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THE LARGEST DIGIT
IN THE CONTINUED FRACTION EXPANSION

OF A RATIONAL NUMBER

D O U G L A S H E N S L E Y

The finite continued fraction sequence of a reduced fraction a/b ,
with 0 < a < b, is the sequence d = 0/(1), d{2), ... , d(r)) of
positive integers such that d(r) > 1, and

a/b = l/(d(l) + \/(d(2) + ••• + l/d(r))).

In the standard terminology of continued fractions, this is written
as [0; d{\), d(2), ... , d(r)], which we abbreviate here to [d{\),
rf(2),...,rf(r)]. Thus [ 1 , 4 , 2 ] = 1/(1 + 1/(4+1/2)) = 9/11.
The empty sequence corresponds to 0/1 . For any other fraction,
there will be r > 1 digits (also known as partial quotients) d(j) in
this expansion (1 < j < r). The largest of these we call D(a/b) or
D{a, b). Thus D(9/l 1) = D(9, 11) = 4 . The aim of this work is to
elucidate the distribution of D(a, b). Put informally, the main result
is that Prob[Z>(tf, b) < αlogZ?] « exp(-12/απ 2 ) . More precisely,
it is shown that for all ε > 0 , and uniformly in a > ε as x —• oo ,

, Z?) = 1, andi)(<2, fe) <

The question of how often there are exactly M digits exceeding
a log & in the continued fraction expansion of a reduced fraction a/b
with 0 < a < b < x is also touched on. Evidence points to the
estimate

(3/π2)x2(M\Γι{\2/aπ2)Mexp(-l2/aπ2)
for the number of such fractions.

Previous work in a similar vein includes a result of Galambos [4, 5]
concerning the distribution of the continued fraction partial quotients
(digits) of a randomly chosen real number in the interval (0, 1). Cor-
responding to any irrational ξ in (0,1) there is a unique sequence
dξ = d = (d(l), d(2), . . .) of positive integers such that

Galambos found that if X is a random variable uniformly distributed
on [0, 1] (in the statement of his result the random variable has the
Gauss-Kuzmin distribution, but that was just a convenience), then

(1) lim Prob (mzxdχ(k) < aλ = e"1/*1^2.
r->oo y k<r J
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238 DOUGLAS HENSLEY

There is also a literature concerning the distribution of pairs (a, b)
for which, in the finite continued fraction expansion d = daβ of a/b,
all of the d(j) are bounded by some fixed N. It is known [2, 3, 8] that
for each N > 2 there exists a real number H(N), 0 < ί/(iV) < 1,
such that the number of pairs (a, b) for which b < x is on the
order of χ2HiN), uniformly in JV as x —• oc. For each fixed iV,
there is also [9] a constant C(N) > 0 such that this pair count is
« C(N)x2H(Nϊ, but it is not known how fast the convergence to this
asymptotic behavior is, or whether it is uniform in N. There is no
evident reason to suspect that it would not be uniform, but in any
event numerical evidence suggests that x must be fairly large before
the asymptotic trend takes hold. Recently, the author also showed [10]
that

(2) l imΛ r (l-//(Λ0) = 6/π2.

As usual, Φ(x) denotes Σn<χΦ(n) = H(a> b) : 0 < a < b < x and
gcd(#, b) = 1}, so that

(3) Φ(x) « (3/π 2 )* 2 a sx-»oo.

Now let

Φ(x, a) := #{(a,b):0<a<b<x, gcd{a, b) = 1,

and D(a, b) < αlogx}.

From the results mentioned above, it follows that there exists C > 0
such that for all sufficiently large x,

(4) ( l/C)xV 1 2 / α 7 r 2 < Φ(JC, α) <

whenever αlogx is an integer > 2. In view of the results just men-
tioned, our main result below fits in nicely:

THEOREM 1. Uniformly in a > 4/ log log x as x -» oc,

φ(jc, ά) = (3/π 2 )xV 1 2 / α π 2 ( l + O((a~2 2

as x —• o o .
The result can also be put in a form which refers to the Diophantine

approximation properties of a/b rather than to its continued fraction
expansion. Let

δ(a,b):= min \\ka/b\\,
\<k<b
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where \\u\\ denotes the distance from u to the nearest integer. Let

(5) F(x,a):=#{(a,b):O<a<b<x, gcd(a,b) = 1,

andδ(a, b) > 1/αlogx}.

Then for fixed a > 0, as x —• oo,

(6) F(x, a)

The basic idea of the proof is to count Φ(JC , a) by inclusion and
exclusion, throwing out all fractions with at least one digit too large—
once for each such digit—then restoring those with at least two—once
for each such pair of digits—and so on. Term by term, these counts
are asymptotic to the corresponding term in the identity

(7)
7=0

REMARK. A more sophisticated version of inclusion and exclusion
yields an asymptotic estimate of the number of fractions with exactly
M digits > alogx, and denominator < x. Let μM'- N -* Z satisfy

έ ( k ) μ M { k ) = { 1 if n -M ? ° i f not}

k=0 ^ '

This defines μM recursively, and it is not hard to see that //M(0) = 1 >

μM(j) = O iΐl<j<M, and

μM{J) = (-1)^-^ ( 7 ^ 1 ) for j > M.

Following the proof given here for the case M = 0, but with μM in
place of (-1) 7 , leads to a main term of

2. Inclusion and exclusion. Let Vr := {v : {1, 2, . . . , r} —• Z+} be
the set of all sequences of r positive integers, and let V = IJ^o vr
For i; e Vr, let lex(ι ) = r, the lexicographic length of Ϊ; .

Let ao(v) = 0, δo(*>) = 1 ? Λ-i(v) = 1, and fc-i(v) = 0. For
1 < / < r we define ai(v) and fc, (ι;) recursively by the conditions

(8) ai(υ) = didi-iiv) + fl/-2(v),
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where d\ = v(i) is the /th entry in the sequence υ . Let

(v) := biex(v)(v) = br(v),

say, let [v] := ar(v)/br{v), and {v} := br-\(υ)/br(v). By convention,
if v is the empty sequence (r = lex(v) = 0) then (υ) = 1 and
[v] = {v} = 0.

There is a two-to-one correspondence T between V and {(α, 6 ) :

0 < a < b and gcd(#, b) = 1}. In one direction, we map v —• (α r, Zv)
where r = lex(v). In the other direction, cfx(α, b) is defined as that
one of the two v , mapped by T back to (a, b), for which the last
entry v(r) is greater than one. The other, call it v, is obtained by
replacing v{r) with v(r) - 1, and appending 1 as ϋ(r + 1). Thus

(9) #{^ G V : (v) < x and υ(i) < αlogx - 1 for 1 < i < lex(υ)}

< 2Φ(JC, a) < #{v e V : (υ) < x and v(z) < αlogx

for 1 < / < lex(v)}.

In (9) we don't get equality because there are some υ £ V such that
v(r) — 1 < αlogx < ι (r). Given two sequences u, w e V, we write
w^ for their concatenation. That is, uw denotes the sequence v
such that v(j) = u(j) for 7 < lex(w), lex(t ) = lex(w) + lex(iu), and
v(j) = w(j - lex(w)) for lex(w) < j < lex(w) + lex(iϋ). With this
notation, a well-known identity reads

(10) (uw) = (u)(w)(l + {u}[w]).

Now if dj = 1/(7) > N, (where in the subsequent application, N =
[αlogx]), then {u} = bj-ι(u)/(djbj-\(u) + bj-2(u)) < 1/N, so that
for ueVj with w(J) > N, and tί; G K,

(11) (u){w) < {uw) < (1 + l/N){u)(w).

This gives us a way to estimate, for 1 < / < L say, the number of
constructions of the form

υ = u ι k ι u 2 k 2 - u ι k ι u ι + ι 9 w i t h W i , u 2 , . . . , u ι + ι e V,

k\, k2, . . . , k\ G V{\) or Z+ (which we equate by a sleight of nota-
tion), with all ki> N, and with {v) < x. Note that since V includes
the empty sequence, there need not be any genuine interposition be-
tween consecutive ki. Note also that the same sequence, if more than
/ of the v(i) are greater than N, can be expressed in the above form
in more than one way.
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Our inclusion and exclusion argument is based on counting repre-
sentations of v of the above form. For every integer / > 0, and every
v G V, let σ{υ , /, N) denote the number of ways in which v can be
written as u\k\ «/fc/W/+i, with all k\ > N. Then

( 1 2 ) > ι — l ) σ ( v . l . N ) = <
v ' '^ ! v ' Λ 0 if any w(i) >N,

Y(-l)ισ(υ I N) = {

and ]C/io(~l)/<J(v>^> ^0 alternates about this, being > {1 resp. 0}
for K even, and < {1 resp 0} for K odd. Now let

Φ~(x, a) := \#{v e V : (υ) < x and v{i) < alogx - 1

for 1 < i <lex(v)},

and

Φ+(x, a) := \#{v eV : (v) <x and v(z) < αlogx
for 1 < i < lex(v)}.

Then with N = [αlogx] or [αlogx] - 1 respectively,
. 00

(13) Φ±(x, α) = 5
/=o

1=0 «,

~~ ~~ Z((«ifei «/M/+i)<^)

/=0 «,€F fc,>iV u2eV

Now let W[(x, N) denote the number of pairs {{u\,
:\, Jc2,... , kι)) where the Ui € V and the kj > N, and such that

iiki uikiUi+i) < x. Let W/(x, N) denote the number of
such pairs for which Π/=i ̂  Π^i (uj) ^ x Then from (11), we see
that

(14) W/{(1 + l/N)~2lx,N) < Wι(x, N) < W({x, n).

But
00 OO

(15) W'Λx, N)= ' 1Σ Σ
kλ>N bx=\

Σ
kt>N

0 0

Σ

Σ
k2>N

/+1

i=\

Σ
b 2 = l

[bi)x (M

7=1
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In view of this, it is natural to seek estimates for
m f m \

bevm i=\ \i=l /

and then to apply them with y = (x/k\ •••£/) and m = / + 1 . Another
way to write (15), using the definition above, is

(16) 2mAm(y) = # | ( m , « 2, ... , «m): «i 6 K

m ϊ

for 1 < / < m and JJ(w/) < y f -
i=l J

Once we have suitable estimates for Am(y), we will use (13), together
with (17) below:

(X) 00

(17)2/+1 Σ ... Σ AMdl + l/iη-Vx/kfa-k,)
k^N+l kt=N+\

oo oo

<Wi(x,N)<2M Σ '" Σ ^/+i(^Ai*2•••*/).

(There are only finitely many nonzero terms in the sums of (17), as
Am(y) = 0 for y < 1.) But (13) can now be written as

(18)
1=0

where iV = [αlogx] or [αlogx]- 1 for Φ+ or Φ " respectively.
We are now in a position to sketch out the proof of Theorem 1.

First we obtain an estimate of the form (with λ = 6/π2)

(19) Am(y)*iy2λm{logy)m-ι/(m-l)\9

by a study of the Dirichlet series

/

oo / oo \ k

ΓsdAk{t) = ί Σn-Sφ(n)\ = (C(5-
Next, we estimate the sums of (17), which from (19) are given

approximately by
0 0

1=1
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as

(22) ^

where R = {(t{, ... , tt) : h > N, ... , // > N and / ^ // < *}.
Calculus and simplifying estimates then reduce the integral expression
above to about \x2(2λ)M{lϊ)-ιoΓι. Finally, from (18) we expect to
find that 2Φ(x, a) is given approximately by

(23) χ2λ - \x2

1=1

oo

= λx2 Σ{-2λ/a)ι/l\ = λx2e~2λla,
1=0

which is roughly what is claimed in Theorem 1.
In §3 we give details for the estimation of Am(y). In §4 we give

details of the resulting estimates of W\{x, N), and tie it all together.

Γ3. Bounds for Am(y). Recall that Am(y) = Σb b ...* <v ΠΓ
1 2 wi — ^

LEMMA 1. There is a positive absolute constant C such that for 1 <

Proof. First we note that if Lemma 1 holds for integer y > 3, then
it holds for real y > 3 as well. Also, the case A: = 1 is the well-known
result Σn<y Φin) = \λy2{\ + O(l/logy)). Now let

(24) /(*,*)= ( f

n=\

The series representations of f(s, k) are absolutely convergent, uni-
formly in Re(s) > c for each c > 2, and the zeta function representa-
tion provides the analytic continuation into the domain Re(s) > 4/3,
apart from a single pole of order k at s = 2.

For the analysis ahead, it will be more convenient to first study
βk(y) •= Σy

n=\ Λk{n), and to establish (for some fixed C, 0 < C <
1), the following lemma.
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LEMMA 2. Uniformly in

k < CVlogy, asy-+oo,

Bk(y) = ((l/6)y3λk(logy)k-ι/(k - 1)!)(1 + O(k2/\of>y)).

Before proving Lemma 2, we show how Lemma 1 follows from
this secondary lemma.

Since Ak(n) is increasing in n, for any integer m, 0 < m < y, we
have

(25) mAk{y) < Bk(y + m) - Bk(y).

Now from Lemma 2,

(26) Bk(y + m)-Bk(y)

= ((l/6)λk/(k - l)!)((y + m ) 3 ^ ^ + m) - y 3 log^)

+ O(k2y3λk logk~2y/(k - l)\).

Taking m = [ky/logy], and bearing in mind that k < Cy/logy 5 this
gives

(27)

= ί -mλky2logk~ι y/(k - 1)! j (1 + O(k2/logy)).

Thus

(28) Ak(y) < (Uky2\ogk-ly/(k - 1)!^ (1 + O(k2/logy)).

A similar calculation, starting from Ak(y) > Bk(y) - Bk(y - m), gives
a reversed version of (28). Taken together, these constitute the con-
clusion of Lemma 1.

We now turn to the proof of Lemma 2. By Perron's formula, for
c > 2 we have

i rc+ioo

(29) Bk{y) = ^- / (ys+ι/s(s + ί))f(s, k) ds.

It is well known that ζ{s) = O(θ~ι\s\θ), uniformly in 0 < θ < 1/2
and Re(s) = 1 - θ. With θ = I/2k, it follows that for some fixed
Cx>\, and uniformly in k > 2, Re(j ) = 2 - \βk,

(30)
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Although it is not essential to the proof, it will be convenient to have
C\ = 4. A little detail work, starting with the formula [11]

oo

u(n + u)-s

°
valid for Re(s) > 0, is now in order. For n < \s\ in the sum, one
uses integration by parts, and with the obvious bounds for the other
terms, this gives, for s = 1 - θ,

\ζ(s)\ < θ~x + θ-\ί + \s\θ) + (1/2)|^|^/(1 - θ).

For s > 1, \ζ(s)\ < C(σ), so with θ = 1/2/:, the claim that C\ can
be 4 holds provided

4k + 2k\s\θ

But 4^C(2 - I/2k) > 4kζ(2) + 1 since ζ'{σ) < -1/4 for 1 < σ < 2,
so we just need

The worst case is k = 2, s = 3/4, and even then 4 < 4.2619....
Now let Γ be the linear path from 3 — zoo to 3 + /oo, and let ΓV^

be the counterclockwise circuit of the rectangle with corners 3 — iN,
3 + iN, (2 - I/2k) + iN, and (2 - I/2k) - iN. Then

( 3 1 ) ^ U-jτ J (ys+ιf(s, k)/s(s+l))ds

-L
2-l/2k+ioo

(ys*ιf(s, k)/s(s + 1))ds = E\{y, fc), say.
2-l/2^-/oo

In view of (30), Ex(y, k) = O ( C f ^ 3 " 1 / 2 / c ) . For k2 < Cf2logy, a
simple calculation now shows that

which is the error allowed for in Lemma 2.

REMARK. The argument fails here without some hypothesis on C\.
This brings us to the kernel of the matter: we must evaluate the

integral over ΓNjk to within O(y3λk(logy)k-2/k2(k - 1)1).

Let β(s, k) = \s - 2)kf{s, k)/s{s + 1). Then

(32) -^ί (ys+ιf(s,k)/s(s+l))ds

I {{s - 2Tkβ{s, k)ys-2/2πi) ds,
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and the latter integral is, by the residue theroem, equal to the (s-2)k~ι

coefficient, say Tk_ι(y), in the Taylor series expansion of β(s, k)ys~2

about 2. To estimate this, we first note that for a complex analytic
function ξ on a disk of radius r, if \ξ\ < K on the disk, then by the
Plancherel formula, \(dj/ds')ξ(s)\ < Kjlr'J at the center.

Now (5-2)C(5-2)/C(*-l) =λ{l+a(s-2) + O(s-2)2), uniformly
in \s - 2| < 1/2, say. Thus for arbitrary j , 1 < j < k, on the disk
Is - 2| < y/2/:, we have

(33) β(s,k) = O(λkexp(OU)))>

so that from the observation above, if Dj(k) = (dj/dsj)β(s, A:) eval-
uated at 5 = 2, then for y <k,

(34) Z)7-(fc) = O((2k/jy'j\λk exp(O(;))).

(For j = 0, we have Z)/(fc) = λk/6, of course.) Now

, k)),

evaluated at 5 = 2. Expanding the iterated derivative of a product as
in the binomial theorem, we get

(35) (k - 1)17^00 = Σ (k - 1 ) Qσgy)k-ι-JDj(k).
7=0 ^ J '

The main term here, corresponding to j = 0, is (l/6)λk \ogk~ι y. For
J > 1, we have, in the sum above,

(36) [^γy
y k ι J k exp(OC/)))

Thus, for A:2 < logy,

(37) Tk_x{y) = (λ

which completes the proof of Lemma 2. With C\ = 4, C in Lemma:
1 becomes 1/4. We need another estimate for the case of large k.

LEMMA 3. For k > 1 and y > 1,

Ak(y) <



LARGEST CONTINUED FRACTION DIGIT 247

Proof. First note that this is trivial from the definition if 1 < y < 4,
or if k = 1. Now in (29), take c = 2 + 3/2π2. From this, it follows
that with s = (2 + 3/2π2) + iτ,

(38) *Λ(y) < (yc+1/2π) /
J — o

For σ = Re (5) > 2, by the product repesentation of the zeta
function, and elementary properties of the linear fractional
(1 + zp"σ)/(l + zpι~σ) on the circle \z\ = 1, we have

Thus from (38), Bk{y) < (^)yc+ι(ζ(c - ί)/ζ(c))k π/c. Now taking
m = [y/4] in (26) gives

(39) Ak{y) <

Since this expression is increasing in m/y,

Ak(y)<(3/5)(7/2)k4((5/4Y+ι-l)yc,

which for k > 2 is < 3 4kyc < 4k+ιyc. This proves Lemma 3.

4. Estimation of W\(x, N). From (14), (15) and Lemma 1, we
have

r2;/+W+l

(40) ^ ( Λ 0 <

k>N for !</</

1 2
A:>iVforl</</

In the second term here, u = logx - J2ι logfc/ < 16(/ + I ) 2 , so that
Lemma 1 is not applicable. Happily, for this term there is no need of
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sharp estimates. We get a crude, but adequate, bound from

LEMMA 4. For I > 1, N>8 and x > (N + 1 )^ 1 6 / 2 ,

jcexp(-16(/+l)2)<A:1A:2 A:/<x

kt>N for

< ((16)7xexp(16/2(l + 3/(2π2)))(logJc)7/!).

The application of the lemma will be to cases in which N < (logx)2

and / < (logx)1/3, so that the upper bound given in Lemma 4 comes
to O ε (x 1 + ε ), or what is good enough for our purposes, to O(x 3/ 2).

To prove Lemma 4, we first note that from Lemma 3,

(41)

Thus

(42) 2 / + 1

x e x p ( 1 2 /

kt>N for l</</

' V Σ k;2---kf2cxx> U Lgx-
(same range) V V 1

The sum in the right side of (42) above is itself

<-SS -XΠ'.
where i? = {(ίi, ί2,... , ί/): ί, > ΛΓ for 1 < / < / and Πί ί/ >

On setting s{ = log /,, 1 < i < I, this integral becomes

ίJJ •• J , 5'j dsr dsu
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where β = 1 + λ/4, and where

RΊ = UsΪ9...9 s^ : Si > logN for 1 < / < /

and ]Γs/>logJc-16/ 2 l .

Seen as an iterated integral, the innermost integral is a function of
S\9 S2, ... , 5/-i a n d i s

oo

// , (( ιι))
max(logx-16l 2-sι-si j;_,,logJV)

< min{;T V 6 "*, N-βe-β^+s*+-+s'-J}.

Thus the original multiple integral is

< χ-Pe

ι6βl2 Vol(usι,s2,...,sι_ι): log* - 16/2 - log JV

/-I
sί a n ^ all Si < log iV

1 J
N - β [ [ . . . [ e-β^ι+s2+...+sl_ι)ds t...dSu

where /?',_, := {(JI , 52, ... , 5/_0 : 5, > logiV and ^f 1 ί, > logx -
16/2 - log TV}. The first term above is just x~β exp(16/?/2)(log;c)7/!,
while the second term is of the same form as the original integral.
Hence, we proceed by induction. Let

F(l, z):= //••/ e x p ί - ^ y ^ ί / J dsr dsx,
JJ JR(1,Z) \ ~[ J

where R{1, z) := {{sx, ... ,Sι): j , > logΛΓ for 1 < i < I and ^ J = 1 st

> z}. In this terminology, we have shown above that

(43) F(l, z) < e~βz(z + I6l2)ι/ll + N~βF(l -\,z- logΛΓ).

Now F(l,z) = fZ^s^e-fids = β'ιmin(N-β, e~βz), and in
particular if z > logiV then F(\, z) = β~1e~βz. Now from this and
from (43), if z > llogN then

(44) F{1, z) < e~βz

7=2
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Since z > log N > 2/ under the assumption N > 8 in Lemma 4, the
sum in (44) is dominated by the last term (z + I6l2)ι/l\, so that

(45)

We apply (45) with z = log* = 16/2 to obtain, for x > iVV6/2,

(46) [
R . _ i

In view of (42) and the following inequalty, this proves Lemma 4.
For x sufficiently large, though, if / < (log*)1/3 and N < (log*) 2,

then

(47) (I6)ιxexp(16β 12)(NP + (logx)1/II) < x3/2.

Thus for large x the second term in (40) is negligible, even in com-
parison to the potential error in the first term of (40). The main
term of that, putting aside for now the contribution from the " O " in

ί

Σ f V .^-2hogx-2log(/cθj .

kt>N for

But this is less than

ft>N for \<i<l

< (\ogx/N)1.

The error term just put aside is likewise

) /" 1 dtr" d t ι

Thus for x sufficiently large, / < (logx)1/3 and N < (logx)2,

(48) Wt{x, N) < {l + O(l2/logx))(\ogx/N)ι(2ιλM/l\)x2 + O{
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Next we obtain a similar lower bound for W[(x, N). From (17)
and Lemma 1, we have

(49)

kt>N for

(i V
• I log* - ^ log(( l + l/N)2ki) I + two error terms.

V ι=i /

Let x1 = JC(1 + l/N)~21, and let S/ := {K = (kΪ9 k2, ... , fc/) :
kλk2'"kι < *'exp(-16(/ + I)2) and kt > N for 1 < / < / } . The
first of the above-mentioned error terms stems from the factor 1 +
O(k2/logy) in Lemma 1. For K e 5/, this factor, applied to each
of the contributions to the sum in (49), is 1 + O((l + l)2/logx)
so that the whole sum is also perturbed by only a factor of
(1 + O((l + l)2/logx) due to that source of error. The other term
in (49) is the contribution to Σ Σ ' ' Σ ^ + i ^ Ά i ^ ^/) due to
K = (kι9k2, ... Λi) for which kt > N, 1 < / < /, but Πί=i ki >
x'exp(-16(/+l)2).

For x sufficiently large, if iV < log2* and / < log1 / 3x, then
the hypotheses of Lemma 4 are satisfied, so that this error term is

O((16)/x^16/2^((logjc')///0) and thus O(x3/2) as before. Hence, for
such x9 N and /,

(50) Wι{x, N) > (2!(x')2λl+ι/ll)(l + O((l + l)2/logx)P + O(

where

p= Σ *r2*2"2 • kf2 (l0*M - Σ l Q g k )
1 2 ^

kt>N for l</</

Now we need a lower bound for P. Clearly,

'') dtι'''dt^'P > [ t~2q2 tj2 ί\o%{x') - Σ
j R V Ϊ =

where R = {{h, t2, ...//) : /iί2 ί/ < xfe^16^^2 and U > N + 1
for ! < / < / } . After a change of variables (w/ = logί/ - log(iV + 1),
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1 < / < /) this integral becomes
ι f

J u

.Πog(y)-/ log(ΛΓ+l)-£«,-) duι dult

where U = {(ultu2, . . . , «/): Σί=i«/ < log(x') - 16(/ + I)2 -
llog(N + 1) and ut > 0 for 1 < i < /}. This, though, is just

(JV+1)-7 f {uι~x/(/- \)\)e~u{M-u)1 du,
Jo

where L = log(jc') = 71og(iV + 1) - 16(/ + I)2 and M = log(x') -

/log(iV+l). Thus

- / (u'-ιe-u(M-u)ιdu\.

The - /̂ ° contribution here is quite small. In fact, for large x, for
N < log2* and for / < (log*)1/3,

/»OO POO

/ uι-\M-u)ιe'udu< \ ulι-χe'udu<2lι-χe-L,
JL JL

this last because (1 + l/u)2l~ιe~ι < \ throughout the interval of
integration. But in view of the constraints on / and N, 22l~ιe~L <
x~3/4 for large x. The main term in our lower bound for P is

roo

{{N + l)~'/(l - 1)!) / u'-ιe-u(M - u)1 du
JQ

= ({N + 1)-' /(I - l)l)Y(-iy (l.) Mι~J f°°uι-1+je-udu
^ \JJ Jo

7=0

In view of the constraints on / and N, we have M > (1 - ε)
(ε may be taken as small as we please by choosing a large enough
lower bound for x). Thus the last sum above is dominated by its first
term, and it simplifies to (1 + O(/2/logx)). Thus

(52) P = (l
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From (50), we now conclude that

(53) Wι{x9 N) > (2ι(x')2λι+ι/ll)(l + O((l + \)2/logx))(N + I)'1

• (log(jc') - llog(N+ I))1 + O(χV2).

Since x' = (1 + \/N)~2lx, this boils down to

(54) Wι(x, N) > {2ιx2λM(logx)ι/Nι(l\))(l

x (1

for 1 < / < (logx)1/3, N < (log*)2 and x sufficiently large. Together
with (48), and under the same constraints, this gives

Now from (13),

1=0

with 7V+ = [αlogx] for Φ+ and N~ = [αlogx] - 1 for Φ~ . From
(12), if we truncate this sum we get lower and upper bounds: if A is
odd and B = A + 1, then

(56) I ^ ( - 1 ) ' ^ ( X , N-) < φ(χ, a) < i ] Γ ( - l ) ^ ( x , N+).
1=0 1=0

If we choose B = [(logx)1/3], then for a > 4/loglogx and / < B, the
I2 log log xj log x contribution to the error factor in (55) dominates
that from l/N, and both are small, so that (55) boils down to

for such /, N9 and x. Thus in (56), the main terms are

A1

j Σ x22ιλι+ι{- log x/N-)ι/n and
ιoι=o

/=0
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and the error factor in (57) perturbs these by at most

/ 00 \

θix2Σ2'λι+1(logx/N-)ι(l2log\o$x/logx)/l\ .
V /=o /

But this is O((x2\oglogx/logx)(z2 + \)ez), where z = 2λlogx/N~ .
Now for a > 4/ log log x, N~ > (4 log x/ log log x) - 2 so that z <
\λ log log x, and

{x2\og\ogxI\o%x){z2 + \)ez <.x2{\o%\o%x{\+a-2)I\ogx)e2λla.

This brings us to the main terms in (56). They are

2 ( l N F J / 2

respectively. If we replace A and B with oc in these sums, the
resulting change is 0((2λ/a)B/Bl), and with B = [log*1/3], that is
< 1/logx. Thus the main terms above are

Replacing (logx/N*1) with 1/α here introduces an error factor of
exp(O(l/a2logx)), so that the main terms boil down to

^λx2e-2λ'a(l + 0((1 +α"2)/logjc)).

That is,

(58)Φ(JC, α) = hx2e~2λ'a{l + O(l/a2logx) + O(l/\ogx))

O(x2loglogjc(l

for all sufficiently large x and all α, 4/ log log x < a < (logx)2.
The condition N < (logx)2, which roughly coincides with a < log*,
has been necessary in the workings of the main argument. But for
a > log*, the claim made by Theorem 1 reduces to an assertion that,
Φ(χ, a) = jλx2(l + O(loglogx/logx)). Now Φ(x, a) is a nonde-
creasing function of a. But the upper bound part of this follows from
Lemma 1, while the required lower bound follows from what we have
proved above, on taking a = log*. Thus the theorem, while of no
interest in this case, happens nonetheless to hold.
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