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DIHEDRAL GROUP ACTIONS ON HOMOTOPY
COMPLEX PROJECTIVE THREE SPACES

MARK HUGHES

Let Dy, be the dihedral group of order 2m . Given an odd prime
m such that the projective class group of D,, has 2-rank = 0,
we construct smooth D;,,-actions on an infinite number of pairwise
non-diffeomorphic (distinguished by Pontryagin class) manifolds each
of which is homotopy equivalent to CP>. This is accomplished by
applying equivariant surgery theory to normal maps created by an
equivariant transversality argument.

1. Introduction. The question which we deal with here is: “Which fi-
nite groups can act on differentiably non-standard homotopy CP3’s?”
We use equivariant surgery theory to construct dihedral group ac-
tions on an infinite number of differentiably distinct smooth manifolds
which are homotopy equivalent to CP3.

According to [MY], there is a one-to-one correspondence between
the integers and the set (actually, it is a group) of diffeomorphism
classes of 6-dimensional, smooth, closed manifolds which are homo-
topy equivalent to CP3 (such manifolds shall hereafter be called ho-
motopy CP3’s). For every integer k, there is a unique homotopy
CP3, denoted X, , with first Pontryagin class P;(X}) = (4 + 24k)x2,
where x € H?(X}) is a generator. Then, X, is the standard CP3.
All actions shall be effective and smooth.

Some information is known about smooth finite group actions on
homotopy CP3’s. For instance, infinitely many homotopy CP3’s
admit a Z,-action for almost every prime number m. (For this,
and other interesting results, we refer the reader to [DM].) On the
other hand, in [M1], it is shown that if X; admits a smooth, ef-
fective Z,, x Z,, x Z,-action, for any odd prime m, then k = 0,
i.e., X; = CP3. (There is a more restricted version of this result for
m = 2. For information about involutions on homotopy CP3°’s, we
refer the reader to [DMS].)

In this paper, we shall consider the case of dihedral group actions.
To my knowledge, these are the first examples of non-abelian group
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actions on non-standard CP3. Specifically, our main result is:

THEOREM A. Let Dy, be the dihedral group of order 2m, where m
is an odd prime. If the projective class group Ko(Z[D,,,]) has 2-rank =
0, then there are infinitely many integers k for which X admits a
D,,,-action. In particular, this holds for m < 67.

The main tool used to prove the above theorems is equivariant
surgery theory (see [DP] and [PR]). The features of this theory which
are relevant to our work shall be outlined in the next section. The
third section provides the proof of Theorem A. At this point, I would
like to thank Professor Heiner Dovermann for his help and encour-
agement. Thanks also goes to the Florida State University Council for
Research and Creativity which provided financial support during the
time this work was undertaken. Finally, I thank the referee for many
helpful comments.

2. Background. Let G be a finite group. Equivariant (G-) surgery is
a process for constructing G-manifolds which are G-homotopy equiv-
alent to a given G-manifold Y. (A homotopy F: X xI — Y isa
G-homotopy if F(-,t) is a G-map for all ¢.) Two major steps are
involved in this process.

1. We build a G-normal map (X, f, b) with target manifold Y .
This can be thought of as an approximation to a G-homotopy equiv-
alence.

2. We must determine whether or not the obstructions to perform-
ing G-surgery to a G-homotopy equivalence vanish. The process
of G-surgery converts X to a G-manifold X’ and f to a G-map
f': X' - Y which is a G-homotopy equivalence.

Before we elaborate on this, we need some definitions.

DEerFINITION 2.1. A G-manifold is said to satisfy the gap hypothesis
if given a nontrivial subgroup H € G and a component F of X,
we have 2dim F < dim X .

(Other definitions of the gap hypothesis are possible, however this
is the one which suits our needs.)

Recall that a smooth G-vector bundle is a triple (E, p, B), where
p: E — B is an ordinary smooth vector bundle such that £ and B
support smooth G-actions and the projection p is a G-map. We also
require that given g € G and b € B, the map restricted to fiber
g: Ey — Eg44) is linear.
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At this point, for simplicity, instead of defining G-normal maps,
we choose to define a special type of G-normal map, the notion of an
adjusted G-normal map. (See [D1]. The notion of a G-normal map
can be found, for example, in [H] or [PR].)

DEFINITION 2.2. An adjusted G-normal map with target Y is a
triple (X, f, b), where

(1) X is a smooth, oriented, closed G-manifold which satisfies the
gap hypothesis and is of dimension > 5. Y is a smooth, oriented,
closed G-manifold which is simply connected and of the same dimen-
sion as X .

(2) f+ X — Y is a smooth, degree 1 G-map which induces a G-
homotopy equivalence between the singular sets X* and Y*. (Recall
that XS ={x e X: Gy #1}.)

(3) b is a stable G-vector bundle isomorphism between 7X &
f*(n-) and f*(TY & n.), for some pair of G-vector bundles
n+ . That is, there exists a G-representation V' such that b is a G-
vector bundle isomorphism between TX & f*(n-) & (X x V) and
[(TY®n ) (X xV).

We have a further important definition.

DEerFINITION 2.3. Let 7. and 5- be G-vector bundles over a G-
manifold Y. Assume that given H C G and y € Y, we have
dim(n,|y)? = dim(n-|,)¥ . Then w: ny — 7 is a G-fiber homotopy
equivalence if it is a proper, fiber preserving G-map such that, given
HCG and y € Y | the map (w|y)¥: (n+|y)7 — (n-|y)¥ has degree
1 when extended to one point compactifications.

Using ideas found in §11 of Chapter 3 in [PR], an adjusted G-
normal map can be constructed from a G-fiber homotopy equivalence
over Y provided that certain conditions are met. This shall be carried
out in §3 of this paper.

Once our adjusted G-normal map is constructed, we proceed to step
2, which is to determine whether surgery to a G-homotopy equivalence
is possible.

We first mention that an equivariant map f: X — Y is a G-
homotopy equivalence if and only if f#: X¥ — Y# is an ordinary
homotopy equivalence for all H C G. (See [B].) Therefore, given
our adjusted G-normal map (X, f, b), we must convert X to a G-
manifold X, and f toa G-map F: X, — Y such that F¥ isa ho-
motopy equivalence for all H C G. There is a surgery obstruction to
achieving this as indicated in the following proposition. At this point,
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we make the assumption that the dimension of Y is even and that G
contains no elements g of order 2 with 2(dim(Y)¢ +1) = dim Y/ .
This will ensure that the following obstruction is well-defined. Our
constructions will fall within this constraint. For more on this point,
see [Mo] and §3 of [D].

PROPOSITION 2.4. Let (X, f, b) be an adjusted G-normal map with
target Y . There is an obstruction a(f, b) which vanishes if and only
if (X, f,b) is G-normally cobordant to an adjusted G-normal map
(Xy, F, B), where F: X, — Y isa G-homotopy equivalence.

That is, g;(f, b) vanishes if and only if G-surgery can be used to
convert X to X, and f to a G-homotopy equivalence F: X, — Y.
The proof of this proposition may be found in [D]. (See Corollary
1.1 on p. 853.) Related results involving G-normal maps are well-
known and can be found in [PR] and [DR2]. Also, see [BQ]. We
note that this surgery is done relative to the singular set X°. The
obstruction a;(f, b) is an element of the Wall group L?(Z[G], w),
where n =dimY and w: G — Z, is the orientation homomorphism
of the G-actionon Y.

It is often easier to deal with LJ(Z[G], w), the surgery obstruc-
tion group for simple homotopy equivalences instead of L?(Z[G], w).
These two groups are related by the Rothenberg exact sequence [Sh]:

. — L3(Z[G], w) — LI(Z[G], w) 2 H"(Z,; Wh(G)) — -~ ,

where Wh(G) is the Whitehead group of G and ag is the torsion
homomorphism to be considered shortly. The Tate cohomology group
H"(Z,; Wh(G)) is defined as:

{6 € Wh(G): 6 = (—1)"86*}/{t + (=1)"1*: T € Wh(G)},

where * denotes the conjugation involution based on the orientation
homomorphism w .

Let’s suppose that our adjusted G-normal map (X, f, b) with tar-
get Y has been constructed from a G-fiber homotopy equivalence
w: ny — n- over Y. In this situation, the work of Dovermann
(ID]) and Dovermann-Rothenberg ([DR1]) can be applied to give us
information on ag(a((f, b)) € H*(Z,; Wh(G)). Given a G-fiber
homotopy equivalence w, its generalized Whitehead torsion 7(w)
can be defined as an element of the generalized Whitehead group
Wh(G) = @( H)CG Wh(Ng(H)/H), where (H) denotes the conjugacy
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class of H. Let T denote the conjugation on Wﬁ(G) and [-] denote
the cohomology class as indicated above.

LEMMA 2.5. Let (X, f, b) be an adjusted G-normal map construct-
ed as above such that fH is an Ng(H)/H-diffeomorphism for each
nontrivial subgroup H of G. Then ag(o(f, b)) =[Tt(w)].

Proof. A formula for ag(a,(f, b)) can be given by combining The-
orems A and B along with Proposition 6.6 of Dovermann’s paper [D].
Noting that our assumption on f implies that 7(f°) = 0, the for-
mula reduces to ag(o,(f, b)) = [Tt(¢)], where ¢ is a certain G-
fiber homotopy equivalence associated with the adjusted G-normal
map (X, f, b). As can be seen from §6 of [D], ¢ is closely related
to our G-fiber homotopy equivalence w. Indeed, by stabilizing with
an appropriate complex G-bundle, we can arrive at the same G-fiber
homotopy equivalence. Then, the addition formula of Dovermann-
Rothenberg (Corollary 8.15 of [DR1]) implies that 7(¢) = t(w) which
finishes our proof. (We mention that the results of [D] and [DR1] are
written in terms of sphere bundles. The Whitney sum corresponds to
fiberwise join. This is not a restriction for us. See §§1-13 of [PR].) O

LEMMA 2.6. Suppose that w: n. — n— is a G-fiber homotopy equiv-
alence over an even dimensional G-manifold Y. Let & = w®w: N+ ®
ne — n- @ n—. If the ordinary Whitehead group Wh(G) is tor-
sion free and if t©(&) has non-zero coordinate only in Wh(G), then
[Tt(®)]=0.

Proof. In [DR1], a formula for the generalized Whitehead torsion
of a G-fiber homotopy equivalence is given. From Corollary 8.15 of
thatfp_gper, it follows that with our set-up, 7(®) is twice an element
of Wh(G). Therefore, T7(®) is also a “multiple of 2”. In general,
this is not enough to show that [T7(@®)] vanishes in

H"(Z;; Wh(G)) = {0 € Wh(G): d =d*}/{t+ 1*: 1 € Wh(G)}.
(Note that we are assuming » = dim Y is even.)

However, with our additional assumption that Wh(G) is torsion
free, the result follows.

Indeed, T7(®) lies in {§ € Wh(G): 6 = ¢*} and as explained
above, T1(®) = 2x, for some x € Wh(G). We claim that we must
have x € {6 € Wh(G): 6 = 6*}. Suppose that o € Wh(G) =@ Z and
let ¢ be any homomorphism from Wh(G) to itself (in particular, ¢ =
). Since ¢ is a homomorphism and Wh(G) is torsion free, it follows
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easily that ¢(2a) = 2a = ¢(a) = a. Therefore, we have T1(®) =
2x =x+Xx =x+ x* and hence [T7(®)] =0 in H"(Z;; Wh(G)) as
desired. o

We note that we shall be working with the group D;,,, where m
is an odd prime. (The conjugation involution on Wh(D,,,) will be
defined in terms of the nontrivial orientation homomorphism w , i.e.,
elements of order 2 shall reverse orientation and be sent to —1.) It
is shown in [O] that SK;(Z[D,,]), the torsion part of Wh(D,,,),
vanishes for all odd primes m. (Also see [Ma].) We also note that
7(@) will have non-zero coordinate only in Wh(G) in our geometric
set-up. (See Lemma 2.5.)

Our purpose for introducing the Rothenberg sequence is to show
that o,(f, b) € L'(Z[G], w) comes from an element, oi(f,b) €
L (Z[G], w), which will be shown to vanish, thereby guaranteeing
that o,(f, b) = 0, and that surgery to a G-homotopy equivalence
is possible. Clearly, o;(f, b) will come from some of(f, b) if

ag(o1(f, b)) =0.
3. Proof of Theorem A. In this section, we shall give the proof of:

THEOREM A. Let Dy, denote the dihedral group of order 2m , where
m is an odd prime. If the projective class group Ko(Z[D;,]) has
2-rank = 0, then there are infinitely many k for which X, admits a
D,,,-action.  More precisely, given p and q, relatively prime
integers each = 1 mod m, X, admits a Dy,,-action, where k =

(P2 - 1)(g* - 1)/3.

Let us first make some remarks about I?O(Z[Dzm]). It is known
that I?O(Z[Dzm]) =T, the class group of the maximal real subfield of
Q(&), where & = e?mi/m  (See [L].) As shall be indicated below, we
are interested in knowing for which m, I" has 2-rank = 0. This is
not known in general, however it is known that the class number 4™,
which is the order of y, vanishes for primes m < 67. (See p. 38 and
§3 of the appendix in [Wa).)

Our proof will depend upon an appropriate choice of a model Y
on which to base our surgery constructions. We will then construct
a D,,,-fiber homotopy equivalence over Y, and from it, an adjusted:
D,,,-normal map. A key feature of our construction will be an addi-
tional amount of symmetry built into the normal map. Finally, we will
show that our set-up is such that all obstructions to surgery vanish. By
varying the parameters of our construction, we will obtain infinitely
many X as claimed.
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Our model Y and D,,,-fiber homotopy equivalence will be con-
structed so as to satisfy an important technical condition stated below
as Definition 3.1 which will allow us to build from them an adjusted
D;,,,-normal map.

First, we set up some notation. Let G be finite. Given any ir-
reducible, real G-representation y, we define m,: RO(G) — Z by
setting m, (V) equal to the multiplicity of y in the virtual repre-
sentation V. (RO(G) denotes the real representation ring of G.)
Let d, denote the dimension of the real division algebra of R-linear

G-endomorphisms of v, Homg(t//, V).

DEeFINITION 3.1 (Transversality Condition). Let w: ny — n- be a
G-fiber homotopy equivalence over the smooth G-manifold Y. For
each H € Iso(Y) = {G,: y € Y} and each component YH C YH the
following holds. Let y € Y. For each real H-representation y with
my(n-|y) # 0 we have

dim Y = my (TYl,) < dymy(TY + 1, —1_ly) +dy — 1.

If the transversality condition is met, there are no obstructions to
moving @ by a proper G-homotopy to a smooth G-map 4 which is
transverse to Y, the zero-section of #—. We then set X = A~1(Y),
f =h|x,and b is constructed using the G-vector bundles 7. . More
precisely, for H C G, we set XH = (fH)~1(YH) Note that if a path
component XH liesin (/¥ )“(YﬂH ), for some component Yf cCYH,
then dim X = dim Y;’ . Since w is a G-fiber homotopy equivalence,
we can choose the orientation of X so that the G-map f will be of
degree 1.

At this point, provided that a few other conditions are met, the
triple (X, f, b) will be a G-normal map (adjusted or otherwise).
However, we shall see that in our case a little additional work will
render (X, f, b) into an adjusted D,,,-normal map.

There is an interesting S'-map due to Ted Petrie (see [MeP], p.
74) which will be used in our constructions. Given a pair of relatively
prime integers p and ¢, take integers a and b such that —ap+bg =1
and let # denote the 1-dimensional complex S!-representation where
t €S actson C by ¢-z = t'z (complex multiplication). Define
it 4+178 =V, 5 724172 = V_ by f(z0, z1) = (7320,
z§ + zF). Tt can be shown that f is a proper S!'-map such that
deg f* =1, where f* is the extension of f to 1 point compactifica-
tions.
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In our proof, knowledge of the structure of Lg(Z[D,,,], @), where
Dy, =(g,hlgm=h*=1,gh=hg™"), w(g)=1, and w(h) =-1,
will be essential.

LEMMA 3.2. Assume that m is such that Ko(Z[D,,]) has no
2-torsion.  Then, L§{(Z[D,y], w) decomposes into a direct sum
L{(Z[Z,], ID)® L(D,,,), where L(Dy,y,) is torsion free and ID: Z, —
Z, denotes the identity map. In particular, as indicated above, this re-
sult holds for primes m < 67.

Proof. First, note that the retraction and inclusion D,,, — Z, >
D,,, are compatible with the respective orientation homomorphisms;
that is, .

D)y 5 Zy, S Dy
b w lID b w

ID 1D
zZ, = 72, —= I,

is a commutative diagram, where r(g'h®) = h® (¢ =0, 1). Using the
functorial properties of L*(-) (see [W2]), it follows that L§(Z[Z,], ID)
is a direct summand of L(Z[D,,], w). (Note that ID: Z; — Z, is
different from the trivial map 1: Z; — Z, .) Therefore, L$(Z[Z,], ID)
is obtained by restriction. Now, according to [W3], L(D,,,) will be
torsion free whenever the projective class group Ko(Z[D,,,]) has no
2-torsion. (Also see [W1], p. 71-74. Beware of the mistakes in [W3].
They are corrected in [W1]. In these references, the computations are
of L'(), the surgery obstruction group for weakly simple homotopy
equivalences. However, since Wh(Z[Z;]) = 0 and Wh(Z[D,,,]) is
torsion free, it turns out that for these groups and our orientation
homomorphisms, L'(-) = L*(-). This is discussed on pp. 77-78 of
[W1].) O

Lemma 3.2 shall be very useful to us in determining whether or
not an obstruction in L§(Z[D,,,], w) vanishes because nontrivial el-
ements of Z(Dz,n) can be detected by the multisignature (since it’s
torsion free), whereas those of L{(Z[Z,], ID) are detected by the
Kervaire-Arf invariant. Indeed, according to Theorem 4.14 of [W4],
L{(Z[Z,], ID) is isomorphic to Z; via the Kervaire-Arf invariant. (Ia
[W4], £ is L". However, since Wh(Z,) = 0, we have L?(Z[Z,], ID)
= L§{(Z[Z,], ID).) Now, suppose the obstruction in question is as-
sociated to a normal map constructed from twice a fiber homotopy
equivalence. Then since the projection from Li(Z[D,,], ) onto
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4(Z[Z,], ID) is obtained by restricting the group action it follows
that the Kervaire-Arf invariant of the obstruction vanishes. This fol-
lows from the fact that the Kervaire-Arf invariant can be given in
terms of the Kervaire-Sullivan classes via Sullivan’s characteristic va-
riety formula (as found, for instance, on p. 152 of [BM]). The primi-
tivity of these classes implies that a normal map obtained from twice
a fiber homotopy equivalence will have vanishing Kervaire-Arf invari-
ant.

We are now ready to handle the proof of Theorem A.

Proof of Theorem A. Let D,,,_be the dihedral group of order 2m,
for m an odd prime such that Ky(Z[D;,,]) = 0 has no 2-torsion. We
choose our model Y to be CP3 with the following D,,,-action. If g
is a chosen generator of Z,, C Dy,,,and z = [zy: z;: z3: 23] € CP3 =
P(C*) ,then g-z =[Ezg: Ezy: E71zy: E7123], where & = e27i/m | Also,
we set h-z =[-Z7: Zg: — Z3: Z3]. There are several things to notice
about this action. First of all, we actually do have a D,,,-action as
g z=1z, ht z=[-z¢: —z1: —z3: —z3]1=[20: 21: 22: 23] = Z,
and gh-z =g [-71: Z0: —73: 7ol = [¢71: 70 —¢7175: {71 7] =
[—&- 1z 0 &z —&23: 8z0) = h[E 291 &7 2y 2y Ez3] = hg™! - 2.
It follows from an easy computation that /4 is a free, orientation
reversing involution of ¥ = CP3. We also have that g’h is free on
Y for i=1,..., m—1 and therefore that Iso(Y)={1,Z, =(g)}.
Notice that YZ» = Yy, II Y23, where Yy = {[zo: z;: 0: 0]: zp, z; €
C} = CP!, and Y3 is similarly defined. Now we can proceed to the
construction of an appropriate D,,,-fiber homotopy equivalence.

Let X denote the sphere S’ = S(C*) with the lifted maps g and
h acting on it. Notice that these maps do not quite induce a D,,,-
action on X because h2(ay, a;, az, a3) = (—ay, —a,, —az, —as), for
(ag, a1, ap, a3) € L. However, we do get a D,,,-action on the V-
bundles associated to the S!-principal bundle X — Y, that is, on
T xq Ve =N, where Vi = t7% + 7% and V. = 172 4 174
as above. (Recall that if X and Y are G-spaces, then the twisted
product X xg Y is the orbit space (X x Y)/G, where g(x,y) =
(xg~1, gy) forall (x,y)e X xY andall g € G.) The Dy,,-action
on Xxg Vi is given by gla, vl =[ga, v], where [a, v] is the point
in the orbit space corresponding to (a, v) € £ x V.. In particular,
h2la,v] = [h%a,v] = [-a,v] = [a, (=1) -v] = [a,v]. (Indeed,
say v = (v, vp) € V. Then, (=1)-v = ((=1)"%vy, (=1)"%v,) =
(v1, v3) = v.) In this way, ny become D,,,-vector bundles. We
construct w: ny — n- by taking Idxf, where f:V, — V_ is
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Petrie’s map introduced previously, and passing to S!-orbit spaces.
Since deg f* = 1, we need only check the degree condition on @ for
isotropy groups H # 1. Now, the only non-trivial element of Iso(Y)
is Z,,. So, we must show that, for all y € Yy U Y3, (w|y)% has
degree 1 when extended to 1 point compactifications.

At this point, we make the assumption that the relatively prime inte-
gers p and g are each = 1 mod m. Let p denote the 1-dimensional
complex Z,-representation which sends a generator to multiplication
by e?*i/m  Then, restricting the D,,-action on Y to Z,, we see
that resz ¥ = P(2p + 2p~ 1), where P(V) denotes the space of
complex lines in the representation V. From this, it follows that
for y € Yo1, n4ly = p~%4. Indeed, suppose a € X lies above y.
Then gla, v] = [ga, v] = [p(g)a,v] = [a, p(g)v]. Since p and
g are each = 1 mod m, we can see that, as a Z,-representation,
n+ly = 2p~2. Similarly, we can compute that 5_|, = 2p~2, for any
y € Yy, and that ni|, = 2p?, for any y € Y,3. This implies that
(n+)%» = Yy, U Ya3 (as subsets of the zero section) and the required
degree property easily follows. Therefore, @ is a D,,,-fiber homotopy
equivalence.

It will be useful to build a D,,,-equivariant, free, orientation re-
versing involution into our fiber homotopy equivalence (and hence
our normal map) to help with the signature obstruction which
will arise later. Let ¢: Y — Y be defined by ¢[zg: z1: z3: z3] =
[-Z2: —Z3: Zp: Z1] and note that ¢ commutes with D,,, . Notice that
¢ lifts to n+ in such a way that w becomes a D,,,, xZ,-fiber homotopy
equivalence. To see this, define ¢’': £ — X to be the obvious D;,,-map
covering ¢ . Then ¢ : ns — 11 defined by ¢p1[a, v]=[¢'(a), v] are
involutions which cover ¢ and make #+ into D, x Z,-vector bun-
dles. It is easy to check that wo ¢ = ¢_ o w and therefore, that ¢
lifts to n+ in such a way that w becomes a D,,, x Z;-map. To see
that w is actually a D,,, x Z,-fiber homotopy equivalence requires
that the degree property be considered once again.

Things become a bit more complicated at this point since the addi-
tion of the involution ¢ into our action introduces new elements into
Iso(Y). Let H; be the group of order two generated by ¢g/h, for j =
0,...,m—1. Then Iso(Y) ={1,Z,,, Hy, ..., Hyp_;} and Y7 =
CP!'II CP! for all j. To see this note that ¢pg/h[zy: z;: z3: z3] =
glohlzo: z1: z0: z3] = [E/z3: — Ezy: E7Jz;: — EJz5] and hence
Y = {[zo: i&zy: 211 i€ T 2oV 10{[z0: —i&izy: 212 —iET 2]}, where
i = v=1. Notice that Y2 nY*, =@, forall i, j distinct. (One way
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to see this is: z € YENYH = 9pgihz = pglhz = glhz = g/hz =
g’7'z =z = z € Yy; II Y,3. But these points are not fixed by H; for

any i.)
Now, take y € Y with isotropy group equal to (Dy,, X Z;), = H; =
Z,,forsome i € {0, ..., m—1}. When the action on Y is restricted

to H;,itis Z,-diffeomorphic to P(1+1+A+h), where 4 denotes the
non-trivial 1-dimensional complex Z,-representation. (Just write the
linear action of H; in terms of irreducible Z,-representations.) There-
fore, as H;-representations, 7|, will be equivalent to 2- 1y , where
1y denotes the 1-dimensional complex trivial H;-representation.
(Note that, for instance, if y € P(h + h), 14|y, = 2h% + 2072 =
2-1g.) Using the fact that degf* = 1, it is not hard to check
that w is indeed a D,,, x Z,-fiber homotopy equivalence.

The D,,, x Z,-fiber homotopy equivalence which we shall work with
is O=we®: 1y =1y ®np — N- = n- dn_. We first verify that the
transversality condition holds.

We need to show that given y € Y and an irreducible (D,,, X Z;),-
representation y with my (7],) # 0, we have

mIR(TY|y) <dymy(TY + 11 —n-|y) +dy — 1.

First, take y € Y with (Dy,, x Z3)y = H; = Z,, for some i €
{1,..., m—1}. Previous considerations show us that (77 — #Z)|, =
4.1y —4-1g =0 in RO(Z,). Also, for such y, TY|, =1y +2h.
Since dj, = 1, we have m; (TY|y) =2 < my(TY +7{ —n_|,) =4, as
desired. (Recall that m, counts multiplicity as real representations.)
Similarly, the desired result holds for ¥ =1 H -

Next, take y € Y with G, = Z,,. The restricted Z,-action on
Y is equivalent to P(2p + 2p~1), where p is the standard Z,-
representation as above. If y € Yy, then TY|, = 1 +2p~2, while
i —n-|y = 4p=2 — 4p~2, by choice of p and g. If y € Y>3, then
TY|, =2p*+1 and 7y — 7Z|y = 4p*> — 4p?. In either case, it is quite
easy to verify the transversality condition. Of course, the stability
condition holds when y has trivial isotropy group.

Now that the transversality condition has been verified, we can con-
struct the smooth G-manifold X, the G-map f: X — Y of degree 1,
and the stable G-vector bundle isomorphism b as indicated above.

Notice that Iso(77;) C Iso(Y). Indeed, due to the nature of our
action, if H is not in Iso(Y), then it acts without fixed points on
Y and hence cannot be in Iso(#;). This guarantees that Iso(X) =
Iso(Y). We also note that X satisfies the gap hypothesis since Y
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clearly does. Finally, we mention that Y and all of its fixed point set
components under the G-action are simply connected.

It follows from our construction that XZ» is D,,,/Z,-diffeomorphic
to YZ» . This is a result of the fact that 1z isnota sub-representation
of #x|y for any y € YZ». Now, given H; € Iso(Y), write Y as
YOHf I YIH". At this point, we do 0 and 1-dimensional equivariant
surgerieson X, X, = (f%)-1(Yy"),and X" = (f&)=1(¥]"). This
makes X a connected and simply connected D,,, x Z,-manifold and
provides Np _x«z (Hj) /H; = (g/h) x Z,-homotopy equivalences be-

H . . H
tween XI.H’ and Y;’, for i = 0, 1. (Indeed, since the X;’’s are
simply connected, closed surfaces, they are 2-spheres i.e., CP!’s. The
map f] % 1s a map degree 1 between spheres and is hence a homo-

topy equivalence. It is actually a (g/h) x Z,-homotopy equivalence
since the action of this group is free.) At this stage, we forget about the
Z, = {1, p}-action, except to state that we now have an adjusted D,,,-
normal map (X, f, b) with target Y such that the D,,,-manifold X
admits a D,,,-equivariant, orientation reversing involution.

We now consider the surgery obstruction a;(f, b) eLg(Z[Dzm] ,W).

Since (X, f, b) is an adjusted D;,,-normal map with f* an equi-
variant diffeomorphism, we see that according to Lemmas 2.5 and
2.6, ag(oi1(f, b)) = 0. Therefore, o;(f, b) comes from an element
oi(f, b) € L{(Z[Dyp], w).

According to the paragraph after Lemma 3.2, the Kervaire-Arf in-
variant of g7(f, b) vanishes as the D,,,-fiber homotopy equivalence
@ 1is twice a fiber homotopy equivalence by construction. Therefore,
o;(f, b) must lie in the free part of L{(Z[D,,], w). (Also relevant
is the formula due to Masuda [M2], which considers the Kervaire-Arf
invariant for obstructions in L(Z[1], 1) obtained from certain fiber
homotopy equivalences which are related to ours. We note that the in-
clusion 1 — Z, induces an isomorphism L(Z[1], 1) — L(Z[Z,], ID).
See p. 164 of [W2].)

Now, let I" = {all cyclic subgroups of D,,,}. According to the Dress
Induction Theorem found in [Dr], L*(-) ® Q is I'-computable which
implies that

LY(Z[Dy), w) ® Q% ] Li(ZIH], wiw) ® Q
HeT

is an injection, where Res gives coordinate-wise restriction. Now, if H
is of order 1 or 2, then Resy(ai(f, b) ® Q) =0 because L{(Z[1], 1)
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and L§(Z[Z,], ID) are each isomorphic to Z, as mentioned above.
That leaves us only with Resz (o7(f, b) ® Q) € L§(Z[Zn], 1) ® Q
and this term can be shown to vanish. Indeed, let Resz (o{(f, b)) €
L§{(Z[Znx], 1) denote the obstruction obtained by restricting the D,,-
action to Z,, . Since the restricted orientation homomorphism is triv-
ial, Petrie’s formula ([P1]) applies and tells us that
Sign(Resz_(ai(f, b))) = Sign(Zy , X) — Sign(Zm, Y).

Now, by construction, X admits a Z,,-equivariant, orientation re-
versing involution and this guarantees that Sign(Z,,, X) = 0. (In-
deed, whenever a G-manifold M admits G-equivariant, orientation
reversing diffeomorphism, we have that Sign(G, M) = 0.) Since
Sign(Zm, Y) is obviously 0, we have that Sign(Resz_(a{(f, b))) = 0.
But this implies that Resz_(a7(f, b)®Q) vanishes because the torsion
free part of L{(Z[Zy], 1) is detected by the multisignature. Hence, by
the injectivity of Res, we have that ¢;(f, »))®Q = 0. This means that
oi(f, b) lies in the torsion part of L{(Z[D,,], w) and as we saw this
implies that a§(f, b) = 0. Thus, g1(f, b) = 0 in LX(Z[Dyy], w)
and we can use D,,,-surgery to construct the triple (X;, F, B), where
F: X; —» Y =CP? is a D,,,-homotopy equivalence.

The stable G-vector bundle isomorphism B between TX; and
F*(TY + 7y — ) allows us to compute the Pontryagin class of the
smooth manifold Xj. In particular, the first Pontryagin class is given
by p1(X;) = (4 + 8(p? — 1)(g* — 1))x?, where x € H*(X;) is a gen-
erator. (See [H] §§6 and 7 for more details on this calculation.) So,
X = Xj, where k = (p> — 1)(¢> — 1)/3 and by varying p and ¢
(within the constraints that p and g are relatively prime and each
= 1 mod m) we can build D,,,-actions for infinitely many k. O
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