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THE ORIENTABILITY OF MATCHBOX MANIFOLDS !

J. M. AARTS, C. L. HAGoPIAN, AND L. G. OVERSTEEGEN

A separable and metrizable space X is a matchbox manifold if
each point x of X has an open neighborhood which is homeomor-
phic to S; x R for some zero-dimensional space Sx . Each arc com-
ponent of a matchbox manifold admits a parameterization by the reals
R in a natural way. This is the main tool in defining the orientability
of matchbox manifolds. The orientable matchbox manifolds are pre-
cisely the phase spaces of one-dimensional flows without rest points.
We show in this paper that a compact homogeneous matchbox mani-
fold is orientable.

As an application a new proof is given of Hagopian’s theorem that
a homogeneous metrizable continuum whose only proper nondegen-
erate subcontinua are arcs must be a solenoid. This is achieved by
combining our work on matchbox manifolds with Whitney’s theory of
regular curves.

1. Introduction. In our discussion we need some definitions and
results from the papers [1] and [2] in which flows without rest points
on one-dimensional spaces were discussed. A separable metric space
X is called a matchbox manifold if for each point x of X there is a
zero-dimensional space Sy such that S, x R is homeomorphic to an
open neighborhood of x.

For any zero-dimensional subspace S of R we let

Fs={(x,y)eR*xeS, -1<y<1} and
Es={(x,y)eRxeS, -1<y<l1}.

If h: Fg — X is a topological embedding such that A(Fs) is closed
and A(Eg) is open in X, then V' = h(Fy) is called a matchbox in
X . In this case we also say that V' is a matchbox neighborhood of
h(x,0), x € S. The induced map A: Fs — V is called a parame-
terization of V. In a matchbox manifold every point has arbitrarily
small matchbox neighborhoods. As orientability of matchbox mani-
folds is the main topic of our paper, we briefly discuss its definition.
First parameterizations of arc components are defined. If an arc com-
ponent C is compact, it is a circle and any covering map of R to C

! These results were announced at the sixth Brasilean Topology Conference, Campinas,
Brasil, August 15-19, 1988.
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is called a parameterization. If the arc component C is non-compact,
then any continuous bijection p: R — C is called a parameterization.
The most important property of parameterizations is the so-called arc
lifting property formulated in the following lemma. See [1], [3] for
details.

LEMMA. Suppose that p, and p, are parameterizations of an arc
component of a match manifold X . Then for each a; and a, such
that pi(a;) = py(ay) there is a unique homeomorphism h: R — R
such that p, =p,oh and h(ay) = a;.

Because any homeomorphism of R onto itself is either decreasing
or increasing, it is clear that the parameterizations of an arc compo-
nent fall into two classes, the directions. Now if X is a matchbox
manifold, we let {C,la € 4} denote the collection of arc compo-
nents. If p,: R — C, is a parameterization for each o € 4, then
the collection {p,|a € A} is called a parameterization of X. Now
let V' be a matchbox in X with parameterization A: Fg — V. As
before, Fg =S x[-1, 1] for some zero-dimensional subset S of R.
By pr we denote the projection of Fg onto [—1, 1]. As in [2] we shall
say that V is coherently directed by the parameterization {p,|a € A}
of X if for each x € S and for any closed interval J in R with
Pa(J) = h({x} x [-1, 1]) for some a the composition proh~!o p,
is increasing.

Finally, the matchbox manifold X is said to be orientable if there
exists a parameterization {p,|a € A} of X such that each point has
a matchbox neighborhood which is coherently directed.

By the characterization theorem of [2] a separable metrizable space
X is an orientable matchbox manifold if and only if X is the phase
space of some one-dimensional flow without rest points. In [1] and
[2] examples have been presented of matchbox manifolds which are
not orientable. See §5 for more examples. It is the main result of
this paper that if the matchbox manifold is a homogeneous compact
space, then it must be orientable. Recall that a space X is said to
be homogeneous if for all x and y in X there is a homeomorphism
h: X — X such that h(x)=y.

MAIN THEOREM. If a matchbox manifold is compact and homoge-
neous, then it is orientable.

In §5 by means of Examples 2 and 3 we shall show that both the
ingredients compact and homogeneous are needed in the theorem.
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The proof of the main theorem and its corollary are presented in §2.
In §3 we discuss a modification of an important result of Whitney [17]
about the local product structure of regular families of curves. This is
a preparation for the application of the main theorem to the situation
of a homogeneous continuum all proper subcontinua of which are arcs.
As a consequence we obtain a new proof of Hagopian’s theorem [11]
that such a continuum must be a solenoid. Another proof of this result
was recently obtained by Mislove and Rogers [12]. See §4.

2. Proof of main result. We shall frequently use Effros’ theorem
[9] (see also [5]). We say that a metric space X (with metric d)
has the Effros property if for every ¢ > 0 there exists a > 0 such
that for all points y and z in X satisfying d(y, z) < J there is a
homeomorphism A: X — X such that A(y) = z and d(x, h(x)) <e
for all x € X. In this situation we say that § is an Effros delta for
¢. As a consequence of Effros’ theorem each compact homogeneous
space has the Effros property.

Proof of the main theorem. Let X be a matchbox manifold which
is compact and homogeneous. In [4] it has been shown that every ho-
mogeneous locally compact separable metrizable space is the product
of a connected space and a zero-dimensional space. So without loss of
generality we may assume that X is connected. Let {C,|a € 4} de-
note the collection of all arc components of X . Let x be a pointin X
and let V' be any matchbox neighborhood of x with parameterization
h: FS - V.

First we shall show that there is a parameterization {p,la € A}
of X and a subset S; of S such that ¥} = h(Fs) is a matchbox
neighborhood of x which is coherently directed by {p,|a € 4}. We
assume that this is not true and we shall derive a contradiction. From
the assumption it follows that there exists a sequence (d,) of positive
numbers, which converges to 0, and that there exist for each n € N
points y,, z, € S and intervals I, and J, in R such that

(1) A({a} x [=1, 11) = Pa, (In)

(2) h({za} X [1, 1]) = P (Jn)

(3) the map proh~lo Do, is increasing on one of the intervals I,
and J,, and decreasing on the other of I, and J,,

(4) d(h(yn, 0), x) < $0n, d(h(zn, 0), x) < }6.

We shall write C, = p, (R). By taking a suitable subsequence we
may also assume that

(5) On is an Effros delta for 1;.
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Let & be the minimum of the numbers

d(h(S x {1/2}), X —h(Sx (0, 1))) and
d(h(S x {=1/2}), X — h(S x (=1, 0))).

As X 1is compact, ¢ is positive. For every n € N we find a homeo-
morphism g,: X — X such that

gn(h(J"n ’ O)) = h(zn N O) and

1
d(gn(u), u) < Py for all u € X.

It is clear that g, maps C, onto itself. Without loss of generality
we may assume that proh~lo Do, is increasing on [, and decreasing
on J,.
From the definition of ¢ it follows that for any » with 1/(n+1) <e¢
the mapping
t—proh~to gnoh(yn, 1)

is increasing. For any such n the map pros=lo g, o0 Do, is defined
on some subinterval I of I, and this map is increasing on /.

The map g, opo, is a parameterization of C, and by the lemma
in §1 there is a homeomorphism f,;: R — R such that

8n ©Pa, = Da, °ﬁ1~
Note that f, sends I into J,. It follows that the map
proh~'ogyop, =proh~lop, o f;

is increasing. As proh~!o Do is decreasing on J,, we see that f,
is decreasing on 7. It has been proved now that f, is decreasing on
R. We denote the unique fixed point of f, by ¢, and we write p, =
Do (tn) . We see that g,(ps) = pn. In this way we find a point p, for
each n satisfying 1/(n+1) < &. By compactness of X we may assume
that the sequence (p,) converges to p. Let V* denote a matchbox
neighbor of p with parameterization A*: Fg- — V*. Define &* in
a similar way as ¢ above. Because f, is decreasing, the maps g,
move some points of V* more than %a* ,forall n with 1/(n+1) <~
e*. Since g, — id, the maps g, move no point more than %s* for
sufficiently large ». This is a contradiction.

Having established that there exists a matchbox V) and a param-
eterization {p,|a € A} of X such that V] is coherently directed by
{Pa|a € A}, we now show that X is orientable. As in [2] we denote



ORIENTABILITY OF MATCHBOX MANIFOLDS 5

by B(V;) the union of all arc components of X which have a non-
empty intersection with V] . By using the lemma of the long box of [2]
we see that B(V}) is an open subset of X which is orientable by the
very same parameterization. The proof is completed by showing that
X = B(V]). As X is assumed to be connected, we need only show
that B(V}) is closed. Let g € cl B(V;). For every natural number n
we select g, € B(V;) and x, € S; such that g, — g and A(x,, 0)
and g, are in the same arc component. As V)] is compact, we may
assume that x, — x* € S1. As h(x*, 0) € h(Es) and h(Eg ) is open,
there is an 7 < 0 such that
By (h(x*, 0)) C h(Es,).

For this 5 we choose an Effros delta 6. For n with d(g,,q) < ¢
and d(h(x,,0), h(x*, 0)) < J we find that the distance of A(x,, 0)
to the arc component of g is less than 7. It follows that the arc
component of g hits ~(Es ) and thus g € B(V}).

Since V; is an arbitrarily small matchbox neighborhood in the last
part of the proof, namely the proof of X = B(}]), we have established
the following corollary.

COROLLARY. Ifa matchbox manifold is compact, homogeneous and
connected, then each of its arc components is dense.

3. Local product structure. In this section X is a separable metriz-
able space such that every proper nondegenerate subcontinuum of X
is an arc. For each x € X we let C, denote the arc component of
X . By our assumption of X the set C, is the union of all proper
subcontinua of X containing x. Obviously, for all x,y € X ei-
ther Cx = Cy or CxNC, = . Forevery x € X theset Cx isa
one-to-one continuous image of either [0, 1], (0, 1) or [0, 1) and,
consequently, inherits an order. We want to emphasize here that Cy
may fail to be a topological image of an interval. We shall say that the
family {Cx|x € X} of arc components is regular if for each x € X,
for each arc I ¢ Cy, containing x, and for each ¢ > 0 there exists
a J > 0 such that for each y € Bs(x) there exists an ¢-embedding
h:I— C, (ie., d(u, h(u)) < ¢ for each u € I) such that A(x)=y.
For a, b € C, we shall denote the arc joining a and b by [a, b].
We write (a, b) = [a, b]\{a, b}.

In §5, Example 3, we present an example of a space X with a non-
trivial regular family of arc components which consists of just one
element.
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The main goal of this section is to prove the existence of local sec-
tions and to exhibit the local product structure when the arc compo-
nents form a regular family. Results of this type are often obtained
under more restrictive hypotheses. For example, Bebutov [15, p. 333],
makes use of the group property in dynamical systems. We shall fol-
low an argument designed by Whitney [17] for a different situation.
The Whitney function u will play the role of a potential function.

By 2X we denote the space of closed subsets of X endowed with
the Hausdorff metric [14]. It is known that 2¥X is a separable metric
space. Let u:2X — Rt U {0} be a Whitney function of 2%, [17, p.
246]. That is, u is a continuous function such that u({x}) = 0 for
each x € X and, if A4 is a proper closed subset of the closed set B,
then u(A4) < u(B).

Now suppose that the family of arc components of X is regular.
Let x € X. We say that the closed set S is a local section at x
provided that x € S and that there exists a neighborhood U of x
such that for each y € U each component of CyNU intersects .S in
exactly one point.

LEMMA. Let X be a separable metrizable space such that the family
of arc components of X is regular. Then X admits a local section at
every point x € X such that x is contained in some arc (a, b) in Cx.

Proof. Without loss of generality we may assume that there are
¢, d in C, such that x € (a,b) C[a,b] C (c,d) C[c,d] C Cx.
Let < denote an order on [c, d] such that ¢ < d. As the family of
arc components is regular, there exist 0 < J < n and a neighborhood
V' of a such that

(i) V C By(a);

(i) Bay(a) N Bys(x) =9;

(iii) for each y € Bys(x) there exists an embedding 4: [c, d] — C),
such that 4(x) =y and A(a) € V' ; this embedding 4 induces an order
< on h([c, d]) such that A(c) < h(d) and if z,, z, € VNh([c, d)),
then [z, z3] C By(a).

For each y € Bs(x) we let

ay =sup{z € Cy|z €V and z < y}

and
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The map y — T} is a continuous map Bs(x) — 2. Consequently
the map ¢: Bs(x) — R*, defined by ¢(y) = u(T;), is a continuous
function which is strictly increasing on arc components of C,NBs(x),
y € Bs(x). Choose x; and a neighborhood V; of x;, i =1, 2 such
that

(1) a<x1<x<x<b,

(i) x ¢ ViUV,

(iii) V1Ul[x1, x2]UV;, C Bs(x), and

(iv) foreach y; €V;, i=1,2, ¢(y;) < p(x) < p(r2).

Now let U = {y € Bs(x)| there exist y, € V;, i = 1, 2 such that y; <
y <y and [y;, 2] C Bs(x)}. Since the family of arc components
of X isregular, U is a neighborhood of x. Define

S ={w e Ulp(w) = p(x)}.

Then for each y € U each component of C, N U intersects S in
exactly one point.

THEOREM. Let X be a separable metrizable space such that the fam-
ily of arc components of X is regular. Suppose that x is contained in
some arc (a, b) C Cx. then there exist a neighborhood U of x, a
section S at x and an embedding y: S x [-1, 11 = U such that

(i) w(s,0)=s forevery s€s.

Proof. We may assume that [a, b] C Cx. Let < be an order on
[a, b] such that a < b. By the preceding lemma X has a local section
S’ at x. Hence there exists a neighborhood V' of x such that for
each y € V there exists a unique s, € $' N C, such that [y, sy]
or [sy,y] is contained in V. Choose 6 < 0 such that Bys(a) N
[[x, b]JU Bs(b)] = & and B,5(b) N[[a, x] U Bs(a)] = . Choose
n > 0 such that B,(x) C V and for each y € B,(x) there exists a
J-embedding 4: [a, b] — C, such that

W)=y, wth(a), 1) > 2 ang

ullsy, (o)) > LD

The map 4 induces an order on A([a, b]) such that i(a) < k(D).
Now let S = {sy|y € By(x)}, I =[-1, 1] and define

w:SxI-ywySx=T
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by
y < s satisfies M =|t|, ift<0,
w(s,t)=y where Zﬂug?s, );]]))
> s satisfies ———=-=¢, ift>0.
V= u(lx, b))

Obviously y is one-to-one and onto y (S x I). The continuity of w
follows from the continuity of ux. Suppose that y; — yy. Then
sy — 8y, and lim[sy , ;] = [sy,, vol. Hence u([sy ,yi]) = t; —
u([sy, > vol) = to and (sy , ;) — (sy,, L)

COROLLARY. Let X be a one-dimensional separable metrizable
space such that the family of arc components of X is regular. Sup-
pose that x is contained in some arc (a, b) C Cx. Then there is a
matchbox neighborhood of x in X.

Proof. By the theorem there exists a section S and an embedding
w:S xI— U where U is a neighborhood of x. As dimS xI <1,
we must have dimS = 0 [10, 1.9.E]. Let S’ be a clopen subset of
S containing x such that w (S’ xI) C intU. Then A(S' xI) is a
matchbox in X .

CoROLLARY. Let X be a compact metrizable space such that the
family of arc components of X is regular. Suppose that x is contained
in some arc (a, b) C Cx. Then there is a matchbox neighborhood of
x in X.

Proof. By the theorem there is a section S and an embedding
w:S xI — U where U is a neighborhood of x. Now S must
be totally disconnected, because otherwise X would contain a contin-
uum of dimension greater than one. That however is impossible. As
S is compact, it follows that dimS =0.

4. Applications. In this section we shall show that every homoge-
neous continuum such that every proper nondegenerate subcontinuum
is an arc admits a flow without rest points. This answers a question
of Hagopian. Using a result of Thomas [16] we obtain an alternative
proof of Hagopian’s theorem that such a continuum is a solenoid [11];
[12]. We will always assume that X is a nondegenerate continuum.

LEMMA 4.1. Let X be a homogeneous compact metrizable space
such that every proper subcontinuum is an arc. Then X is an orientable
matchbox manifold.
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Proof. 1t follows from Effros’ theorem that the family of arc com-
ponents is regular. Also because of homogeneity each point x of X
is contained in the interior of an arc in the arc component C,. By
the second corollary in §3 the space X is a matchbox manifold. By
the main theorem X is an orientable manifold.

THEOREM. Let X be a homogeneous continuum such that every
proper subcontinuum is an arc. Then X admits a flow ¢: X xR — X .
Moreover the arc component of each point x € X coincides with the
orbit of x and hence X is minimal under ¢ .

Proof. By the lemma X is an orientable matchbox manifold. Hence
by [2] X admits a flow such that the arc components coincide with
the orbits. By the corollary in §2 we get that the orbits are dense.
Hence, X is minimal under ¢.

CoroLLARY (Hagopian [11]). Let X be a homogeneous continuum
such that every proper subcontinuum is an arc; then X is a solenoid.

Proof. By the theorem X admits a minimal flow ¢ such that for
each point x the arc component of x and the orbit of x coin-
cide. Let x € X and let V = h(Fg) be a matchbox neighborhood
of x. We write Z = h(S x {0}), the zero level of V. The first
return map r.: Z — Z is defined by r(x) = ¢(x, ty), where ¢y =
inf{t > Olp(x, t) € Z}. It is to be observed that r is well-defined be-
cause ¢ is minimal and A(Eg) is open [16, p. 234]. In [16] Thomas
has shown that certain flows are solenoids. The exact same proof of
Thomas’ paper can be used after the following modification has been
made. In the key lemma for Theorem 1 [16, in paragraph 5 on page
126], it is observed that the family {r"|n > 0} of iterates of r is
equicontinuous.

The proof of this fact should be replaced by the following argument.

The map zn: h(Fs) — Z isdefined by n(h(x, t)) =h(x,0), x€S.
Let y be the minimum of d(h(Z x {}}), X — h(Z x (0, 1))) and
dh(Z x {-1}), X — h(Z x (-1, 0))). Let ¢ > 0 be given. First
choose 7 <y such that for each p € Z and each g € B,(p) we have
d(p, n(q)) <e.Let 6 be an Effros delta for n. We claim that

d(r"(x), r"(y)) <e foreachn>0andall x and y in Z

with d(x,y)<d.
Let x,y € Z such that d(x,y) <d. Let g: X — X be a home-
omorphism such that g(x) =y and d(y, g(u)) <n forall ue X.
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By the choice of y it follows that for all sufficiently small ¢ > 0,
g(h(x,t)) = h(y,s), for some s > 0. Using the order by time on
orbits, we see that g is increasing.

Let n > 0. We have

g(r'(x)) € By(r"(x)) C h(Es).
It follows that
mogor'(x)=r"(y) forsomem >0 and d(r(x),r(y)) <e.

In a similar way it follows that for some #-homeomorphism g’ we
have for all n > 0,

nog or"(y)=r"(x) forsomem >0 and d(r'(y), r"(x))<e.

An easy inductive argument shows that always m = n. Consequently
{r"|n > 0} is equicontinuous.
This completes the proof of the corollary.

5. Examples. Now we present some examples which may clarify
the discussion.

ExAaMPLE 1. The pseudo-arc [7, 13] and the universal curve [6] are
examples of compact homogeneous spaces without a matchbox struc-
ture. The pseudo-arc does not admit any flow because it contains no
arcs. Because the universal curve has a dense collection of arbitrarily
small closed curves, it only admits the trivial flow in which each point
is a rest point.

ExAMPLE 2. We present a compact matchbox manifold X which
is not orientable. Using polar coordinates we let

Y ={(1, 9)l0 <9 <27} U{(2, 9)|0 < ¢ <27}
U{(r,p)lg eR, r=y(p)},

which y is a strictly increasing continuous function of R onto (1, 2).

X 1is obtained by identifying the points

(1,9) and (2,2 —9), 0<¢p<2m.

ExaMPpLE 3. Let E denote the set of endpoints of the Cantor set C;
i.e., E is the set of points in [0, 1] the triadic expansion of which
has no 1’s and eventually either 0’s or 2’s. The space X* consists

of all semicircles in the upper half of the plane with center (% , 0)
through the points of £ and of all semicircles in the lower half of
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the plane with center (5/2.3", 0) through the points x of E such
that 2/3" < x < 1/3"71, n > 1. X* is just an arc component
of the well-known Knaster bucket handle. {X*} is a regular family
of arc components. The space X = X*\{(0, 0)} is a homogeneous
matchbox manifold which is not orientable [1], p. 48.

Related to Example 3 we have the following question.

Question. Does there exist a homogeneous curve (i.e. one-to-one
continuous image of the real line) that is not a matchbox manifold?

ExXAMPLE 4. On the two dimensional torus we consider the Denjoy
modification of the irrational flow [15, p. 381]. Let X be the minimal
set in this flow. Since X is embedded in a 2-manifold, X is not
homeomorphic with a solenoid [8]. From the corollary of §4 we may
conclude that X is not homogeneous.

EXAMPLE 5. LetY be an arc component of the space X in Example
4. As Y is an orbit in a flow, Y is homogeneous. Y is a matchbox
manifold, but fails to be compact.
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