BOUNDED HANKEL FORMS WITH WEIGHTED NORMS AND LIFTING THEOREMS

Takahiko Nakazi

Bounded Hankel forms with respect to weighted norms are studied. The Nehari's theorem about the norms of the classical Hankel forms is generalized. This is essentially a lifting theorem due to Cotlar and Sadosky. Moreover a theorem about the essential norms of Hankel forms is proved. This relates with a theorem of Adamjan, Arov and Krein in the special case and gives a new lifting theorem which has applications to weighted norm inequalities, and the F. and M. Riesz theorem.

1. Introduction. Let

$$A[a, b] = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} A_{ij} a_i b_j$$

where a and b are finite sequences. Then A[a, b] is called a sesquilinear form in the variables a and b.

Let \mathscr{P} be the set of all trigonometric polynomials and m the normalized Lebesgue measure on the unit circle T. If we put $u = \sum_{j=-n}^{n} a_j z^j$ for $a = (\ldots, 0, a_{-n}, \ldots, a_0, a_1, \ldots, a_n, 0, \ldots)$ then u belongs to \mathscr{P} and $\int |u|^2 dm = \sum_{j=-n}^{n} |a_j|^2$. Let

$$A(u\,,\,v)=A[a\,,\,b]$$

where $u = \sum_{j=-n}^n a_j z^j$ and $v = \sum_{j=-m}^m \overline{b}_j \overline{z}^j$. Then we say that A(u, v) is a sesquilinear form on $\mathscr{P} \times \mathscr{P}$. It is clear that

$$A(\beta_1 u_1 + \beta_2 u_2, v) = \beta_1 A(u_1, v) + \beta_2 A(u_2, v)$$

and

$$A(u, \alpha_1v_1 + \alpha_2v_2) = \overline{\alpha}_1A(u, v_1) + \overline{\alpha}_2A(u, v_2).$$

If $A_{ij} = \alpha(i+j)$ then A(u, v) is called a Hankel form on $\mathscr{P} \times \mathscr{P}$ and we will write those forms $\varphi(u, v)$, $\psi(u, v)$ or etc.

Let $\mathscr{P}_+ = \{f \in \mathscr{P} : \hat{f}(j) = 0 \text{ if } j < 0\}$ and $\mathscr{P}_- = \{f \in \mathscr{P} : \hat{f}(j) = 0 \text{ if } j \geq 0\}$. If A is restricted to $\mathscr{P}_+ \times \mathscr{P}_-$ then the restriction of A is called a sesquilinear form on $\mathscr{P}_+ \times \mathscr{P}_-$. If φ is a Hankel form on $\mathscr{P} \times \mathscr{P}$ then we will write

$$H_{\varphi}$$
 = the restriction of φ to $\mathscr{P}_{+} \times \mathscr{P}_{-}$

and φ is called a symbol of H_{φ} .

A sesquilinear form A on $\mathscr{P} \times \mathscr{P}$ is said to be bounded if there exists a positive constant γ such that $|A(u,v)| \leq \gamma$ if $\int |u|^2 dm \leq 1$ and $\int |v|^2 dm \leq 1$. We will generalize this definition. Let μ and ν be finite positive Borel measures on T. A sesquilinear form A on $\mathscr{P} \times \mathscr{P}$ is said to be bounded w.r.t. (μ, ν) if there exists a positive constant γ such that

$$|A(u,v)|^2 \le \gamma^2 \int |u|^2 d\mu \int |v|^2 d\nu \qquad (u,v \in \mathscr{P}).$$

The smallest number γ for which the inequality above is refered to as the norm of the form A and we will write $\gamma = |||A|||$, where the pair of measures is fixed. Similarly for the norm γ of the form A on $\mathcal{P}_+ \times \mathcal{P}_-$ we will write $\gamma = \|A\|$. When the form A(u, v) is bounded on $\mathcal{P} \times \mathcal{P}$ w.r.t. (μ, ν) , it can be extended to a form on (the $L^2(\mu)$ -closure of \mathcal{P}) \times (the $L^2(\nu)$ -closure of \mathcal{P}). Then we will still write A(u', v') for u' and v' in the closures. It is the same for the case of $\mathcal{P}_+ \times \mathcal{P}_-$.

For $0 <math>H^p = H^p(m)$ denotes the usual Hardy space, that is, the $L^p = L^p(m)$ -closure of \mathscr{P}_+ . C denotes the set of all continuous functions on T. Then $H^\infty + C$ is the closure of $\bigcup_{n=1}^\infty \overline{Z}^n H^\infty$ [9, Theorem 2].

Our program is as follows. In §2 we will give representations of bounded Hankel forms on $\mathscr{P} \times \mathscr{P}$. In §3 generalizing Nehari's theorem ([13], [15, p. 6]) we will calculate the norms of bounded Hankel forms on $\mathscr{P}_+ \times \mathscr{P}_-$. This is, in fact, the lifting theorem of Cotlar and Sadosky [4] that appears as a corollary in §6. In §4 we will determine compact bounded Hankel forms on $\mathscr{P}_+ \times \mathscr{P}_-$. This relates with Hartman's theorem [8] in a special case. In §5 we will give the distance between a given Hankel form and the set of all compact sesquilinear forms. In §6 as a result of the previous sections we will obtain a new lifting theorem which contains one due to Cotlar and Sadosky [4]. In §7 we will apply results in the previous sections to problems in weighted norm inequalities as in [3] and to get a quantitative F. and M. Riesz theorem [16].

2. Bounded Hankel forms on $\mathscr{P} \times \mathscr{P}$. For some pair μ and ν of finite positive Borel measures on T, there exist nonzero bounded sesquilinear forms w.r.t. (μ, ν) but in Corollary 1 it is shown that no nonzero Hankel forms can exist.

PROPOSITION 1. If φ is a bounded Hankel form on $\mathscr{P} \times \mathscr{P}$ w.r.t. (μ, ν) and $|||\varphi||| = \gamma$ then the following are valid.

(1) There exists a finite Borel measure λ on T such that

$$\varphi(u, v) = \int u\overline{v} d\lambda \qquad (u, v \in \mathscr{P})$$

and

$$|\lambda(E)| \le \gamma |\mu(E)| |\nu(E)|$$

for any Borel set E in T.

(2) If $\mu = \mu_a + \mu_s$ and $\nu = \nu_a + \nu_s$ are Lebesgue decompositions w.r.t. λ then φ can be assumed to be a bounded Hankel form on $\mathscr{P} \times \mathscr{P}$ with respect to (μ_a, ν_a) .

Proof. There exists a bounded linear operator Φ from $L^2(\mu)$ to $L^2(\nu)$ such that $\varphi(u, v) = \int (\Phi u)\overline{v} \, d\nu$. Since $\varphi(z^i, \overline{z}^j) = \varphi(1, z^{i+j})$,

$$\varphi(u\,,\,v) = \int u\overline{v}k\,d\nu \qquad (u\,,\,v\in\mathscr{P})$$

where $k = \Phi 1 \in L^2(\nu)$. Set $d\lambda = k d\nu$; then

$$\left| \int u \overline{v} \, d\lambda \right|^2 \le \gamma^2 \int |u|^2 \, d\mu \int |v|^2 \, d\nu$$

for any $u \in L^2(\mu)$ and $v \in L^2(\nu)$, and hence (1) follows. There is a Borel set E_a in T with $\mu_s(E_a) = \nu_s(E_a) = 0$ on which λ is concentrated. Then $\chi_{E_a} \in L^2(\mu) \cap L^2(\nu)$ and so

$$\left| \int u\overline{v} \, d\lambda \right|^2 \le \gamma^2 \int |u|^2 \, d\mu_a \int |v|^2 \, d\nu_a$$

for any $u \in L^2(\mu_a) = \chi_{E_a} L^2(\mu)$ and $v \in L^2(\nu_a) = \chi_{E_a} L^2(\nu)$. This implies (2).

COROLLARY 1. If φ is a bounded Hankel form on $\mathscr{P} \times \mathscr{P}$ w.r.t. (μ, ν) , and μ and ν are mutually singular, then $\varphi \equiv 0$.

COROLLARY 2. If φ is a bounded Hankel form on $\mathscr{P} \times \mathscr{P}$ w.r.t. $(w_1 dm, w_2 dm)$, then for some k in L^{∞}

$$\varphi(u, v) = \int u\overline{v}k\sqrt{w_1w_2}\,dm \qquad (u, v \in \mathscr{P}).$$

Conversely such φ is bounded w.r.t. $(w_1 dm, w_2 dm)$.

3. Bounded Hankel forms on $\mathscr{P}_+ \times \mathscr{P}_-$. In this section we will give a generalization of Nehari's theorem (see [13], [15, p. 6]) which was proved in the case of $\mu = \nu = m$. For any Hankel form φ on $\mathscr{P} \times \mathscr{P}$, if H_{φ} is bounded on $\mathscr{P}_+ \times \mathscr{P}_-$ w.r.t. (μ, ν) then there exists a finite Borel measure λ on T such that

$$\varphi(u, v) = \int u\overline{v} d\lambda \qquad (u \in \mathscr{P}_+, v \in \mathscr{P}_-).$$

The proof is similar to the proof of Proposition 1. Let $\lambda = \lambda_a + \lambda_s$, $\mu = \mu_a + \mu_s$ and $\nu = \nu_a + \nu_s$ be Lebesgue decompositions with respect to m. Put

$$\varphi_a(u, v) = \int u\overline{v} \, d\lambda_a \quad \text{and} \quad \varphi_s(u, v) = \int u\overline{v} \, d\lambda_s$$

for any u, v in \mathscr{P} . Then H_{φ_a} and H_{φ_s} are bounded Hankel forms on $\mathscr{P}_+ \times \mathscr{P}_-$ w.r.t. $(\mu_a$, $\nu_a)$ and $(\mu_s$, $\nu_s)$, respectively. Moreover $\max(\|H_{\varphi_a}\|, \|H_{\varphi_s}\|) = \|H_{\varphi}\|$.

For set

$$H^2(\mu)$$
 = the $L^2(\mu)$ -closure of \mathscr{P}_+ .

Then $\overline{z}\overline{H}^2(\mu)$ is the $L^2(\mu)$ -closure of \mathscr{P}_- . Suppose E_s is a Borel set with $m(E_s)=0$ where μ_s and ν_s are concentrated on E_s , and E_a is a Borel set with $m(E_a)=1$ where μ_a and ν_a are concentrated on E_a . E_a can be chosen to be the complement of E_s in T. Then both the characteristic functions χ_{E_a} and χ_{E_s} belong to $H^2(\mu)\cap \overline{z}\overline{H}^2(\nu)$. Moreover $H^2(\mu)=\chi_{E_a}H^2(\mu)\oplus\chi_{E_s}H^2(\mu)$, and $\chi_{E_a}H^2(\mu)=H^2(\mu_a)$ and $\chi_{E_s}H^2(\mu)=H^2(\mu_s)=L^2(\mu_s)$. This implies the above statement about H_{φ_a} and H_{φ_s} .

To prove the generalized Nehari's theorem, we need the following lemma which will be used in later sections, too.

LEMMA 1. Let A be a bounded sesquilinear form on $\mathscr{P}_+ \times \mathscr{P}_-$ w.r.t. $(w_1 dm, w_2 dm)$ and $w_j = |h_j|^2$ for j = 1, 2 where both h_1 and h_2 are outer functions in H^2 . If we put

$$B(f, g) = A(h_1^{-1}f, \overline{h}_2^{-1}g) \qquad (f \in \mathcal{P}_+, g \in \mathcal{P}_-)$$

then B is a bounded sesquilinear form w.r.t. (m, m,) and ||B|| = ||A||.

Proof. Let $\gamma = ||A||$; then

$$|A(f, g)|^2 \le \gamma^2 \int |f|^2 |h_1|^2 dm \int |g|^2 |h_2|^2 dm$$

for any $f \in \mathscr{P}_+$ and $g \in \mathscr{P}_-$. For any $f \in \mathscr{P}_+$ and $g \in \mathscr{P}_-$, set $F = h_1 f$ and $G = \overline{h}_2 g$. Then $F \in H^2$ and $G \in \overline{z} \overline{H}^2$. Hence

$$|A(h_1^{-1}F, h_2^{-1}G)|^2 \le \gamma^2 \int |F|^2 dm \int |G|^2 dm.$$

Since both h_1 and h_2 are outer functions, we get the lemma.

The following theorem is a generalization of Nehari's theorem (cf. [15, Theorem 1.3]) but this is the lifting theorem of Cotlar and Sadosky in [4], with other notation. A new proof is given here (cf. [17]).

Theorem 2. Let φ be a Hankel form on $\mathscr{P} \times \mathscr{P}$. If H_{φ} is bounded w.r.t. (μ, ν) then there exists a Hankel form ψ bounded w.r.t. (μ, ν) on $\mathscr{P} \times \mathscr{P}$ such that

$$H_{\psi} = H_{\varphi}$$
 and $|||\psi||| = ||H_{\varphi}||$.

Proof. Let $\gamma = ||H_{\varphi}||$. By the remark above Lemma 1

$$|\varphi_s(f, g)|^2 \le \gamma^2 \int |f|^2 d\mu_s \int |g|^2 d\nu_s$$

for all $f \in \mathcal{P}_+$ and $g \in \mathcal{P}_-$. Since $H^2(\mu_s) = L^2(\mu_s)$, this implies that $|||\varphi_s||| \leq \gamma$. Now we will prove that there exists a bounded Hankel form ψ_a with respect to (μ_a, ν_a) such that

$$H_{\psi_a} = H_{\varphi_a}$$
 and $|||\psi_a||| = ||H_{\varphi_a}||$.

Then setting $\psi = \psi_a + \varphi_s$, the theorem follows because $\varphi = \varphi_a + \varphi_s$ and $\max(\|H_{\varphi_a}\|, \|H_{\varphi_s}\|) = \|H_{\varphi}\|$. Let $d\mu_a = w_1 dm$ and $d\nu_a = w_2 dm$.

Case I. $\log w_1 \notin L^1$ or $\log w_2 \notin L^1$. We may assume that $\log w_1 \notin L^1$. By the remark above Lemma 1,

$$|\varphi_a(f,g)|^2 \le \gamma^2 \int |f|^2 w_1 \, dm \int |g|^2 w_2 \, dm \qquad (f \in \mathscr{P}_+, g \in \mathscr{P}_-).$$

Since $\log w_1 \notin L^1$, $H^2(w_1 dm) = L^2(w_1 dm)$ and hence for any $u \in \mathscr{P}$ and $g \in \mathscr{P}_-$

$$|\varphi_a(u, g)|^2 \le \gamma^2 \int |u|^2 w_1 dm \int |g|^2 w_2 dm.$$

Fix any $n \in \mathbb{Z}_+$. For any $u_1 \in \mathcal{P}$ and $g_1 \in z^n \mathcal{P}_-$, there exists $u \in \mathcal{P}$ and $g \in \mathcal{P}_-$ such that $u_1 = z^n u$ and $g_1 = z^n g$. Hence

$$|\varphi_a(u_1, g_1)|^2 = |\varphi_a(z^n u, z^n g)|^2 = |\varphi_a(u, g)|^2$$

$$\leq \gamma^2 \int |u_1|^2 w_1 \, dm \int |g_1|^2 w_2 \, dm.$$

By the same argument for any $u, v \in \mathcal{P}$

$$|\varphi_a(u, v)|^2 \le \gamma^2 \int |u|^2 w_1 dm \int |v|^2 w_2 dm.$$

This implies that $|||\varphi_a||| \le \gamma$. Put $\psi_a = \varphi_a$.

Case II. $\log w_1 \in L^1$ and $\log w_2 \in L^1$. There exist outer functions h_1 and h_2 in H^2 such that $w_1 = |h_1|^2$ and $w_2 = |h_2|^2$ (cf. [6, p. 53]). Let $d\lambda_a = w_3 \, dm$. By Lemma 1

$$\left| \int f\overline{g}(h_1h_2)^{-1}w_3 dm \right|^2$$

$$\leq \gamma^2 \int |f|^2 dm \int |g|^2 dm \qquad (f \in \mathscr{P}_+, g \in \mathscr{P}_-).$$

Let $s = w_3(h_1h_2)^{-1}$; then by a duality argument there exists $l \in H^{\infty}$ such that $||s + l||_{\infty} \le \gamma$. By Schwarz's lemma, this implies that

$$\left| \int (s+l)u_1\overline{u}_2 dm \right|^2 \leq \gamma^2 \int |u_1|^2 dm \int |u_2|^2 dm \qquad (u_1, u_2 \in \mathscr{P}).$$

Let $v_1=h_1^{-1}u_1$ and $v_2=\overline{h}_2^{-1}u_2$ for any u_1 , $u_2\in \mathscr{P}$. Then $v_1\in L^2(w_1\,dm)$ and $v_2\in L^2(w_2\,dm)$. Hence

$$\left| \int v_1 v_2 w_3 \, dm + \int v_1 \overline{v}_2 (lh_1 h_2) \, dm \right|^2 \\ \leq \gamma^2 \int |v_1|^2 w_1 \, dm \int |v_2|^2 w_2 \, dm.$$

Since $h_1^{-1}\mathscr{P}$ and $h_2^{-1}\mathscr{P}$ are dense in $L^2(w_1\,dm)$ and $L^2(w_2\,dm)$, respectively, if we put

$$\varphi_0(u, v) = \int (lh_1h_2)u\overline{v} dm \qquad (u, v \in \mathscr{P})$$

then φ_0 is a bounded Hankel form on $\mathscr{P}\times\mathscr{P}$ w.r.t. $(w_1\,dm\,,\,w_2\,dm)$, $H_{\varphi_0}\equiv 0$ and $|||\varphi_a+\varphi_0|||\leq \gamma$. Put $\psi_a=\varphi_a+\varphi_0$.

Theorem 2 implies that $||H_{\varphi}|| = \inf\{|||\varphi + \varphi_0|||: H_{\varphi_0} \equiv 0\}$.

In Theorem 2 if $d\mu = d\nu = dm$ then Nehari's theorem follows and if $d\mu = d\nu = w \, dm$ then the scalar version of a theorem of Page [9] follows.

4. Compact bounded Hankel forms on $\mathscr{P}_+ \times \mathscr{P}_-$. The ideas of this section are closely related to those of [2]. In particular, the concept of compact form and Theorem 3 are in Theorem 1a in [2]. Let A be a

bounded sesquilinear form on $\mathscr{P}_+ \times \mathscr{P}_-$ w.r.t. (μ, ν) . We say that A is compact if there exists a null decreasing sequence $\{\gamma_n\}$ such that

$$|A(z^n f, g)|^2 \le \gamma_n^2 \int |f|^2 d\mu \int |g|^2 d\nu \qquad (f \in \mathcal{P}_+, g \in \mathcal{P}_-)$$

and

$$|A(f\,,\,\overline{z}^ng)|^2 \leq \gamma_n^2 \int |f|^2\,d\mu \int |g|^2\,d\nu \qquad (f\in\mathcal{P}_+\,,\,g\in\mathcal{P}_-)$$

for $n=1,2,\ldots$. When $\gamma_n=0$ and $\gamma_{n-1}\neq 0$ for some n, A is called finite n. In this section we will give a generalization of Hartman's theorem [8] which was proved in the case of $\mu=\nu=m$ and describes compact Hankel forms. However Theorem 4 does not show Hartman's theorem (see Remark).

LEMMA 2. If A is a nonzero compact (finite $n \neq 0$, resp.) sesquilinear form w.r.t. (μ, ν) associated with $\{\gamma_n\}$, then it is a nonzero compact (finite $n \neq 0$, resp.) sesquilinear form w.r.t. $(w_1 dm, w_2 dm)$ associated with $\{\gamma_n\}$ where $d\mu/dm = w_1$ and $d\nu/dm = w_2$. Moreover both $\log w_1$ and $\log w_2$ are integrable.

Proof. Let E_a and E_s be Borel sets as in the remark before Lemma 1. Then χ_{E_a} and χ_{E_s} belong to $H^2(\mu) \cap \overline{z}\overline{H}^2(\nu)$. Hence for $n = 1, 2, \ldots$

$$|A(\chi_{E_s} z^n f, g)|^2 \le \gamma_n^2 \int |f|^2 d\mu_s \int |g|^2 d\nu \qquad (f \in \mathcal{P}_+, g \in \mathcal{P}_-)$$

and

$$|A(f, \chi_{E_s}\overline{z}^n g)|^2 \leq \gamma_n^2 \int |f|^2 d\mu \int |g|^2 d\nu_s \qquad (f \in \mathscr{P}_+, g \in \mathscr{P}_-).$$

Since
$$H^2(\mu_s) = L^2(\mu_s)$$
 and $H^2(\nu_s) = L^2(\nu_s)$, for $n = 1, 2, ...$

$$|A(\chi_{E_s}u, g)|^2 \leq \gamma_n^2 \int |u|^2 d\mu_s \int |g|^2 d\nu \qquad (u \in \mathscr{P}, g \in \mathscr{P}_-)$$

and

$$|A(f, \chi_{E_s} v)|^2 \le \gamma_n^2 \int |f|^2 d\mu \int |v|^2 d\nu_s \qquad (f \in \mathscr{P}_+, v \in \mathscr{P}_-).$$

As $n \to \infty$, it follows that $A(\chi_{E_s}f, g) = A(f, \chi_{E_s}g) = 0$ for all $f \in \mathcal{P}_+$ and $g \in \mathcal{P}_-$. Hence $A(z^n f, g) = A(\chi_{E_a} z^n f, \chi_{E_a} g)$ and $A(f, \overline{z}^n g) = A(\chi_{E_a} f, \chi_{E_a} \overline{z}^n g)$. This implies that A is a nonzero

compact (finite $n \neq 0$, resp.) sesquilinear form w.r.t. $(w_1 dm, w_2 dm)$ associated with $\{\gamma_n\}$. If $\log w_1 \notin L^1$ or $\log w_2 \notin L^1$ then $H^2(w_1 dm) = L^2(w_1 dm)$ or $H^2(w_2 dm) = L^2(w_2 dm)$. By the same argument to the above, we can show that A is a zero form. Thus the lemma follows.

THEOREM 3. Let n be a nonnegative integer.

- (1) H_{φ} is finite n = 0 if and only if there exists a function h in H^1 such that $\varphi(f, g) = \int f\overline{g}h \, dm \ (f \in \mathscr{P}_+, g \in \mathscr{P}_-)$.
- (2) When $n \neq 0$, H_{φ} is finite n if and only if there exists a function h in $\overline{z}^n H^1$ and out of H^1 such that $\varphi(f, g) = \int f \overline{g} h \, dm$ $(f \in \mathscr{P}_+, g \in \mathscr{P}_-)$.
- *Proof.* (1) There exists a finite Borel measure λ such that $\varphi(f,g) = \int f\overline{g} \,d\lambda \ (f \in \mathcal{P}_+, g \in \mathcal{P}_-)$. If H_{φ} is zero, by the proof of Lemma 2 $\varphi(f,g) = \varphi(\chi_{E_a}f,\chi_{E_a}g)$ and hence λ is absolutely continuous w.r.t. dm. Let $d\lambda = h \, dm$; then $h \, dm$ annihilates $z\mathcal{P}_+$ and so $h \in H^1$. The converse is clear.
- (2) Let H_{φ} be finite, $n \neq 0$. By Corollary 2, Theorem 2 and Lemma 2, there exists a nonzero function h in L^1 such that

$$\varphi(f,g) = \int f\overline{g}h \, dm \qquad (f \in \mathscr{P}_+, g \in \mathscr{P}_-).$$

Since H_{φ} is finite, $n \neq 0$, by Lemma 2 there exist $\gamma_1, \gamma_2, \ldots, \gamma_n$ with $\gamma_n = 0$ such that for $1 \leq j \leq n$

$$\left| \int z^{j} f \overline{g} h \, dm \right|^{2}$$

$$\leq \gamma_{j}^{2} \int |f|^{2} w_{1} \, dm \int |g|^{2} w_{2} \, dm \qquad (f \in \mathcal{P}_{+}, g \in \mathcal{P}_{-}),$$

where $w_1 = d\mu/dm$ and $w_2 = d\nu/dm$. Moreover there exist outer functions h_1 and h_2 such that $|h_j|^2 = w_j$ for j = 1, 2. By Lemma 1, for $1 \le j \le n$

$$\left| \int z^{j} f \overline{g} (h_{1}h_{2})^{-1} h \, dm \right|^{2}$$

$$\leq \gamma_{j}^{2} \int |f|^{2} \, dm \int |g|^{2} \, dm \qquad (f \in \mathcal{P}_{+}, g \in \mathcal{P}_{-})$$

and hence $||z^{j}(h_{1}h_{2})^{-1}h + H^{\infty}|| \leq \gamma_{j}$. Since $\gamma_{n} = 0$, $(h_{1}h_{2})^{-1}h \in \overline{z}^{n}H^{\infty}$ and hence $h \in \overline{z}^{n}H^{1}$ and $h \notin H^{1}$ because H_{φ} is rank $n \neq 0$. The converse is clear because for such h, $\int z^{n}f\overline{g}h\,dm = 0$ $(f \in \mathscr{P}_{+}, g \in \mathscr{P}_{-})$.

In the proof of Theorem 3, $h_1h_2 \in H^1$ and $h = (h_1h_2)u$ where $u \in \overline{Z}^n H^{\infty}$. The following theorem is the generalization of this result.

THEOREM 4. H_{φ} is nonzero and compact w.r.t. (μ, ν) if and only if there exists a function $h = h_0 \times u$ in $H^1 \times (H^{\infty} + C)$ and out of H^1 such that

$$\varphi(f,g) = \int f\overline{g}h \, dm \qquad (f \in \mathscr{P}_+, g \in \mathscr{P}_-)$$

and $h_0 = h_1 h_2$ where h_j is an outer function in H^2 , $w_j = |h_j|$, $d\mu/dm = w_1$ and $d\nu/dm = w_2$.

Proof. Let H_{φ} be nonzero and compact. By Lemma 2, we may assume that $d\mu=w_1\,dm$ and $d\nu=w_2\,dm$, and there exists an outer function h_j in H^2 with $w_j=|h_j|^2$. By the proof of Theorem 3, $\|z^j(h_1h_2)^{-1}h+H^{\infty}\|\leq \gamma_j$ and $\gamma_j\to 0$ as $j\to\infty$. Thus $(h_1h_2)^{-1}h\in H^{\infty}+C$ and hence $h=(h_1h_2)u\in H^1\times (H^{\infty}+C)$ and out of H^1 . For the converse, put $\|z^ju+H^{\infty}\|=\gamma_j$; then $\gamma_j\to 0$ as $j\to\infty$ and for each j there exists $g_j\in H^{\infty}$ such that

$$|z^jh + h_1h_2g_j| \leq \gamma_j|h_1h_2|.$$

Hence for each j

$$|\varphi(z^{j}f, g)|^{2} = \left| \int z^{j} f \overline{g}h \, dm \right|^{2} \le \gamma_{j}^{2} \int |f \overline{g}| |h_{1}h_{2}| \, dm$$
$$\le \gamma_{j}^{2} \int |f|^{2} w_{1} \, dm \int |g|^{2} w_{2} \, dm$$

for all $f \in \mathcal{P}_+$ and $g \in \mathcal{P}_-$. This implies that H_{φ} is nonzero and compact w.r.t. (μ, ν) .

If $h = h_0 \times u$ is in $H^1 \times (H^\infty + C)$ and $\varphi_1(f, g) = \int f \overline{g} h \, dm$ $(f \in \mathcal{P}_+, g \in \mathcal{P}_-)$ then H_{φ_1} is compact w.r.t. (μ_1, ν_1) where $d\mu_1 = d\nu_1 = |h_0|^2 \, dm$.

If μ is a complex finite Borel measure on T and $\hat{\mu}(n) = \int e^{-in\theta} d\mu$ = 0 for any negative integer n, then $d\mu = h dm$ for some h in H^1 . This is the famous F. and M. Riesz theorem (cf. [11, p. 47]) and a corollary of the following corollary which follows from Theorem 3 and 4. That is, it is just the case of $\varepsilon_0 = 0$.

Corollary 4. Let μ be a complex finite Borel measure on T and

$$\varepsilon_n = \sup \left\{ \left| \int z^n F d\mu \right| ; F \in \mathscr{P}_+, \int |F| d|\mu| \le 1 \right\}.$$

If $\varepsilon_n \to 0$ as $n \to \infty$ then $\mu = h \, dm$ and h is in $H^1 \times (H^\infty + C)$. If $\varepsilon_n = 0$ for some $n \ge 0$ then h belongs to $\overline{z}^n H^1$.

Proof. By Schwarz's lemma,

$$\sup \left\{ \left| \int z^n f \overline{g} \, d\mu \right| \; ; \; f \in \mathcal{P}_+ \, , \; g \in \mathcal{P}_- \, , \; \int |f|^2 \, d|\mu| \leq 1 \right.$$
 and
$$\int |g|^2 \, d|\mu| \leq 1 \right\} \leq \varepsilon_n.$$

Now apply Theorems 3 and 4 for $\varphi(z^n f, g) = \int z^n f \overline{g} d\mu$.

5. Distance between H_{φ} and the set of all compact sesquilinear forms.

Theorem 5. Let H_{φ} be a bounded Hankel form and A a compact (finite n, resp.) sesquilinear form on $\mathscr{P}_{+} \times \mathscr{P}_{-}$ w.r.t. (μ, ν) . If $||H_{\varphi} + A|| \leq \gamma$ then there exists a symbol ψ such that H_{ψ} is a compact (finite n, resp.) Hankel form w.r.t. (μ, ν) and $|||\varphi + \psi||| \leq \gamma$.

Proof. By the remark preceding Lemma 1, we can decompose $\varphi = \varphi_a + \varphi_s$ where H_{φ_a} is bounded w.r.t. (μ_a, ν_a) and H_{φ_s} is bounded w.r.t. (μ_s, ν_s) . If $\|H_{\varphi} + A\| \leq \gamma$ then by Lemma 2 and the proof of Theorem 2 $\||\varphi_s||| \leq \gamma$ and $\|H_{\varphi_a} + A\| \leq \gamma$. Hence we may assume that $\varphi = \varphi_a$, $\mu = \mu_a = w_1 dm$ and $\nu = \nu_a = w_2 dm$. If $\log w_1 \notin L^2(m)$ or $\log w_2 \notin L^1(m)$, by Lemma 2 A(f, g) = 0 $(f \in \mathscr{P}_+, g \in \mathscr{P}_-)$ and hence Theorem 2 implies the theorem. By Lemma 1

$$\begin{split} |\varphi(h_1^{-1}f\,,\,\overline{h}_2^{-1}g) + A(h_1^{-1}f\,,\,h_2^{-1}g)|^2 \\ & \leq \gamma^2 \int |f|^2 \,dm \,\int |g|^2 \,dm \qquad (f \in \mathcal{P}_+\,,\,g \in \mathcal{P}_-) \end{split}$$

and there exists a null decreasing sequence $\{\gamma_n\}$ such that

$$\begin{split} |A(h_1^{-1}z^nf,\,h_2^{-1}g)|^2 \\ & \leq \gamma_n^2 \int |z^nf|^2\,dm \int |g|^2\,dm \qquad (f\in\mathcal{P}_+\,,\,g\in\mathcal{P}_-). \end{split}$$

Hence there exist bounded linear operators H_l and \mathscr{A} from $H^2(m)$ to $\overline{z}\overline{H}^2(m)$ such that

$$(H_l f, g) = (lf, g) = \varphi(h_1^{-1} f, h_2^{-1} g)$$

and

$$(\mathcal{A}f, g) = A(h_1^{-1}f, h_2^{-1}g)$$

where $l \in L^{\infty}(m)$ and (,) denotes the usual inner product with respect to m. Let U be a unilateral shift on H^2 ; then $\|\mathscr{A}U^n\| \to 0$ because $\gamma_n \to 0$. By the same argument as in [10, p. 6], there exists a function $k \in H^{\infty} + C$ such that $\|l + k\|_{\infty} < 1$. Similarly to the proof of Theorem 2 put

$$\psi(u, v) = \int (kh_1h_2)u\overline{v} dm \qquad (u, v \in \mathscr{P}).$$

Then ψ is a bounded Hankel form w.r.t. $(w_1 dm, w_2 dm)$ and by Theorem 4 H_{ψ} is compact. Thus $|||\varphi + \psi||| \le \gamma$.

Theorem 5 implies that $\inf\{\|H_{\varphi} + A\|: A \text{ ranges over all compact sesquilinear forms}\} = \inf\{\|\|\varphi + \psi\|\|: H_{\psi} \text{ ranges over all compact Hankel forms}\}$. When $d\mu = d\nu = dm$, this relates a theorem of Adamjan, Arov and Krein (cf. [1], [15, p. 6]). However the former does not imply the latter (see Remark).

6. Lifting theorem. In this section we obtain a new lifting theorem which contains one due to Cotlar and Sadosky [2]. Let A_{ij} (i, j = 1, 2) be bilinear forms on $\mathscr{P} \times \mathscr{P}$ and suppose

$$A_{11}(u, u) \ge 0$$
, $A_{22}(u, u) \ge 0$ and $A_{12}(u, v) = \overline{A_{21}(u, v)}$.

Set

$$\mathbf{A}(\mathbf{u}, \mathbf{u}) = \sum_{i,j=1}^{2} A_{ij}(u_i, u_j)$$

where $\mathbf{u} = (u_1, u_2)$ and $u_i \in \mathcal{P}$ for i = 1, 2. We write $\mathbf{A} = [A_{ij}]$. If ρ_{ij} (i, j = 1, 2) are finite Borel measures on T and

$$A_{ij}(u, v) = \int u\overline{v} d\rho_{ij} \qquad (u \in \mathscr{P}_+, v \in \mathscr{P}_-),$$

then A_{ij} (i, j = 1, 2) are bounded Hankel forms on $\mathscr{P} \times \mathscr{P}$ w.r.t. $(|\rho_{ij}|, |\rho_{ij}|)$. By the hypothesis on $[A_{ij}]$

$$\rho_{11} \ge 0, \quad \rho_{22} \ge 0 \quad \text{and} \quad \rho_{12} = \overline{\rho}_{21}.$$

We write $A = [A_{ij}] = [\rho_{ij}] = \rho$ and we call ρ a matrix of measures. A > 0 w.r.t. Γ means that A is positive w.r.t. Γ :

$$\mathbf{A}(\mathbf{u}, \mathbf{u}) = \sum_{i,j=1}^{2} A_{ij}(u_i, u_j) \ge 0 \qquad (\mathbf{u} \in \Gamma)$$

where Γ denotes $\mathscr{P} \times \mathscr{P}$ or $\mathscr{P}_+ \times \mathscr{P}_-$.

We say that A is compact (finite n, resp.) w.r.t. ρ if $A_{11} = A_{22} = 0$ and A_{12} is compact (finite n) w.r.t. (ρ_{11}, ρ_{22}) .

Theorem 6. Let ρ be a matrix of measures. If

$$\rho + \mathbf{A} \succ 0$$
 w.r.t. $\mathcal{P}_+ \times \mathcal{P}_-$

where **A** is compact (finite n, resp.) w.r.t. ρ , then there exists a compact (finite n, resp.) matrix τ of measures w.r.t. ρ such that

$$\rho + \tau > 0$$
 w.r.t. $\mathscr{P} \times \mathscr{P}$.

Proof. Let

$$\varphi_{12}(f, g) = \int f\overline{g} d\rho_{12} \qquad (f \in \mathscr{P}_+, g \in \mathscr{P}_-).$$

Then $\varphi_{12} + A_{12}$ is a bounded bilinear form on $\mathscr{P}_+ \times \mathscr{P}_-$ w.r.t. (ρ_{11}, ρ_{22}) because $\rho + \mathbf{A} > 0$. Let $\|\varphi_{12} + A_{12}\| \le \gamma$. By Theorem 5, there exists a symbol ψ such that H_{ψ} is a compact (finite n, resp.) w.r.t. (ρ_{11}, ρ_{22}) and $|||\varphi_{12} + \psi||| \le \gamma$. By Theorems 3 and 4, there exists a function h in L^1 such that

$$\psi(f, g) = \int f\overline{g}h \, dm \qquad (f \in \mathscr{P}_+, g \in \mathscr{P}_-).$$

Then $d\tau_{12} = h dm$ is the desired measure.

Corollary 3 (Cotlar and Sadosky). Let ρ be a matrix of measures. If

$$\rho \succ 0$$
 w.r.t. $\mathscr{P}_{+} \times \mathscr{P}_{-}$

then there exists a finite n = 0 matrix τ of measures such that

$$\rho + \tau > 0$$
 w.r.t. $\mathscr{P} \times \mathscr{P}$.

By Theorems 3 and 4, we can describe compact (finite n, resp.) matrices of measures w.r.t. ρ .

7. Weighted norm inequalities. In this section we show known results in the L^2 weighted problem, using the theorems of §§3, 4 and 5. For any fixed nonnegative integer n, we want to find the positive measure μ for which there is a nonzero positive measure ν_n such that

$$\int |z^n f|^2 d\nu_n \le \int |z^n f + g|^2 d\mu \qquad (f \in \mathcal{P}_+, g \in \mathcal{P}_-).$$

The inequality above is equivalent to the following one:

$$\left| \int z^n f \, \overline{g} \, d\mu \right|^2 \le \int |f|^2 d(\mu - \nu_n) \int |g|^2 \, d\mu \qquad (f \in \mathscr{P}_+, g \in \mathscr{P}_-).$$

Hence the problem is related with prediction problems when such a measure μ arises as the spectral density of a discrete weakly stationary Gaussian stochastic process. The following proposition is due to Arocena, Cotlar and Sadosky [3]. The Helson-Szegö theorem [10] and the Koosis theorem [12] follow from the first part in it.

Proposition 7. Let μ be a positive measure. There is a nonzero positive measure ν such that

$$\int |f|^2 d\nu \le \int |f+g|^2 d\mu \qquad (f \in \mathcal{P}_+, g \in \mathcal{P}_-)$$

if and only if $d\nu = u dm$ and there is a nonzero k in H^1 such that

$$|w+k|^2 \le (w-u)w$$

where $d\mu = w dm + d\mu_s$. Then if $\log(w - u)$ is in L^1 then $u \le (1 - \gamma^{-1})w$ and $\gamma > 1$.

We can prove Proposition 7 using the lifting theorem of Cotlar and Sadosky (Theorem 2 or Corollary 3) as that in [3]. The following theorem is closely related to results in [3]. We will give a proof using Theorems 3 and 4.

Theorem 8. Let μ be a positive measure. For any fixed nonnegative integer n, let ν_n be a nonzero positive measure such that

$$\int |z^n f|^2 d\nu_n \le \int |z^n f + g|^2 d\mu \qquad (f \in \mathscr{P}_+, g \in \mathscr{P}_-).$$

Suppose that there exists a positive measure λ and a decreasing sequence $\{\varepsilon_n\}$ such that $\nu_n = \mu - \varepsilon_n \lambda$ and $0 \le \varepsilon_n \le 1$.

- (1) $\varepsilon_n = 0$ for some n if and only if $d\nu_n = d\mu = w \ dm$ and w = sh where h is an outer function with w = |h| and s is in $\overline{z}^n H^{\infty}$.
- (2) $\varepsilon_n \to 0$ as $n \to \infty$ if and only if $d\nu_n = (w_1 \varepsilon_n w_2) dm$, $d\mu = w_1 dm$, $d\lambda = w_2 dm + d\lambda_s$ and $w_1 = sh_1h_2$ where h_j is an outer function with $w_j = |h_j|^2$ for j = 1, 2 and s is in $H^{\infty} + C$.

Proof. Set

$$\varphi(u,v) = \int u\overline{v} \, d\mu \qquad (u,v \in \mathscr{P});$$

then by the remark before Theorem 7 H_{φ} is finite n and compact w.r.t. (λ, μ) for (1) and (2), respectively. (1) follows from (2) of Theorem 3. For if $\varepsilon_n = 0$ for some n then $w \in \overline{Z}^n H^1$ and hence $w = |h| = \overline{Z}^n q h$ where q is in H^{∞} . (2) follows from Theorem 4.

In Theorem 8, if $\lambda = \mu$ this was proved by Helson and Sarason [10]. Theorem 8 is also a corollary of Theorem 6 which is a new lifting theorem.

Remark. Hankel operators from $H^2(\mu)$ to $\overline{z}\overline{H}^2(\nu)$. Let μ and ν be finite positive Borel measures on T. M_z^μ and M_z^ν are multiplication operators by the coordinate function z on $L^2(\mu)$ and $L^2(\nu)$, respectively. Let Φ be a bounded linear operator from $L^2(\mu)$ to $L^2(\nu)$ and $(\Phi u, v) = \int (\Phi u) \overline{v} \, d\nu$ for u, v in \mathscr{P} . Then $\Phi M_z^\mu = M_z^\nu \Phi$ if and only if $\varphi(u, v) = (\Phi u, v)$ is a bounded Hankel form on $\mathscr{P} \times \mathscr{P}$ w.r.t. (μ, ν) . Let P and Q be the orthogonal projections from $L^2(\mu)$ to $H^2(\mu)$ and from $L^2(\nu)$ to $\overline{z}\overline{H}^2(\nu)$, respectively. Put $H = Q\Phi P$; then $(Hf, g) = H_\varphi(f, g)$ for f in \mathscr{P}_+ and g in \mathscr{P}_- . Put $S_z^\mu = PM_z^\mu |H^2(\mu)$ and $S_{\overline{z}}^\nu = QM_{\overline{z}}^\nu |\overline{z}\overline{H}^2(\nu)$; then $HS_z^\mu = (S_{\overline{z}}^\nu)^*H$. Theorem 2 calculates the norm of H. In general, even if H is a compact linear operator, H_φ may not be a compact sesquilinear form.

When $\mu = \nu = m$, Φ is a multiplication operator M_{Φ} by a function Φ in $L^{\infty}(m)$ and $\|\Phi\| = \|\Phi\|_{\infty} = \|\|\varphi\|\|$. H is called a Hankel operator and $\|H\| = \|H_{\varphi}\|$. H_{φ} is a compact Hankel form if and only if H is a compact Hankel operator. For by Theorem 4 H_{φ} is compact if and only if $\varphi(f,g) = \int f\overline{g}h \, dm$ $(f \in \mathscr{P}_+, f \in \mathscr{P}_-)$ and $h \in H^{\infty} + C$. By Hartman's theorem (cf. [15, Theorem 1.4]) H is compact if and only if $\Phi \in H^{\infty} + C$. Moreover the essential norm $\|H\|_e$ of H coincides with $\inf\{\|H_{\varphi} + A\|: A \text{ ranges over all compact sesquilinear forms}\}$. For by a theorem of Adamjan, Arov and Krein [1], $\|H\|_e = \|\Phi + H^{\infty} + C\|$. While by Theorems 4 and 5 $\inf\|H_{\varphi} + A\| = \inf\{\|\|\varphi + \psi\|\|: H_{\psi} \text{ ranges over all compact Hankel forms}\} = \|h + H^{\infty} + C\|$ where $\varphi(f,g) = \int f\overline{g}h \, dm$.

REFERENCES

- [1] V. M. Adamjan, D. Z. Arov and M. G. Krein, *Infinite Hankel matrices and generalized Carathéodory-Fejér problems*, Funct. Anal. Appl., 2 (1968), 1–19.
- [2] R. Arocena and M. Cotlar, Generalized Toeplitz kernels and the Adamjan-Arov-Krein moment problems, Toeplitz Centennial Volume, Operator Theory: Adv. & Appl., 4 (1982), 37-55.
- [3] R. Arocena, M. Cotlar and C. Sadosky, Weighted inequalities in L² and lifting properties, Advances in Math. Suppl. Studies 7A, 95-128, Academic Press, New York 1981.
- [4] M. Cotlar and C. Sadosky, On the Helson-Szegö theorem and a related class of modified Toeplitz kernels, Proc. Symp. Pure Math. Amer. Math. Soc., 35:I (1979), 383-407.

- [5] M. Cotlar and C. Sadosky, On some L^p versions of the Helson-Szegö theorem, Harmonic Analysis Conference in honour of Prof. A. Zygmund, Wadsworth Int. Math. Series (1982).
- [6] _____, A lifting theorem for subordinated invariant kernels, J. Funct. Anal., 67 (1986), 345-359.
- [7] _____, Lifting properties, Nehari theorem and Paley lacunary inequality, Rev. Matem. Iberoamericana, 2 (1986), 55-71.
- [8] P. Hartman, On completely continuous Hankel matrices, Proc. Amer. Math. Soc., 9 (1958), 362-366.
- [9] H. Helson and D. Sarason, Past and future, Math. Scand., 21 (1967), 5-16.
- [10] H. Helson and G. Szegö, A problem in prediction theory, Ann. Mat. Pura Appl., 51 (1960), 107–138.
- [11] K. Hoffman, Banach Spaces of Analytic Functions, Englewood Cliffs, N.J. (1962).
- [12] P. Koosis, Weighted quadratic means and Hilbert transforms, Duke Math. J., 38 (1971), 609-634.
- [13] Z. Nehari, On bounded bilinear forms, Ann. of Math., 65 (1957), 153-162.
- [14] L. B. Page, Applications of the Sz-Nagy and Foias lifting theorem, Indiana Univ. Math. J., 20 (1970), 135-145.
- [15] S. C. Power, *Hankel Operators on Hilbert Space* (Research Notes in Math. Vol. 64), Pitman Advanced Publishing Program, Boston London Melbourne.
- [16] F. Riesz and M. Riesz, Über Randverte einer analytischen Funktionen, Quatriéme Congres des Math. Scand., (1916), 27-44.
- [17] T. Yamamoto, On the generalization of the theorem of Helson and Szegö, Hokkaido Math. J., 14 (1985), 1-11.

Received October 1, 1987 and in revised form September 26, 1990. This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education, Japan.

Hokkaido University Sapporo 060 Japan