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TRACEABLE INTEGRAL KERNELS
ON COUNTABLY GENERATED MEASURE SPACES

CHRIS BRISLAWN

Let K be a trace class operator on L2(X, Jί, μ) with integral
kernel K(x, y) € L2(X x X, μ x μ). An averaging process is used
to define K on the diagonal in X x X so that the trace of K is
equal to the integral of K(x, x), generalizing results known previ-
ously for continuous kernels. This formula is also shown to hold for
positive-definite Hilbert-Schmidt operators, thus giving necessary and
sufficient conditions for the traceability of positive integral kernels.
These results make use of Doob's maximal theorem for martingales
and generalize previous results obtained by the author using Hardy-
Littlewood maximal theory when I c R " .

1. Introduction. Let AT be a compact operator on a Hubert space,
H . The positive operator K*K can be diagonalized by an orthonor-
mal sequence {^}/eN of eigenvectors with corresponding eigenvalues
μx > 0. Define λ, = y/μϊ and φi = λJλKψι. The numbers λ, , the
eigenvalues of \K\, are called the singular values of K, and the se-
quence {φι}i£s is also orthonormal. K is a Hilbert-Schmidt operator
if the singular values are square-summable and a trace class operator
if they are absolutely summable. Since ktτ{K) = kcr(K*K), we have

(1.1)

Let φ (8) ψ denote the rank 1 operator

φ<g>ψ: θ ι-+ (0, ψ)φ.

By expanding θ e ker(A^)1 in terms of the basis {ψijien, we see that

1=1

Thus, K has the canonical expansion

(1.2) K =
ι = l

norm-convergent in
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We shall be interested in operators on the Hubert spaces L2(X, μ).
In this setting, every Hilbert-Schmidt operator, K, on L2(X) is given
by an integral kernel K(x, y) e L2(X x X, μ x μ):

(1.3) Kf(x)= ί K{x,y)f{y)dμ{y).
Jx

The canonical expansion (1.2) corresponds to an orthonormal expan-
sion of the kernel,

(1.4) K(x9y)

convergent in 1?{X x X).
In a previous paper [1], it was shown that the ubiquitous trace for-

mula

(1.5) tr*:= / K(x,x)dμ{x)
Jx

can be extended for arbitrary trace class operators with no continuity
assumptions on the kernel function when μ is Lebesgue measure on
a set X c R". Specifically, the diagonal values are defined by av-
eraging the kernel over cubes centered on the diagonal in R2" and
letting the radius of the cubes go to zero. That this limit exists almost
everywhere on the diagonal and that the integral of the resulting func-
tion furnishes the trace of K follow from the boundedness on L2(RW)
of the Hardy-Littlewood maximal operator. These results establish a
certain degree of function-theoretic smoothness for traceable integral
kernels and strengthen the analogy between noncommutative integra-
tion in -S*(H) and classical integration theory. They also provide
completely general necessary and sufficient conditions for traceability
of positive-definite integral operators.

The present paper extends these results from R" to a general
measure-theoretic setting. We shall obtain all the results in [1] with
R" replaced by a countably generated measure space, (X, Jt), and
Lebesgue measure by a σ-finite measure on Jΐ. The canonical expan-
sion (1.2) has been introduced to accommodate an eventual extension
of the results of §3 to include nuclear operators on the Banach spaces
LP{X). The diagonal values of an arbitrary trace class kernel, K, will
be defined by an averaging process, with pointwise values denoted by
K(x, x). We will then prove the analogue of (1.5):

XrK= f K(x,x)dμ(x).
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Conversely, we get the following generalization of Mercer's theorem:
if P > 0 and P(x, x) exists for almost every x with

(1.6) J?(x9x)dμ( x) < oo,

then P is traceable. Traceability also follows if the integrand in (1.6)
is replaced by the corresponding maximal function, MP(x, x), gen-
eralizing a result of J. Weidmann.

The key device in these proofs, a result from probability theory that
replaces the Hardy-Littlewood theorem, is Doob's maximal theorem
for martingales. The method of proof employed in [1] will be reformu-
lated in a purely measure-theoretic way that does not depend on the
geometric structure of Euclidean space. As an immediate corollary,
we shall obtain a new proof of a result of M. Duflo ([3], Theoreme
V.3.1.1): if K(x9y) is a continuous trace class kernel on a LCH
space then (1.5) holds. Our approach avoids the "analytic" hypothe-
ses behind Duflo's proof; specifically, that X be locally compact and
σ-compact and that μ be a Radon measure. We shall only require that
the topology on X be countably generated and that μ be σ-finite on
Borel sets.

Acknowledgments. The author wishes to thank Arlan Ramsay and
Larry Baggett for much constructive advice, and Daniel Stroock for
introducing the author to martingale theory.

2. Martingales. Let (X, Jί, μ) be a σ-finite measure space and
a sequence of sub-σ-algebras increasing to Jί:

<9*n cS*n+ι and Jt =

Assume that μ is σ-finite on each S?n so that, for / e LP(X), the
conditional expectations E(f\<5*n) exist. A sequence {fn}neN of func-
tions on X is a martingale if each fn is ^-measurable and

(2.1) E ( / π | ^ ) = fj, whenever j < n.

Of particular interest to us are martingales generated by a single Jf-
measurable function, / , with fn = E(f\5?n). The maximal function
of such a martingale is

(2.2)
neN

There is a boundedness theorem for the martingale maximal operator
analogous to the Hardy-Littlewood maximal theorem. The original
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reference is Doob ([2], Theorem VII.3.2); for treatments geared more
for our purposes, see Stein ([8], Theorem IV. 1.6), or Edwards and
Gaudry ([4], Theorem 5.2.7).

THEOREM 2.1. (Doob's Martingale Maximal Theorem.) The maxi-
mal operator, M, for martingales is weak-type (1, 1) on Tul(X) and
bounded on lf(X) for 1 < p <

f g
bounded on lf(X) for 1 < p < oo

The fact we shall need in §3 is that the martingale maximal operator
is bounded on L2(X):

\\Mf\\2 < C2II/H2 f o r a l l / G L 2 ( X ) .

The analogue of Lebesgue's differentiation theorem is:

THEOREM 2.2. (Doob's Martingale Convergence Theorem.) For each

f G I/(ΛQ, 1 < p < 00, the sequence E(f\SίP

n) converges to f a.e.

[μ]

We shall construct sub- σ-algebras for which the conditional expec-
tations E{f\9n) are given by averaging / over sets in S?n . For two
partitions 3P[, ^ of X, the notation 3°i < ^ will mean that ^ is
a refinement of 9°j . Suppose {^n}neN is a sequence of partitions of
X into sets of finite measure such that &>n+χ -< &n . Let S?n = σ(&n),
and suppose further that Jt = \Jn 5^n. For each x e X and each
n e N there is a unique set Cn(x) e ^n containing x. The condi-
tional expectation of / with respect to S?n is

(2.3) E(f\Srn)(x) = \ ί fdμ,
MC«W) Jcn(x)

whenever μ(Cn(x)) Φ 0. Assume that each &n is a countable par-
tition of X and let ^Γ be the set of all x for which μ(Cn(x)) = 0
for some n (and thus for all m > n, since Cn+\(x) c C n(x)). Then
μ(Λ/-) = 0, and for all c e J^c = AΓ\^ the formula (2.3) holds.

With these hypotheses we can define an averaging process analogous
to the Hardy-Littlewood process:

(2.4) An f(x) = x)

ί
Jcn

ί
cn{x)

It follows that the operators An convert JJ convergence into point-
wise convergence: if Σf converges to / in ΊP(X) then at each
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(2.5)

On X x X we have induced partitions &>nx&>n, with each point
(x,y)e Cn(x)xCn(y) and &>n+ix&>n+ι <&>nx&n. The set yVcχyVc

is conull with respect to product measure, and note that almost all of
the diagonal lies in JVC X

(2.6) ( I , X ) G / C X jrc a.e. [μ].

Let ^ 2 ) denote the averaging operators on X x X. When (x, y) G
x

O 1) Λw fir v\

1

μ(Cn(x))μ(Cn{y)) jCn{x)Jcn{y)

Applying (2.7) to elementary tensors,

(2.8) Aψ{φ ® ψ)(x, y) =

for all (x, y) G ̂ c x ^ c . Consequently,

/ f f(s9t)dμ(t)dμ(s).
JCΛx) Jc(y)

LEMMA 2.3. 77ze martingale maximal operator is submultiplicative
and subadditive: if (x, y) eyVc χyyc then

ψ){x, y) < Mφ(x)Mψ{y)

and
M(φ + ^)(JC) < Mφ(x) + Mψ(x).

Now let % = {Un}nen be a countable base for ΛT, and use it
to define a sequence of partitions on X. For &>$ take a countable
partition of X into sets of finite measure, and define 3Pn inductively:

(2.9) &n = {Un,

The Π in (2.9) means "all pairwise intersections." This is an in-
creasing sequence of partitions, &n+\ < &n 9 so S?n = a{3Pn) is an
increasing sequence of sub- cr-algebras of Jf, and ^# = \jn S?n . For
feV(X) define

(2.10) / ( * ) =

Then

f{x) = fix) a.e. [//]
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by Theorem 2.2. Call x E / c a regular point for / if the limit (2.10)
exists. Note that the set Yf of regular points for / is conull in X.
Yf should be thought of as the "Lebesgue set" of / with respect to
the measure μ.

If X is a second-countable topological space we shall let ^ be a
countable base for the topology on X. The σ-algebras σ(&n) will
then converge to the Borel σ-algebra. Because the averaging process
for this martingale is based on the topology of X, we have the fol-
lowing result:

THEOREM 2.4. Let μ be a σ-finite Borel measure on a second-
countable space, X. If feLP(X, μ), 1 < p < oo, then each point of
continuity X E / C is a regular point for f, with f{x) = f{x).

The same result holds in X x X with regard to the process (2.7).
Because almost all of the diagonal lies in JVC x JVC, if f(x, y) is
continuous almost everywhere along the diagonal then

(2.11) APf(x,x)^f(x,x) a.e. [μ],

even though the diagonal is null with respect to product measure.
Without any continuity hypotheses, we only have almost everywhere
existence with respect to product measure:

(2.12) f(x,y) = lim A^f(x9y) a.e. [μ x μ].
n—>oo

Of course, if μ is a Borel measure on Rm then the construction
(2.9) is unnecessary and one can define the partitions 3Pn by dyadic
decompositions of Rm into half-open cubes:

[j2~n , (j + 1)2"") x ... x [k2~n, (k + l )2" n ).

These partitions satisfy &>n+\ -< 3*n and generate the Borel σ-algebra,
so all of the above results apply, including Theorem 2.4. Note that
the averaging process defined by these partitions satisfies Theorems
2.1 and 2.2 even though the Hardy-Littlewood maximal theorem may
fail for averaging over balls with respect to the measure μ. For cer-
tain μ, however, one can smooth by averaging over balls with re-
spect to Lebesgue measure; Muckenhoupt [5] has classified the weight
functions w(x) (the "Ap weights") for which the ordinary Hardy-
Littlewood maximal operator is bounded on the weighted space
L 2 (R m , w(x)dx). For more on this and related results see Torchinsky
[9].
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3 The trace of an integral kernel. Let (X, Jt, μ) be a countably
generated, σ-finite measure space and suppose that AT is a trace class
operator on L2(X, μ) with kernel K(x, y) in L 2 ( I x I 5 / ι x / i ) .
Consider an expansion of the form (1.4):

(3.1) *(*,Jθ

We will say that x G JVC is a regular point of the expansion (3.1) if,
for all / e N, the limits

(3.2) lim Anφi(x) = φi{x) and lim Anψi{x) = ^/(x)
« » O O Λ • 0 0Λ—•00

exist at x. That is, the set Y% of regular points for (3.1) is

YΣ=f](YΦιnYψ).

Thus, almost every point in X is a regular point by Theorem 2.2.
From now on we will drop the tildes and consider φt and ψi to be
defined pointwise by (3.2) at each x e l χ . By (2.5) and (2.8) we have

(3.3) A™K(x,y)

at every point (x, y) e JVC X ̂ C . £ ( x , y) is defined as above:

K{x9y)= lim A^K(x,y),
n—>oo

which exists pointwise a.e. [μ x μ].
We are now ready to state and prove the following generalization

of Duflo's theorem:

THEOREM 3.1. Let K be a trace class operator on L2(X, μ) then
the canonical expansion (3.1) for K(x, y) converges absolutely a.e.
[μxμ] and a.e. [μ] on the diagonal, ΛfWK(x, x) e Il(X), K(x, x)
exists a.e. [μ], and

(3.4) trtf= f K(x,x)dμ(x).

Proof. We have a canonical expansion for K of the form (3.1),

with A/ > 0 and Σλi<oo. Since A: is traceable,
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so the series Σλj\φj(x)\2 and Σλi\ψj(x)\2 are finite almost every-
where. The inequality

shows that the canonical expansion converges absolutely a.e. [μ x μ]
to K(x,y) and that Σλiφi(x)ψi(x) converges absolutely a.e. [μ].

Using the results of §2, we have the following calculation:

ί •, x) dx < / V λiMφi(x)Mψi(x) dμ{x)
J *-*

<C2

2^λ/||0/||2||Wll2

< 00.

This proves the second assertion in the theorem and shows the con-
vergence of the nonnegative series

J2λiMφi(x)Mψi(x) < oc a.e. [μ].

Choose a conull set Y c YΣ of regular points for the canonical
expansion so that for all x e Y each of the following three series is
finite:

lim Anφi(x) = φi(x) and lim Anψi{x) = ψt{x),
n—•oo n—»oo

Since Y consists of regular points,

lim Anφi(x) = φi(x) and
n—•oo

for all x € Y and all i 'eN. Now,

μΛ&(xμB?/(*)|
for x eY so the series

converges absolutely for each x e Y. From (3.3) we know that

so, letting n —• oo, the dominated convergence theorem on N yields

K(x,x)= lim A^K(x,x)
n*oo

j lim Anφi(x)Anψi(x)
n—+oo
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for each x e Y. Note that this series converges absolutely in L1 (X).
Using (1.1), we compute the trace:

= J Σλiφi{x)ψi{x)dμ{x)

= I K(x9x)dμ(x). •

In general, the function K(x, x) cannot be computed effectively
because of the abstract nature of the averaging process defined in §2.
The existence and integrability of K(x, x) is a completely general
necessary condition for traceability, but Theorem 3.1 is most effective
for actually computing the trace when K(x, y) is continuous. Theo-
rem 2.4 implies

COROLLARY 3.2. Let μ be a σ-finite Borel measure on a second-
countable space, X, and let K be a trace class operator on L2(X, μ).
If the kernel K(x, y) is continuous at (x, x) for almost every x then

\τK= ί K{x,x)dμ(x).

Now consider the trace formula given by factoring a trace class
operator as a product of Hilbert-Schmidt operators: if K = LJ, where
L, / are Hilbert-Schmidt operators, then

(3.5) trK = / L * J(x, x) dμ{x).

Although the integrand in (3.5),

L * J(x, JC) = / L(x, z)J(z, x) dμ(z),

is a well-defined element of L1 (X), it is not clear that this function
is independent of the particular factors L and / , nor is it related
in an obvious manner to the diagonal values of the kernel K(x9y).
As in [1], we can prove that, for any factorization K = L / , the
function L * J(x, x) coincides almost everywhere with K(x, x), so
(3.5) agrees with the trace formula in Theorem 3.1.
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THEOREM 3.3. IfK = LJ is a factorization of the trace class oper-
ator K into a product of Hilbert-Schmidt operators, then

K(x, x) = L * J(x, JC) a.e. [μ].

The proof is identical to the proof of Theorem 3.5 in [1], using the
averaging process constructed in §2 in lieu of the Hardy-Littlewood
process.

4. Traceability of positive integral operators. Our final goal is to
prove a version of Mercer's theorem (see [7] or [10]) that does not re-
quire continuity of the kernel. Along the way, we shall also generalize
a theorem of Weidmann ([11], Satz 1) and obtain its converse imme-
diately from Theorem 3.1. This will give us two integral conditions,
each of which is both necessary and sufficient for traceability of an
arbitrary positive-definite kernel. We begin with a very easy lemma:

LEMMA 4.1. Suppose that

(4.1) P

is the eigenfunction expansion of a positive compact operator on L2(X).
If x is a regular point for this expansion, then

(4.2)

Proof. Since x is a regular point, Anφi{x) —• φi(x) for all / e N,
so (4.2) is just Fatou's lemma on N. D

Now for Weidmann's theorem and its converse in a more general
setting than R":

THEOREM 4.2. Let MP(x, y) be the maximal function of a positive
Hilbert-Schmidt kernel Then P is traceable if and only if

ί MP{x,x)dμ(x) oo.

Proof. As in §3,

(4.3)

at each regular point, Λ: . Apply Lemma 4.1

<MP(x,x)
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and integrate:

trP= Y^λt
Γ~ ' )< [ MP(x,x)dμ(x).

Thus, P is traceable if MP[x, x) e Lι(X). The converse follows by
Theorem 3.1. D

Next, we obtain a generalization of Mercer's theorem with no com-
pactness or continuity hypotheses:

THEOREM 4.3. Suppose that P is a positive Hilbert-Schmidt operator
and that P(x, x) exists a.e. [μ]. Note that we allow the extended real
value P(x, x) = +00. If P(x, x) < 00 a.e. [μ] then expansion (4.1)
converges pointwise:

(4.4) ?{χ,y) = Σλiφi(xWy) a.e. [μ x μ].

Moreover,

(4.5) t r P = f ?{x,x)dx.

Thus, P is traceable if and only if P(x, x) exists for almost every x
and the integral (4.5) is finite.

Proof. First note that P(x, x) > 0 a.e. [μ], by (4.3). For all regular
points x, y at which both P(x, x) and P(y9y) are finite, Lemma
4.1 implies

<P(x,x)P(y,y)<oc,

so (4.4) converges absolutely a.e. [μ x μ], and the pointwise limit
necessarily agrees with P(x, y) almost everywhere. Lemma 4.1 and
(4.3) also imply

trP =

< ίliminfA{n]P(x, JC)dμ(x)
J Π-+ΌC

< J?(x,x)dμ(x).
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Thus, if this integral is finite then so is t r P , and the trace formula
(4.5) follows from Theorem 3.1. Conversely, if P is not traceable
then both sides of (4.5) are infinite. D

Since P(x, y) agrees with P{x, y) at all regular points of conti-
nuity, Theorem 4.3 extends two previous generalizations of Mercer's
theorem for continuous kernels due to Duflo ([3], Theoreme V.3.3.1)
and Reed and Simon ([6], Lemma to Theorem XI.31.)
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