H is compact if and only if ® € H* + C. Moreover the essential
norm ||H|l, of H coincides with inf{||H, + 4|: A ranges over all
compact sesquilinear forms}. For by a theorem of Adamjan, Arov
and Krein [1], ||H|l = ||® + H* + C||. While by Theorems 4 and
5 inf||H, + A|| = inf{|||¢ + v|||: H, ranges over all compact Hankel
forms} = ||h + H® + C|| where ¢(f, g) = [ fghdm.
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