# NOTES ON REPRESENTATIONS OF NON-ARCHIMEDEAN SL(*n*)

Marko Tadić

Let F be a non-archimedean local field. In this paper the relation between irreducible representations of GL(n, F) and SL(n, F) is studied. Using the results on GL(n, F) a parametrization of (various classes of) irreducible representations of SL(n, F) by parameters expressed in terms of cuspidal representations of GL(n, F) is obtained.

Introduction. Before we give a more detailed description of the content of this paper, a few historical remarks on SL(n, F) are needed. Gelfand and Naimark gave in [8] proof of the irreducibility of unitary principal series representations of SL(n, C). The same proof gives the irreducibility of unitary principal series for GL(n) over any local field. Using the fact that the unitary principal series have non-trivial Whittaker models for GL(n), and the uniqueness of the model proved by Rodier ([18]), Howe and Silberger proved in [10] that the unitary principal series of GL(n, F) restricted to SL(n, F) are multiplicity free. The same idea appears in Labesse and Langlands paper [14]. In this way. Howe and Silberger obtained that unitary principal series representations of SL(n, F) are multiplicity free. Shahidi observed in [20] that one can prove, using the same idea of Whittaker models, that any irreducible tempered representation of GL(n, F) restricted to SL(n, F) is multiplicity free. In this way one obtains that the parabolically induced representation of SL(n, F) by irreducible tempered representation is multiplicity free. A general approach to the reducibility and the multiplicities was done by Keys. The structure of the commuting algebras of unitary principal series representations for Chevalley groups was described by him in [11] and it turned out the multiplicities are not always one. This was also shown earlier by Knapp and Zuckerman in [12]. Gelbart and Knapp gave in [5] a description of irreducible constituents of the restriction to SL(n, F) of the unitary principal series representations of GL(n, F). Their paper [6] is based on two working hypotheses, the second of them is the multiplicity one of the restriction to SL(n, F) of irreducible representations of GL(n, F). Bernstein showed in [1] that any parabolically

induced representation of GL(n, F) by an irreducible unitary representation is irreducible. In [13] Kutzko and Sally and in [17] Moy and Sally, studying the restriction to SL(n, F) of cuspidal representations of GL(n, F) showed in the tame and in the prime case that any cuspidal representation of SL(n, F) is induced from a compact open subgroup. These papers contain a lot of informations about restrictions of cuspidal representations in these two cases.

Now we give a more detailed description of the content of this paper. In the first paragraph it is shown that the restriction to SL(n, F) of an irreducible smooth representation of GL(n, F) is a multiplicity free representation. In particular, it proves "Working Hypothesis 2" of Gelbart and Knapp in [6]. Using the Bernstein result in [1] on the irreducibility of the unitary parabolic induction for GL(n, F) it is obtained that the parabolically induced representation of SL(n, F) by an irreducible unitary representation of a Levi subgroup is multiplicity free.

The second paragraph presents some simple general facts about restriction of irreducible representations of a connected reductive group G over F to a connected reductive subgroup  $G_1$  of G which contains the derived group  $G^{der}$ . We need those facts in the sequel. Most of them were observed and proved by a few authors, the greatest part by Gelbart and Knapp in [5] and [6]. Here we present proofs because Gelbart and Knapp were dealing with the case of char F = 0. In this case  $G/Z(G)G_1$  is a finite group (Z(G) denotes the center of G). This is not always the case in the positive characteristic.

Let P = MN be a parabolic subgroup of GL(n, F), and  $M_1 = SL(n, F) \cap M$ . In particular, one may consider the case of M = GL(n, F) and  $M_1 = SL(n, F)$ . For an irreducible smooth representation  $\pi$  of M,  $X_{M_1}(\pi)$  denotes the set of all characters  $\chi$  of  $F^{\chi}$  such that  $\pi \cong (\chi \circ \det)\pi$ . This is a finite group and it has been introduced by several authors, for example in [5], [14], [17]. Fix a non-trivial unitary character of F. Take a pair consisting of an orbit  $\mathscr{O}$  for the action of characters of  $F^{\chi}$  on the classes of irreducible representations of M and a from the dual group of  $X_{M_1}(\pi)$  where  $\pi \in \mathscr{O}$ . Considering Whittaker models and the Langlands classification we fix an irreducible subrepresentation  $\Delta((\mathscr{O}, a))$  of  $\pi|M_1$ . In this way a parametrization of all irreducible representations of  $M_1$  is obtained by irreducible representations of GL(n, F) (Theorem 3.1). One can obtain a parametrization of other classes of irreducible representations of  $M_1$  because  $\Lambda((\mathscr{O}, a))$  is square integrable if and only

if the orbit  $\mathscr{O}$  is square integrable,  $\Lambda((\mathscr{O}, a))$  is unitary if and only if the orbit  $\mathscr{O}$  is unitary,.... Let us observe that the parameters for the irreducible constituents of unitary principal series of SL(n, F)introduced in [5] are of the same type.

In the last paragraph the parametrization of  $M_1$  is reduced to cuspidal representations of GL(n, F) and groups  $X_{SL(n,F)}(\rho)$  for cuspidal representations  $\rho$ . Further reduction would be a description of the groups  $X_{SL(n,F)}(\rho)$  in terms of a classification of cuspidal representations. A great amount of information and calculations of these groups can be found in the paper [14] by Kutzo and Sally, and the paper [17] by Moy and Sally. In the tame case these groups appear naturally (see Remark 4.3). In this paragraph we give a necessary and sufficient condition for the irreducibility of parabolically induced representations by irreducible unitary representation (Theorem 4.2).

Note that in the case of  $GL(n, \mathbb{C})$  or  $GL(n, \mathbb{R})$  the question about the multiplicities of the restriction of irreducible unitary representations to SL(n) is pretty simple. Since  $\mathbb{R}^x$  has two characters of finite order and  $\mathbb{C}^x$  only one, by (a simple) Lemma 3.2 of [5] the multiplicities of the restriction are always one and the length can be at most 2 for  $\mathbb{R}$ , and 1 for  $\mathbb{C}$  (for  $\mathbb{C}$  it is evident since  $GL(n, \mathbb{C})$  is a product of  $SL(n, \mathbb{C})$  and its center).

This author is thankful to P. J. Sally for conversations on the problems considered in this paper and for suggesting to write this paper.

1. Multiplicities one. 1. We fix a locally compact non-archimedean filed F. By A (resp.  $A_1$ ) we shall denote the maximal torus in GL(n, F) (resp. SL(n, F)) of all diagonal matrices. The Borel subgroup of all upper triangular matrices in GL(n, F) (resp. SL(n, F)) will be denoted by B (resp.  $B_1$ ). The choice of the Borel subgroup determines in a natural way a set of positive roots and further, the set of simple roots.

Now we have a well known

1.1. LEMMA. Let  $(\sigma, V)$  be a smooth representation of a Levi factor M of a parabolic subgroup P = MN in GL(n, F), where Ndenotes the nilpotent radical of P. Set  $M_1 = M \cap SL(n, F)$ . Then  $P_1 = M_1N$  is a parabolic subgroup of SL(n, F) and  $P_1 = M_1N$  is a Levi decomposition of  $P_1$ . The representation  $\operatorname{Ind}_P^{GL(n,F)}(\sigma)|SL(n, F)$ is isomorphic to  $\operatorname{Ind}_{P_1}^{SL(n,F)}(\sigma|M_1)$  with an isomorphism given by restriction to SL(n, F).

Let  $\pi$  be an irreducible smooth representation of GL(n, F). Then  $\pi | SL(n, F)$  is a finite sum of irreducible representations. This can be obtained from [21] (see Lemma 2.1 for a more detailed explanation).

1.2. THEOREM. For an irreducible smooth representation  $(\pi, V)$  of GL(n, F),  $\pi | SL(n, F)$  is a multiplicity free representation.

**Proof.** We consider Langlands parameters of  $\pi$ . We can choose a parabolic subgroup P = MN of GL(n, F) containing B, an irreducible tempered representation  $\tau$  of M and a positive-valued character  $\chi$  of M satisfying the positiveness condition with respect to roots of Proposition 2.6 in Chapter XI of [3], such that  $\pi$  is a unique irreducible quotient of  $Ind_P^{GL(n,F)}(\chi\tau)$ . We shall assume that we took a Levi factor M which consists of diagonal block matrices for a suitable partition of  $n = n_1 + \cdots + n_k$ . Then

$$M \cong \operatorname{GL}(n_1, F) \times \cdots \times \operatorname{GL}(n_k, F)$$

and we identify M with  $GL(n_1, F) \times \cdots \times GL(n_k, F)$ . Set  $M_1 = M \cap SL(n, F)$  and  $P_1 = M_1 N$ .

Note that  $\tau = \tau_1 \otimes \cdots \otimes \tau_k$  where  $\tau_i$  are irreducible tempered representations of  $GL(n_i, F)$ . Since  $\tau_i$  has Whittaker model by [25], in the same way as in [10] one obtains that  $\tau_i | SL(n_i, F)$  is multiplicity free (this was observed in [20], see also Proposition 2.8). Thus  $\tau | SL(n, F) \times \cdots \times SL(n_k, F)$  is multiplicity free. Since  $SL(n_1, F) \times \cdots \times SL(n_k, F) \subseteq M_1$ ,  $\tau | M_1$  is multiplicity free.

Note that  $\tau|M$  is a direct sum of irreducible representations of  $M_1$ (for a more detailed explanation see Lemma 2.1). Let  $\tau = \bigoplus_{i=1}^{p} \tau_i$  be a decomposition into irreducible representations of  $M_1$ . Observe that all unipotent radicals in M are contained in  $M_1$  and thus the Jacquet modules for parabolic subgroups of M and  $M_1$  are the same spaces. Applying Theorem 2.8.1 of [23] one obtains that  $\tau_1, \ldots, \tau_p$  are tempered representations of  $M_1$  (central exponents of Jacquet modules of  $M_1$ -representations are obtained by restricting central exponents of Jacquet modules of M-representations, see also Proposition 2.7).

The representations  $\tau_i$  are inequivalent irreducible tempered representations of  $M_1$  and  $\chi_1 = \chi | M_1$  satisfies the positiveness condition of Proposition 2.6 in Chapter XI of [3], considered for SL(n, F). Thus  $Ind_{P_1}^{SL(n,F)}(\chi_1\tau_i)$  has a unique irreducible quotient say  $(\pi'_i, V_i)$ . Since all  $\tau_i$  are inequivalent,  $\pi'_1, \ldots, \pi'_p$  are all inequivalent. By

Lemma 1.1 we can fix an isomorphism

$$\operatorname{Ind}_{P}^{\operatorname{GL}(n,F)}(\chi\tau)|\operatorname{SL}(n,F) \cong \operatorname{Ind}_{P_{1}}^{\operatorname{SL}(n,F)}\left(\bigoplus_{i=1}^{p}\chi_{1}\tau_{i}\right)$$
$$\cong \bigoplus_{i=1}^{p}\operatorname{Ind}_{P_{1}}^{\operatorname{SL}(n,F)}(\chi_{1}\tau_{i}).$$

Let  $\psi : \bigoplus_{i=1}^{p} \operatorname{Ind}_{P_{1}}^{SL(n,F)}(\chi_{1}\tau_{i}) \to W$  be a non-trivial morphism of SL(n, F)-representations where  $(\sigma, W)$  is an irreducible SL(n, F)-representation. Suppose that  $\psi | \operatorname{Ind}_{P_{1}}^{SL(n,F)}(\chi_{1}\tau_{i_{0}}) \neq 0$ . Thus  $\sigma \cong \pi_{i_{0}}^{\prime}$ . Since  $\pi_{1}^{\prime}, \ldots, \pi_{p}^{\prime}$  are inequivalent,  $\psi | \operatorname{Ind}_{P_{1}}^{SL(n,F)}(\chi_{1}\tau_{i}) = 0$  for  $i \neq i_{0}$ . If we have another SL(n, F)-morphism

$$\psi_1: \bigoplus_{i=1}^p \operatorname{Ind}_{P_1}^{\operatorname{SL}(n,F)}(\psi_1\tau_i) \to W$$

it must be proportional to  $\psi$  by the uniqueness of irreducible quotient ([3]):

Consider a decomposition  $\pi | SL(n, F) = \bigoplus_{j=1}^{q} \pi_j$  into irreducible representations of SL(n, F). Consider the natural morphisms of SL(n, F)-representations

$$\varphi_j: \operatorname{Ind}_P^{\operatorname{GL}(n,F)}(\chi\tau) \to \pi = \bigoplus_{i=1}^q \pi_i \to \pi_j.$$

Suppose that  $\pi_i \cong \pi_j$  for some  $i \neq j$ . Let  $\Lambda$  be an isomorphism of  $\pi_i$  onto  $\pi_j$ . Then

$$\varphi_j, \Lambda \circ \varphi_i : \operatorname{Ind}_P^{\operatorname{GL}(n,F)} \cdot (\chi \tau) \to \pi_j$$

are non-trivial SL(n, F)-morphisms. Note that ker  $\varphi_j \neq ker(\Lambda \circ \varphi_i)$ . Thus  $\varphi_j$  and  $\Lambda \circ \varphi_i$  are not proportional. This contradicts the above observations about SL(n, F)-morphisms  $\psi$ . Thus  $\pi_j \neq \pi_j$  for  $i \neq j$ . This proves the theorem.

1.3. REMARK. The above observations on SL(n, F)-morphisms  $\psi$  imply that  $\{\pi_1, \ldots, \pi_q\} \subseteq \{\pi'_1, \ldots, \pi'_p\}$ . It is not difficult to obtain p = q and thus  $\{\pi_1, \ldots, \pi_q\} = \{\pi'_1, \ldots, \pi'_p\}$  (otherwise  $\operatorname{Ind}_P^{\operatorname{GL}(n,F)}(\chi\tau)$  would have two different irreducible quotients). In this way there is a natural bijection between irreducible subrepresentations of  $\chi\sigma|M_1$  and irreducible subrepresentations of  $\pi|SL(n, F)$ .

1.4. THEOREM. Let  $P_1$  be a parabolic subgroup of SL(n, F) with a Levi decomposition  $P_1 = M_1 N$ . Let  $(\sigma, U)$  be an irreducible unitary representation of  $M_1$ . Then  $\operatorname{Ind}_{P_1}^{SL(n,F)}(\sigma)$  is a multiplicity free representation.

**Proof.** Choose a parabolic subgroup P of SL(n, F) with the Levi decomposition P = MN such that  $M_1 = M \cap SL(n, F)$ . Then  $P_1 = P \cap SL(n, F)$ . It is not difficult to see that there exists an irreducible unitary representation  $\sigma_0$  of M such that  $\sigma$  is a subrepresentation of  $\sigma_0|M_1$  (for the proof see Propositions 2.2. and 2.7). Now  $Ind_{P_1}^{SL(n,F)}(\sigma)$  is a subrepresentation of  $Ind_{P_1}^{SL(n,F)}(\sigma_0|M_1)$  which is isomorphic to  $Ind_P^{GL(n,F)}(\sigma_0)|SL(n, F)$  by Lemma 1.1. Thus, to prove the theorem it is enough to prove that  $Ind_P^{GL(n,F)}(\sigma_0)|SL(n, F)$ is multiplicity one. Since  $Ind_P^{GL(n,F)}(\sigma_0)$  is irreducible by Corollary 8.2 of [1],  $Ind_P^{GL(n,F)}(\sigma_0)|SL(n, F)$  is multiplicity free by Theorem 1.2.

2. Some general remarks. In this paragraph we collect some general remarks, most of them well-known, about the connection of representations of reductive groups  $G_1 \subseteq G$  which are in a position analogous to the position of  $SL(n, F) \subseteq GL(n, F)$ . A great part of this is proved, among other papers, in [5], [6], [18], [20]. For the sake of completeness we shall give proofs for which we do not know a precise reference in considered generality. Usually it was considered the situation when  $G_1Z(G)$  is of finite index in G but this is not necessarily true if char  $F \neq 0$ . (Z(G) denotes the center of G). Since  $G/G_1Z(G)$  is always compact, the case of infinite  $G/G_1Z(G)$  is a slight modification of the case of finite  $G/G_1Z(G)$ .

We shall denote by G the group of rational points of a connected reductive group over a non-archimedean field F, and by  $G^{der}$  the group of rational points of its derived subgroup. The center of Gis denoted by Z(G). By  $G_1$  it will be denoted rational points of a connected reductive subgroup of G containing  $G^{der}$ . The set of all classes of irreducible smooth representations of G will be denoted by  $\tilde{G}$  while the subset of all unitarizable (resp. tempered, square integrable modulo center, cuspidal) classes will be denoted by  $\hat{G}$  (resp.  $T^u(G)$ ,  $D^u(G)$ , C(G)). The subset of  $\tilde{G}$  of essentially square integrable representations (resp. essentially tempered representations) will be denoted by D(G) (resp. T(G)). Set  $C^u(G) = C(G) \cap \hat{G}$ . For  $(\pi, V) \in \widetilde{G}$  and  $\sigma$  a continuous automorphism of G,  $\pi_{\sigma}$  will denote the representation  $\pi_{\sigma}(g) = \pi(\sigma(g))$  which is again in  $\widetilde{G}$ . Clearly  $\pi_{\sigma_1\sigma_2} = (\pi_{\sigma_1})_{\sigma_2}$ . Let  $x \in G$  and let  $\gamma(x)$  be the inner automorphism of G defined by  $\gamma(x) : g \to xgx^{-1}$ . For  $(\tau, V) \in \widetilde{G}_1$  set

$$\tau_x = \tau_{\gamma(x)|G_1}.$$

In this way G acts on  $\tilde{G}_1$ . This action factorizes to an action of  $G/Z(G)G_1$ .

Now we have an easy consequence of [21].

2.1. LEMMA. For  $\pi \in \tilde{G}$ ,  $\pi | G_1$  is a finite direct sum of irreducible representations of  $G_1$ .

*Proof.* Let for a moment G,  $G^{der}$  and Z(G) will be considered as algebraic groups over an algebraic closure of F. Let  $Z(G)_0$  be the connected component of Z(G). Then the multiplication  $G^{der} \times Z(G)_0 \to G$  is an isogeny ([2], 14.2, Proposition). Let us return to the groups of rational points. By [21],  $\pi | G^{der} Z(G)$  is a finite direct sum of irreducible representations of  $G^{der} Z(G)$  and moreover, by the Schur lemma, of  $G^{der}$ . Thus  $\pi | G_1$  is a finite length representation. This implies that  $\pi | G_1$  is completely reducible (see proof of Lemma 3 of [21]).

Let  $\pi \in \widetilde{G}$ . Denote by  $\mathscr{O}_{G_1}(\pi)$  the set of all  $\tau \in G_1$ , which are isomorphic to a subrepresentation of  $\pi | G_1$ . Clearly,  $\mathscr{O}_{G_1}(\pi)$  is a finite set and it is invariant for the action of G (since  $\pi \cong \pi_{\gamma(g)}$  for  $g \in G$ ). The action of G on  $\mathscr{O}_{G_1}(\pi)$  is transitive (since  $\pi$  is irreducible). Set

$$\pi|G_1\cong\bigoplus_{\tau\in\mathscr{O}(\pi)}n(\tau)\tau.$$

The linear independence of characters together with the transitivity of the action of G on  $\mathscr{O}_{G_1}(\pi)$  implies that all  $n(\tau)$  are the same, say  $m_{G_1}(\pi)$ . Thus

$$\pi|G_1\cong m_{G_1}(\pi)\bigoplus_{\tau\in\mathscr{O}(\pi)}\tau.$$

The cardinality of  $\mathscr{O}_{G_1}(\pi)$  will be denoted by  $n_{G_1}(\pi)$ .

By  ${}^{0}G$  it is denoted the set of all  $g \in G$  such that  $|\chi(g)|_{F} = 1$  for all *F*-rational characters  $\chi$  of *G*. Then  ${}^{0}G/G^{der}$  is compact,  $G/{}^{0}G$ is a free *Z*-module of finite rank, say *n*, and  $G/{}^{0}GZ(G)$  is finite. Thus

$${}^{0}GZ(G)/{}^{0}G \cong Z(G)/(Z(G) \cap {}^{0}G)$$

is a free Z-module of rank n. Therefore

 $Z(G) \rightarrow Z(G)/(Z(G) \cap {}^0G)$ 

splits. Denote by S the image of a splitting homomorphism. Then S is a closed discrete subgroup of Z(G) which is a free Z-module of rank  $n, S \cap {}^{0}G = \{1\}, S(Z(G) \cap {}^{0}G) = Z(G), \text{ and } {}^{0}GZ(G) = {}^{0}GS$ . Note that  $SG^{der}$  is a closed subgroup of G and that  $G/SG^{der}$  is compact. Also  $SG^{der}$  is a direct sum of S and  $G^{der}$ . Note that  ${}^{0}GZ(G)/{}^{0}G = {}^{0}GS/{}^{0}G \cong S$  is also of rank n and it is of finite index in  $G/{}^{0}G$ . Let k be the rank of  ${}^{0}GG_{1}/{}^{0}G$ . Then

$$({}^{0}GS/{}^{0}G) \cap ({}^{0}GG_{1}/{}^{0}G) \cong ({}^{0}GS \cap {}^{0}GG_{1})/{}^{0}G$$

is also of rank k. Let

$$S' = \{s \in S ; s \ {}^0G \subseteq {}^0GS \cap {}^0GG_1\}.$$

Then

$${}^0GS \cap {}^0GG_1 = {}^0GS'.$$

Let  $S_1$  be a maximal subgroup of S among subgroups satisfying  $S_1 \cap S' = \{1\}$ . Now  $S_1$  is of rank n-k and  $S_1S'$  is of finite index in S.

Consider  $S_1G_1$ . First note that  $S_1 \cap {}^0GG_1 = \{1\}$  (in particular  $S_1 \cap G_1 = \{1\}$ ). This implies  $S_1G_1 \cap {}^0GG_1 = G_1$ . Since  ${}^0G$  is an open subgroup of G and  $G_1$  is closed, it is easy to see that  $S_1G_1$  is a closed subgroup of G. It is a direct product of  $S_1$  and  $G_1$ . Note that

$${}^{0}GS_{1}G_{1}/S_{1}G_{1} \cong {}^{0}G/(S_{1}G_{1} \cap {}^{0}G)$$

is compact since  ${}^{0}G/G^{\text{der}}$  is compact. Since  $G/{}^{0}GS_{1}S'$  is finite and  ${}^{0}GS_{1}S' \subseteq {}^{0}GS_{1}G_{1}$ ,  $G/{}^{0}GS_{1}G_{1}$  is finite. Thus  $G/S_{1}G_{1}$  is compact.

2.2. **PROPOSITION.** For each  $\tau \in \tilde{G}_1$  there exists  $\pi \in \tilde{G}$  such that  $\tau$  is isomorphic to a subrepresentation of  $\pi | G_1$ . If the central character of  $\tau$  is unitary, then there exists such  $\pi$  with the unitary central character.

*Proof.* Let  $(\tau, U) \in \widetilde{G}_1$ . Extend  $\tau$  to a representation of  $S_1G_1$  defining that each element of  $S_1$  acts as identity. Let  $(\pi_1, V_1)$  be the representation  $\operatorname{Ind}_{S_1G_1}^G(\tau)$ . This is an admissible representation. Then  $f \to f(1), V_1 \to U$  is a  $S_1G_1$ -intertwining whose restriction to any non-zero *G*-invariant subspace is non-zero (thus it is surjective).

Let  $V_2$  be any non-zero finitely generated G-subrepresentation of  $V_1$ . Then we have a surjective  $S_1G_1$ -intertwining  $\alpha: V_2 \to U$ . Since  $V_2$  is finitely generated and admissible, it is of finite length. Therefore,

we can choose an irreducible G-subrepresentation  $V_3$  of  $V_2$  with the property  $\alpha(V_3) = U$ . This completes the proof of existence.

Suppose that the central character  $\omega_{\tau}$  of  $\tau$  is unitary. Then for the central character  $\omega_{\pi}$  of  $\pi$  we have  $\omega_{\pi}|S_1 = 1$  by construction. Consider  $|\omega_{\pi}|$ . It extends to a character  $\chi$  of G into  $\mathbf{R}^{\chi}_+$ . First  $\chi|G_1 = 1$  since  $\chi = 1$  on the center of  $G_1$ . Therefore  $\chi|S_1G_1 = 1$ and finally  $\chi|G = 1$ . Thus  $|\omega_{\pi}| = 1$ .

2.3. COROLLARY. Let  $(\tau, U) \in \widetilde{G}_1$ . Set

$$G_{\tau} = \{g \in G : \tau_g \cong \tau\}.$$

Then  $Z(G)G_1 \subseteq G_\tau$  and  $G_\tau$  is an open normal subgroup of G of finite index.

*Proof.* Choose  $(\pi, V) \in \widetilde{G}$  such that there is a  $G_1$ -subrepresentation  $V_1 \subseteq V$  equivalent to U. Let  $v_0 \in V_1$ ,  $v_0 \neq 0$ . Denote by K an open subgroup of G fixing  $v_0$ . Then  $KZ(G)G_1 \subseteq G_{\tau}$  and  $KZ(G)G_1$  is open in G and has finite index.

Similarly as in Lemma 3.2 of [5] we obtain the following:

2.4. **PROPOSITION.** Let  $(\pi_1, V_1)$ ,  $(\pi_2, V_2) \in \tilde{G}$ . Let  $h_{G_1}(\pi_1, \pi_2)$  be the number of all characters  $\chi$  of  $G/G_1$  such that  $\chi \pi_1 \cong \pi_2$  as representations of G. Then  $h_{G_1}(\pi_1, \pi_2)$  is finite and equal to the dimension of

Hom<sub>*G*<sub>1</sub></sub>(
$$\pi_1$$
,  $\pi_2$ ).

*Proof.* First we shall prove the proposition in the case when the restrictions of central characters of  $\pi_1$  and  $\pi_2$  to  $S_1$  are the same. Observe that with this assumption

$$\operatorname{Hom}_{G_1}(\pi_1, \pi_2) = \operatorname{Hom}_{S_1G_1}(\pi_1, \pi_2).$$

By Frobenius reciprocity

$$\operatorname{Hom}_{S_1G_1}(\pi_1, \pi_2) \cong \operatorname{Hom}_G(\pi_1, \operatorname{Ind}_{S_1G_1}^G(\pi_2)).$$

Denote by  $C^{\infty}(S_1G_1 \setminus G)$  the representation of G by right translations on the space of locally constant functions on G constant on  $S_1G_1$ cosets. We have an isomorphism

$$\alpha: C^{\infty}(S_1G_1 \setminus G) \otimes V_2 \to \operatorname{Ind}_{S_1G_1}^G(\pi_2)$$

given by  $f \otimes v \to (x \mapsto f(x)\pi_2(x)v)$ . It is obvious that  $\alpha$  is a well defined injective intertwining. Let  $\varphi \in \operatorname{Ind}_{S_1G_1}^G(\pi_2)$ . Let X be an open compact subset such that  $S_1G_1X = G$ . Choose an open compact subgroup K fixing  $\varphi$  and fixing each element of the finite set  $\{\pi_2(x^{-1})\varphi(x); x \in X\}$ . Let  $g_1, \ldots, g_n \in X$  be the representatives for  $S_1G_1 \setminus G/K$ . Define  $\varphi_i$  by  $\varphi_i | S_1G_1g_iK = \varphi | S_1G_1gK$  and  $\varphi_i(x) =$ 0 otherwise. Then  $\varphi = \varphi_1 + \cdots + \varphi_n$  and  $\varphi_i \in \operatorname{Ind}_{S_1G_1}^G(\pi_2)$ . Let  $\chi_i$ be the characteristic function of  $S_1G_1g_iK$ . Now

$$\chi_i \otimes \pi_2(g_i^{-1})\varphi(g_i) \mapsto \varphi_i$$

and this proves the surjectivity.

Note that  $C^{\infty}(S_1G_1 \setminus G)$  is isomorphic to the sum of all characters of  $G/S_1G_1$ . Thus the set of all unitary characters  $\chi$  of  $G/S_1G_1$  such that  $\chi \pi_2 \cong \pi_1$  is finite and the number of such  $\chi$  is the dimension of  $\operatorname{Hom}_{S_1G_1}(\pi_1, \pi_2) = \operatorname{Hom}_{G_1}(\pi_1, \pi_2)$ . Note that for a character  $\chi$  of  $G/G_1$  such that  $\chi \pi_2 \cong \pi_1$  it must be  $\chi | S_1 = 1$  (consider the central character).

Now let  $\pi_1$  and  $\pi_2$  be arbitrary. Let  $\omega_{\pi_i}$  be the central character of  $\pi_i$ . Consider  $\omega_{\pi_i}|S_1$  as a character of

$$S_1{}^0GG_1/{}^0GG_1\cong S_1.$$

Note that  $G/S_1{}^0GG_1$  is finite. It is easy to see that  $\omega_{\pi_i}|S_1$  extends to a character of  $G/{}^0GG_1$ , say  $\chi_i$ . Then

$$\operatorname{Hom}_{G_1}(\pi_1, \pi_2) = \operatorname{Hom}_{G_1}(\chi_1^{-1}\pi_1, \chi_2^{-1}\pi_2).$$

Now we can apply the first part of the proof and the proposition is proved.

2.5. COROLLARY. Let  $\pi_1$ ,  $\pi_2 \in \widetilde{G}$ . Then the following statements are equivalent:

- (i) There exists a character  $\chi$  of  $G/G^1$  such that  $\chi \pi_1 \cong \pi_2$ .
- (ii)  $\mathscr{O}_{G_1}(\pi_1) \cap \mathscr{O}_{G_1}(\pi_2) \neq \varnothing$ .
- (iii)  $\mathscr{O}_{G_1}(\pi_1) = \mathscr{O}_{G_1}(\pi_2)$ .

By the above corollary the orbits of the action of G on  $\tilde{G}_1$  are in the bijection with the orbits of the action of the characters of  $G/G_1$  onto  $\tilde{G}$ .

2.6. REMARK. Let  $\pi \in \widetilde{G}$ . We shall denote by  $X_{G_1}(\pi)$  the group of all characters  $\chi$  of  $G/G_1$  such that  $\chi \pi \cong \pi$ . It is simple to

see that a character  $\chi$  of G which is trivial on  $G_{\pi_1}$ , where  $\pi_1$  is any irreducible subrepresentation of  $\pi | G_1$ , is in  $X_{G_1}(\pi)$  ([6], Lemma 2.1, (e)). If  $\pi | G_1|$  is multiplicity free, then the converse is true: if  $\chi \in X_{G_1}(\pi)$ , then  $\chi(G_{\pi_1}) = 1$  ([6], Corollary 2.2). The converse is a consequence of comparison of two finite cardinal numbers.

2.7. PROPOSITION. Let  $(\pi, V)$  be an irreducible smooth representation of G with unitary central character. Then the following equivalences hold:

- (i)  $\pi \in \widehat{G} \Leftrightarrow \mathscr{O}_{G_1}(\pi) \subseteq \widehat{G}_1 \Leftrightarrow \mathscr{O}_{G_1}(\pi) \cap \widehat{G}_1 \neq \varnothing$ . (ii)  $\pi \in C^u(G) \Leftrightarrow \mathscr{O}_{G_1}(\pi) \subseteq C^u(G_1) \Leftrightarrow \mathscr{O}_{G_1}(\pi) \cap C^u(G_1) \neq \varnothing$ .
- (iii)  $\pi \in D^u(G) \Leftrightarrow \mathscr{O}_{G_1}^{-1}(\pi) \subseteq D^u(G_1) \Leftrightarrow \mathscr{O}_{G_1}^{-1}(\pi) \cap D^u(G_1) \neq \varnothing$ .
- (iv)  $\pi \in T^u(G) \Leftrightarrow \mathscr{O}_{G_1}(\pi) \subseteq T^u(G_1) \Leftrightarrow \mathscr{O}_{G_1}(\pi) \cap T^u(G_1) \neq \emptyset$ .

*Proof.* We shall outline only the proofs of implications which are not completely trivial.

The only such implication in (i) is  $\mathscr{O}_{G_1}(\pi) \subseteq \widehat{G}_1 \Rightarrow \pi \in \widehat{G}$ . Suppose  $\mathscr{O}_{G_1}(\pi) \subseteq \widehat{G}_1$ . Now we can choose a  $G_1$ -invariant scalar product  $(, )_1$ on V. Then  $\pi | S_1 G_1$  is unitary. For  $v_1, v_2 \in V$  set

$$(v_1, v_2) = \int_{S_1G_1 \setminus G} (\pi(g)v_1, \, \pi(g)v_2)_1 \, dg.$$

This is a G-invariant scalar product on V.

It is easy to obtain directly all implications of (ii).

One obtains implications in (iii) by directly comparing integrals of matrix coefficients (one can also prove (iii) using the criterion for square-integrability in Theorem 2.7.1 of [23]).

Let  $V_1$  be an irreducible tempered  $G_1$ -subrepresentation of V. Then  $V_1$  is a subrepresentation of suitable  $\operatorname{Ind}_{M,N}^{G_1}(\delta)$  where  $M_1N$ is a parabolic subgroup of  $G_1$  and  $\delta$  a square-integrable representation of the Levi factor  $M_1$ . Now it is easy to see that all elements from the orbit  $\mathscr{O}_{G_i}(\pi)$  are subrepresentations of the same type of representation. We can choose  $M_1N$  in such a way that there exists a parabolic MN in G and  $M_1 = M \cap G_1$ ,  $M_1N = MN \cap G_1$ . Then we can choose by Proposition 2.2, an irreducible representation  $\delta_0$  of M with the unitary central character such that  $\delta$  is a subrepresentation of  $\delta_0|M_1$ . By (iii),  $\delta_0$  is square integrable. Then we have a projection of  $\operatorname{Ind}_{MN}^G(\delta_0)|G$  onto  $V_1$ . Thus there exists  $\pi' \in T^u(G)$ such that  $V_1$  is a subrepresentation of  $\pi'|G_1$ . Now Proposition 2.4. implies  $\pi' = \chi \pi$  with  $\chi$  unitary. Thus  $\pi \in T^u(G)$ . The implication

 $\pi \in T^u(G) \Rightarrow \mathscr{O}_{G_1}(\pi) \subseteq T^u(G_1)$  proceeds in the similar way. One can prove also (iv) using the criterion in Theorem 2.8.1 of [23].

One can prove the next proposition in the same way as the Theorem in [10]. Nevertheless we shall present the proof because we shall need it in the later discussion.

2.8. PROPOSITION. Suppose additionally that G is a split group and that  $(\pi, V) \in \widetilde{G}$  possesses a Whittaker model. Then  $\pi|G_1$  is multiplicity free.

*Proof.* Let B = AN be a Borel subgroup of G such that A is a maximal split torus of G and N the nilpotent radical of B. Suppose that  $\pi$  has a Whittaker model with respect to a nondegenerate character  $\vartheta$  of N. Then there exists a non-trivial linear form  $\varphi$  on V such that  $\varphi(\pi(u)v) = \vartheta(n)\varphi(v)$ ,  $n \in N$ ,  $v \in V$ .

Let  $V = V_1 + \cdots + V_n$  be a decomposition into irreducible  $G_1$ -representations. Then  $\varphi | V_i \neq 0$  for some *i*. We may take i = 1. The uniqueness of the Whittaker model with respect to  $\vartheta$  implies  $\varphi | V_i = 0$  for  $i \ge 2$  ([18]). Thus  $V_i$ ,  $i \ge 2$  do not have Whittaker models with respect to  $\vartheta$ . This implies that  $V_1$  is not isomorphic to  $V_i$  for any  $i \ge 2$ . Therefore,  $\pi | G_1$  is multiplicity free.

2.9. REMARK. Consider the proof of Proposition 2.8. Take  $a \in A$ . Denote by  $\vartheta_a$  a character  $\vartheta_a(n) = \vartheta(ana^{-1})$ . Now if  $\pi_1$  has a Whittaker module with respect to  $\vartheta$ , then  $(\pi_1)_a$  has a Whittaker module with respect to  $\vartheta_a$ . Denote

$$A_{\pi_1} = G_{\pi_1} \cap A.$$

Since  $AG_1 = G$ ,

$$A/A_{\pi_1} \cong G/G_{\pi_1}.$$

Now  $a \mapsto (\pi_1)_a$  is a parametrization of  $\mathscr{O}_{G_1}(\pi)$  by  $A/A_{\pi_1}$ . Let  $a_0 \in A$ . For any  $a \in a_0 A_{\pi_1}$ ,  $(\pi_1)_{a_0}$  has a Whittaker model with respect to  $\vartheta_a$ . The proof of the preceding proposition implies that  $\pi'_1 \in \mathscr{O}_{G_1}(\pi)$  such that  $\pi'_1 \ncong (\pi_1)_{a_0}$ , cannot have Whittaker model with respect to  $\vartheta_a$  with  $a \in a_0 A_{\pi_1}$ . For a finite group X of characters of G set

$$G_X = \{g \in G; \chi(g) = 1, \forall \chi \in X\},\$$
  
$$A_X = \{a \in A; \chi(a) = 1, \forall x \in X\}.$$

Since  $\pi|G_1$  is multiplicity one, Remark 2.6 implies

$$G_{\pi_1} = G_{X_{G_1}(\pi)}, \qquad A_{\pi_1} = A_{X_{G_1}(\pi)}.$$

Thus for fixed  $\vartheta$ ,  $(A/A_{X_{G_1}(\pi)})$  parametrizes  $\mathscr{O}_{G_1}(\pi)$  in the following way: for each  $aA_{X_{G_1}(\pi)} \in (A/A_{X_{G_1}(\pi)})$  there exists a unique  $\sigma \in \mathscr{O}_{G_1}(\pi)$  characterized with the property that  $\sigma$  has a Whittaker model with respect to  $\vartheta_a$ .

3. Parametrization of representations of SL-groups by GL-parameters. In the rest of this paper we shall consider reductive groups GL(n, F), SL(n, F) and Levi factors of their parabolic subgroups. The parabolic subgroup P of GL(n, F) will always be considered to contain upper triangular matrices, and for a Levi decomposition P = MN, M will always be assumed to be diagonal block-matrix (for suitable decomposition  $n = n_1 + \cdots + n_k$ ). Now parabolics in SL(n, F) will be considered to be of the form

$$P_1 = P \cap SL(n, F),$$
  

$$M_1 = M \cap SL(n, F),$$
  

$$P_1 = M_1 N.$$

For M we know  $M \cong \operatorname{GL}(n_1, F) \times \cdots \times \operatorname{GL}(n_k, F)$  in a natural way and we consider parabolic subgroups of M which are products of the above described parabolics of  $\operatorname{GL}(n_i, F)$ 's. A similar choice is made for Levi decompositions. The corresponding notions for  $M_1$ we shall assume to be obtained from M by intersecting with  $M_1$ . We shall always assume that the maximal torus A in M (and  $\operatorname{GL}(n, F)$ ) consists of diagonal matrices, and the maximal torus  $A_1$  in  $M_1$  to be  $A \cap M_1$ . We shall always consider identifications

det : 
$$M/M_1 \to F^x$$
,  
det :  $A/A_1 \to F^x$ .

Using the first identification, we have an action of  $(F^x)^{\sim}$  on  $\widetilde{M}$  and  $(F^x)^{\sim}$  on  $\widehat{M}$ .

A non-trivial unitary character  $\psi_0$  of F will be fixed. Fixing  $\psi_0$  we have a canonical non-degenerate character  $\vartheta$  of the unipotent radical of the Borel subgroup of GL(n, F).

$$\begin{bmatrix} 1 & u_{12} & u_{13} & \cdots & & \\ & 1 & u_{23} & & \vdots \\ & & 1 & & \vdots \\ & & & \ddots & u_{n-1,n} \\ & & & & 1 \end{bmatrix} \mapsto \psi_0(u_{12} + u_{23} + \cdots + u_{n-1,n}).$$

For the unipotent radical of the Borel subgroup of a group M (and thus of  $M_1$ ), we shall consider the nondegenerate character obtained by restricting  $\vartheta$ , and again denote it by  $\vartheta$ .

For  $R \subseteq \widetilde{M}$  (resp.  $\widehat{M}$ ) invariant for the action of  $(F^x)^{\sim}$  (resp.  $(F^x)^{\sim}$ ) we introduce a notation  $(R/\sim) \times \widehat{X}_{M_1}$  (resp.  $(R/\sim) \times \widehat{X}_{M_1}$ ):

$$(R/\sim) \times \widehat{X}_{M_1} = \bigcup_{(F^x)^\sim \pi \in R/(F^x)^\sim} \{(F^x)^\sim \cdot \pi\} \times (X_{M_1}(\pi))^{\uparrow}$$
$$\left( \text{resp. } (R/^{\uparrow}) \times \widehat{X}_{M_1} = \bigcup_{(F^x)^{\uparrow} \pi \in R/(F^x)^{\uparrow}} \{(F^x)^{\uparrow} \cdot \pi\} \times (X_{M_1}(\pi))^{\uparrow} \right).$$

Here  $\{(F^x) \sim \pi\}$  (resp.  $\{(F^x) \sim \pi\}$ ) is considered as a one-element set consisting of one orbit. We shall give a more detailed description of these objects.

First suppose that  $\pi' \in (F^x)^{\sim} \pi$ . Then  $X_{M_1}(\pi) = X_{M_1}(\pi')$ . Thus the above notations are well-defined. Recall that  $X_{M_1}(\pi) = \{\chi \in (M/M_1)^{\sim}; \chi \pi \cong \pi\} = \{\chi \in (A/A_1)^{\sim}; \chi \pi \cong \pi\}$  (after identification  $M/M_1$  and  $A/A_1$ ). Let  $\pi_1$  be an irreducible subrepresentation of  $\pi|M_1$ . Then  $M_{\pi_1} = \{m \in M; (\pi_1)_m \cong \pi_1\}$  by Theorem 1.2 and Remark 2.6 equals

$$M_{\pi_1} = \{m \in M ; \chi(m) = 1, \forall \chi \in X_{M_1}(\pi)\},\$$

and

$$A_{\pi_1} = M_{\pi_1} \cap A = \{ a \in A \, ; \, \chi(a) = 1 \, , \, \forall \chi \in X_{M_1}(\pi) \}.$$

Thus

$$A_{\pi_1} = X_{M_1}(\pi)^\perp$$

in A, and

$$(A/A_{\pi_1})^{\uparrow} \cong X_{M_1}(\pi) \Rightarrow A/A_{\pi_1} \cong (X_{M_1}(\pi))^{\uparrow}$$

canonically.

We have seen that there is a canonical description

$$(R/\sim) \times \widehat{X}_{M_1} = \bigcup_{R/(F^x)^\sim} \{(F^x)^\sim \pi\} \times (A/A_{X_{M_1}(\pi)}),$$
$$(R/^{\sim}) \times \widehat{X}_{M_1} = \bigcup_{R/(F^x)^\sim} \{(F^x)^\sim \pi\} \times (A/A_{X_{M_1}(\pi)}).$$

Note that  $A_1 \subseteq A_{X_{M_1}(\pi)}$  and therefore we can identify using the determinant homomorphism  $A/A_{X_{M_1}(\pi)}$  with  $F^x/F^x_{X_{M_2}(\pi)}$  where

$$F_{X_{M_1}(\pi)}^x = \det(A_{X_{M_1}(\pi)}).$$

Since  $M/M_1 \cong A/A_1 \cong F^x$  by the determinant homomorphism, we may identify  $(M/M_1)^{\uparrow}$ ,  $(A/A_1)^{\uparrow}$  with  $(F^x)^{\uparrow}$  and thus consider  $X_{M_1}(\pi) \subseteq (F^x)^{\uparrow}$ . Now

$$F_{X_{M_1}}^{\chi}(\pi) = \{ x \in F^{\chi} ; \, \chi(x) = 1 \,, \, \forall \chi \in X_{M_1}(\pi) \}.$$

Now we shall give a canonical parametrization of  $T(M_1)$ .

Take  $x \in (T(M)/\sim) \times \widehat{X}_{M_1}$ . Then  $x = ((F^x)^{\sim} \pi, aA_{X_{M_1}(\pi)})$ . Now the decomposition  $\pi | M_1$  does not depend on  $\pi$  from the orbit  $(F^x)^{\sim} \pi$ . By Remark 2.9. there exists a unique irreducible subrepresentation  $\Lambda(x)$  of  $\pi | M_1$  possessing a Whittaker model with respect to  $\vartheta_a$ . Then results of §2 imply

$$\Lambda: (T(M)/\sim)\times \widehat{X}_{M_1}\to T(M_1)$$

is a one-to-one correspondence.

Let  $x \in (\widetilde{M}/\sim) \times \widehat{X}_{M_1}$ ,  $x = ((F^x)^{\sim} \pi, aA_{X_{M_1}(\pi)})$ . Consider the Langlands parameters of  $\pi$ : let P' = M'N' be a parabolic subgroup in M and  $\sigma$  an essentially tempered representation of M' satisfying necessary positiveness condition, such that  $\pi$  is a unique irreducible quotient of  $\operatorname{Ind}_{P'}^M(\sigma)$ . Set  $M'_1 = M' \cap M_1$ . Note first that  $X_{M'_1}(\sigma) \subseteq X_{M_1}(\pi)$ . The uniqueness of the Langlands parameters implies that we actually have the equality  $X_{M'_1}(\sigma) = X_{M_1}(\pi)$  and thus  $A_{X_{M_1}(\pi)} = A_{X_{M'_1}(\sigma)}$ .

Now we shall parametrize irreducible subrepresentations of  $\pi|M_1$ using tempered representations. We shall use the parametrization obtained in Remark 1.3 (see also the proof of Theorem 1.2). To  $x' = ((F^x)^{\sim}\sigma, aA_{X_{M_1}(\pi)}) = ((F^x)^{\sim}\sigma, aA_{X_{M'_1}(\sigma)})$  we have attached  $\Lambda(x') \in T(M'_1)$ . Recall that  $\Lambda(x')$  is an irreducible subrepresentation of  $\sigma|M'_1$ . Now  $\operatorname{Ind}_{P'_1}^{M_1}(\Lambda(x))$  has a unique irreducible quotient which will be denoted by  $\Lambda(x)$ . Note that  $\Lambda(x)$  is an irreducible subrepresentation of  $\pi|M_1$ . Thus we obtained a mapping

$$\Lambda: (\widetilde{M}/\sim)\times \widehat{X}_{M_1}\to \widetilde{M}_1.$$

Sometimes we shall write  $(\pi, aA_{X_{M_1}(\pi)})$  or simply  $(\pi, a)$  instead of  $((F^x)^{\sim}\pi, aA_{X_{M_1}(\pi)})$  or  $((F^x)^{\sim}\pi, aA_{X_{M_1}(\pi)})$ . Now §2 implies:

3.1. THEOREM. The map

$$\Lambda: (\widetilde{M}/\sim)\times \widehat{X}_{M_1}\to \widetilde{M}_1$$

is a bijection. The restriction

$$\Lambda: (\widehat{M}/\widehat{}) \times \widehat{X}_{M_1} \to \widehat{M}_1$$

is a bijection. For  $(\pi, \mathbf{a}) \in (\widehat{M}/\widehat{}) \times \widehat{X}_{M_1}$  the following equivalences hold:

$$\Lambda((\pi, \mathbf{a})) \in C^{u}(M_{1}) \Leftrightarrow \pi \in C^{u}(M),$$
  

$$\Lambda((\pi, \mathbf{a})) \in D^{u}(M_{1}) \Leftrightarrow \pi \in D^{u}(M),$$
  

$$\Lambda((\pi, \mathbf{a})) \in T^{u}(M_{1}) \Leftrightarrow \pi \in T^{u}(M).$$

In particular  $(\operatorname{GL}(n, F)^{\sim}/{\sim}) \times \widehat{X}_{\operatorname{SL}(n,F)}$  parametrizes  $\operatorname{SL}(n,F)^{\sim}$ ,  $(\operatorname{GL}(n,F)^{\sim}/{\sim}) \times \widehat{X}_{\operatorname{SL}(n,F)}$  parametrizes  $\operatorname{SL}(n,F)^{\sim}$ ,  $(D^{u}(\operatorname{GL}(n,F))/{\sim}) \times \widehat{X}_{\operatorname{SL}(n,F)}$  parametrizes  $D^{u}(\operatorname{SL}(n,F))$  etc.

Now we shall give a description of the unitary induction for SL(n, F). Recall that for  $\pi \in \widehat{M}$ ,  $Ind_P^{GL(n, F)}(\pi)$  is irreducible by [1]. It is easy to see that  $X_{M_1}(\pi) \subseteq X_{SL(n, F)}(Ind_P^{GL(n, F)}(\pi))$  and thus  $A_{X_{SL(n, F)}}(Ind_P^{GL(n, F)}(\pi)) \subseteq A_{X_{M_1}(\pi)}$ .

3.2. PROPOSITION. Let  $\pi_1 \in \widehat{M}_1$  and  $\overline{\Lambda}^1(\pi_1) = (\pi, a_0 A_{X_{M_1}(\pi)})$ . The representation  $\operatorname{Ind}_{P_1}^{\operatorname{SL}(n,F)}(\pi_1)$  is multiplicity free, its length is  $\operatorname{card}(X_{\operatorname{SL}(n,F)}(\operatorname{Ind}_P^{\operatorname{GL}(n,F)}(\pi))/X_{M_1}(\pi))$  and the parameters of all irreducible factors are contained in  $\{\pi\} \times \widehat{X}_{\operatorname{SL}(n,F)}(\pi)$ .

*Proof.* One needs only to find the length of  $\operatorname{Ind}_{P_1}^{\operatorname{SL}(n,F)}(\pi_1)$ . Set

$$p = \operatorname{card} X_{M_1}(\pi),$$
  

$$q = \operatorname{card}(X_{\operatorname{SL}(n,F)}(\operatorname{Ind}_P^{\operatorname{GL}(n,F)}(\pi))/X_{M_1}(\pi)).$$

Let  $\pi | M_1 = \pi_1 + \cdots + \pi_p$  be the decomposition into irreducible subrepresentations. Then

$$\operatorname{Ind}_{P}^{\operatorname{GL}(n,F)}(\pi)|\operatorname{SL}(n,F)\cong\operatorname{Ind}_{P_{1}}^{\operatorname{SL}(n,F)}(\pi|M_{1})\cong\bigoplus_{i=1}^{p}\operatorname{Ind}_{P_{1}}^{\operatorname{SL}(n,F)}(\pi_{i}).$$

Now  $A/A_{X_{M_1}(\pi)}$  acts simply transitive on the above decomposition. Thus all  $\operatorname{Ind}_{P_1}^{\operatorname{SL}(n,F)}(\pi_i)$  are of the same length, say r. But the length of  $\operatorname{Ind}_{P}^{\operatorname{GL}(n,F)}(\pi)|\operatorname{SL}(n,F)$  is pq and from the other side pq = pr. Thus r = q.

3.3. COROLLARY. The representation  $\operatorname{Ind}_{P_1}^{\operatorname{SL}(n,F)}(\pi_1)$  is irreducible if and only if

$$X_{\mathrm{SL}(n,F)}(\mathrm{Ind}_P^{\mathrm{GL}(n,F)}(\pi)) \subseteq X_{M_1}(\pi).$$

Note that the irreducibility of  $\operatorname{Ind}_{P_1}^{\operatorname{SL}(n, F)}(\Lambda((\pi, a)))$ , with  $\Lambda((\pi, a))$  unitary, depends only on  $\pi$ .

4. GL-parameters. We continue with the notation of the preceding paragraph.

In the last paragraph we defined a parametrization of  $\widetilde{M}_1$  (in particular of  $SL(n, F)^{\sim}$ ) and some important subclasses, by parameters defined in terms of  $\widetilde{M}$  (in particular of  $GL(n, F)^{\sim}$ ).

In this paragraph we shall describe further  $(\widetilde{M}/\sim) \times \widehat{X}_{M_1}$ ,  $(\widehat{M}/\sim) \times \widehat{X}_{M_1}$ ,  $(T^u/\sim) \times \widehat{X}_{M_1}$ , ....

We shall fix an isomorphism of M onto  $GL(n_1, F) \times \cdots \times GL(n_k, F)$  and identify these two groups. Now, there are natural bijections given by tensoring representations

$$\widetilde{M} \leftrightarrow \prod_{i=1}^{k} \operatorname{GL}(n_{i}, F)^{\sim},$$

$$\widehat{M} \leftrightarrow \prod_{i=1}^{k} \operatorname{GL}(n_{i}, F)^{\wedge},$$

$$C(M) \leftrightarrow \prod_{i=1}^{k} C(\operatorname{GL}(n_{i}, F)),$$

$$C^{u}(M) \leftrightarrow \prod_{i=1}^{k} C^{u}(\operatorname{GL}(n_{i}, F)),$$

$$D^{u}(M) \leftrightarrow \prod_{i=1}^{k} D^{u}(\operatorname{GL}(n_{i}, F)),$$

$$T^{u}(M) \leftrightarrow \prod_{i=1}^{k} T^{u}(\operatorname{GL}(n_{i}, F)),$$

$$T(M) \leftrightarrow \prod_{i=1}^{k} T(\operatorname{GL}(n_{i}, F)).$$

We shall identify  $M/M_1$  with  $F^x$  and thus  $(M/M_1)^{\sim}$  with  $(F^x)^{\sim}$ . Let

$$\pi=\pi_1\otimes\cdots\otimes\pi_k\in\overline{M}.$$

For  $\chi \in (F^x)^{\sim}$  we have

$$\chi \pi = (\chi \pi_1) \otimes \cdots \otimes (\chi \pi_k).$$

Thus

$$X_M(\pi) = X_{\mathrm{SL}(n_1,F)}(\pi_1) \cap \cdots \cap X_{\mathrm{SL}(n_k,F)}(\pi_k).$$

Up to now, we made a reduction of the parameters to the GL(n, F)case. Now we shall continue to describe the parameters in this situation.

For smooth representations  $\tau_i$  of  $GL(n_i, F)$ , i = 1, 2, we shall denote by  $\tau_1 \times \tau_2$  a smooth representation of  $GL(n_1+n_2, F)$  parabolically induced by  $\tau_1 \otimes \tau_2$  from a suitable standard parabolic subgroup (see [25]). If we have three representations, then  $(\tau_1 \times \tau_2) \times \tau_3$  is naturally isomorphic to  $\tau_1 \times (\tau_2 \times \tau_3)$ . We denote by  $\nu$  the character  $|\det()|_F$  where  $||_F$  is the modulus character of F. Set

$$Irr = \bigcup_{n=0}^{\infty} GL(n, F)^{\sim}, \qquad Irr^{u} = \bigcup_{n=0}^{\infty} GL(n, F)^{\wedge},$$
$$D = \bigcup_{n=1}^{\infty} D(GL(n, F)), \qquad D^{u} = \bigcup_{n=1}^{\infty} D^{u}(GL(n, F)),$$
$$C = \bigcup_{n=1}^{\infty} C(GL(n, F)), \qquad C^{u} = \bigcup_{n=1}^{\infty} C^{u}(GL(n, F))$$
$$T = \bigcup_{n=1}^{\infty} T(GL(n, F)), \qquad T^{u} = \bigcup_{n=1}^{\infty} T^{u}(GL(n, F)).$$

For a set Y, M(Y) will denote the set of all finite multisets in Y. They are all finite unordered *n*-tuples, with any  $n \in Z_+$ . For  $(y_1, \ldots, y_n), (y_1, \ldots, y_m) \in M(Y)$  put

$$(y_1, \ldots, y_n) + (y'_1, \ldots, y'_m) = (y_1, \ldots, y_n, y'_1, \ldots, y'_m).$$

For any  $\tau \in T$  there exist a unique  $\tau^u \in T^u$  and  $e(\tau) \in \mathbb{R}$  such that

 $\tau = \nu^{e(\tau)} \tau^u.$ 

Clearly  $\tau \in D \Leftrightarrow \tau^u \in D^u$ .

For  $t = (\tau_1, \ldots, \tau_n) \in M(T)$  and  $\chi \in (F^x)^{\sim}$  we define

$$\chi t = (\chi \tau_1, \ldots, \chi \tau_n).$$

In this way one obtains an action of  $(F^x)^{\sim}$  on M(T). The stabilizer of t will be denoted by X(t).

Let  $d = (\delta_1, \ldots, \delta_n) \in M(D)$ . We can choose a numeration of d such that  $e(\delta_1) \geq \cdots \geq e(\delta_n)$ . The representation  $\delta_1 \times \cdots \times \delta_n$  has a unique irreducible quotient which depends only on d and which will be denoted by L(d). Now  $d \mapsto L(d)$  is a Langlands-type parametrization of Irr by M(D) (see for example [19]). One has

$$\chi L(d) = L(\chi d)$$

for  $\chi \in (F^x)^{\sim}$ . Thus  $X_{\mathrm{SL}(n,F)}(L(d)) = X(d)$ .

For  $\rho \in C$  and  $n \in \mathbb{N}$  the representation  $\nu^{(\frac{n-1}{2})} \delta \times \nu^{(\frac{n-1}{2})-1} \delta \times \cdots \times \nu^{-(\frac{n-1}{2})} \delta$  has a unique essentially square integrable subquotient which will be denoted by  $\delta(\rho, n)$ . Now  $(\rho, n) \mapsto \delta(\rho, n)$  is a parametrization of D (resp.  $D^u$ ) by  $C \times \mathbb{N}$  (resp.  $C^u \times \mathbb{N}$ ). Similarly as above

$$\chi\delta(\rho, n) = \delta(\chi\rho, n)$$

(see [25]).

The mapping

$$(M(D^u)\setminus\{\emptyset\}) \ni (\tau_1, \ldots, \tau_n) \mapsto \tau_1 \times \cdots \times \tau_n \in T^u$$

is a parametrization of  $T^u$  by  $M(D^u) \setminus \{\emptyset\}$  (see [22] and [25]). For  $\delta \in D^u$  set

$$u(\delta, n) = L((\nu^{\frac{n-1}{2}}\delta, \nu^{\frac{n-1}{2}-1}\delta, \dots, \nu^{-\frac{n-1}{2}}\delta)),$$
  
$$\pi(u(\delta, n), \alpha) = \nu^{\alpha}u(\delta, n) \times \nu^{-\alpha}u(\delta, n)$$

where  $0 < \alpha < 1/2$ . Set

$$B = \{u(\delta, n), \pi(u(\delta, n), \alpha); \delta \in D^u, n \in \mathbb{N}, 0 < \alpha < 1/2\}.$$

Then by [24]

$$M(B) \ni (\pi_1, \ldots, \pi_n) \mapsto \pi_1 \times \cdots \times \pi_n \in \operatorname{Irr}^{u}$$

is a parametrization of  $Irr^{u}$  by M(B). Again

$$\chi u(\delta, n) = u(\chi \delta, n), \qquad \chi \in (F^x)^{\widehat{}}$$

and

$$\chi \pi(u(\delta, n), \alpha) = \pi(u(\chi \delta, n), \alpha), \qquad \chi \in (F^x)^{\widehat{}}.$$

According to formulas

$$\chi L(d) = L(\chi d),$$
  
$$\chi \delta(\rho, n) = \delta(\chi \rho, n)$$

and previous observations, we have a reduction of parameters  $(\widetilde{M}/\sim) \times \widehat{X}_{M_1}$  to computing of  $X_{\mathrm{SL}(n,F)}(\rho)$  for  $\rho \in C$ .

4.2. REMARK. Consider an essentially square integrable representation  $\delta$  of  $\operatorname{GL}(m, F)$ . Let P = MN be the minimal parabolic subgroup among those for which the Jacquet module of  $\delta$  for Pis non-trivial (it is the parabolic subgroup from which is induced  $\nu^{\frac{n-1}{2}}\rho \times \cdots \times \nu^{-\frac{n-1}{2}}\rho$  if  $\delta = \delta(\rho, n)$ ). This parabolic subgroup is homogeneous and the Jacquet module is cuspidal and irreducible. Take  $a \in \widehat{X}_{\operatorname{SL}(n,F)}(\delta)$ . Then  $\Lambda((\delta, a))$  is an essentially square integrable representation and all such representations are obtained in this way. Set  $M_1 = \operatorname{SL}(n, F) \cap M$  and  $P_1 = M_1N$ . It is easy to see that the Jacquet module of  $\Lambda((\delta, a))$  for  $P_1$  is irreducible and cuspidal.

We can express now the irreducibility condition of Corollary 3.3 for unitary parabolic induction more explicitly:

4.2. THEOREM. Let P = MN be a parabolic subgroup of GL(n, F),  $M_1 = M \cap SL(n, F)$  and  $P_1 = M_1N$ . Let  $\pi_1 = \Lambda((\pi, a))$  be an irreducible unitary representation of  $M_1$ . We may suppose  $M \cong$   $GL(n_1, F) \times \cdots \times GL(n_k, F)$ . Let  $\pi = \pi^1 \times \cdots \times \pi^k$  and  $\pi^i = L(d_i)$ ,  $d_i \in L(D)$ . Then  $\operatorname{Ind}_{P_1}^{SL(n, F)}(\pi_1)$  is irreducible if and only if

 $X(d_1 + \dots + d_k)d_i \subseteq d_i$  for each  $i = 1, \dots, k$ ,

or equivalently  $X(d_1 + \cdots + d_k) \subseteq X(d_i), i = 1, \ldots, k$ .

4.3. REMARK. We have reduced the parameters to the computation of  $X_{SL(n,F)}(\rho)$  for  $\rho$  cuspidal (equivalently to  $X_{SL(n,F)}(\rho)^{\gamma}$ or  $A_{X_{SL(n,F)}(\rho)}$  or  $F_{X_{SL(n,F)}(\rho)}^{x}$ ). The following step would be to express (some of) these groups in terms of a parametrization of C. R. Howe constructed in [9] cuspidal representations in the tame case. H. Carayol in [4] classified the cuspidal representations in the prime case. A great number of informations on the above groups in these two cases can be found in papers [13] by P. Kutzko and P. Sally and [17] of A. Moy and P. Sally. Let us illustrate this by an example. Suppose that we are in the tame case. Then the cuspidal representations of GL(n, F) are parametrized by admissible characters of the multiplicative groups of *n*-dimensional extensions E of F, modulo conjugacy. In [17] A. Moy and P. Sally showed that in two of the three possible cases the answer is particularly nice:

$$F_{X_{\mathrm{SL}(n,F)}}^{\chi}(\pi) = N_{E/F}(E^{\chi})$$

where  $N_{E/F}: E^x \to F^x$  denotes the norm map (char F = 0). For details one should consult [17].

#### References

- [1] J. N. Bernstein, *P*-invariant distributions on GL(N), and the classification of unitary representations of GL(N) (non-archimedean case), in Lie Group Representations II, Proceedings, University of Maryland, 1982–1983; Lecture Notes in Math., Vol. 1041, Springer-Verlag, Berlin, 1983, 50–102.
- [2] A. Borel, Linear Algebraic Groups, Benjamin, New York, 1969.
- [3] A. Borel and N. R. Wallach, Continuous Cohomology, Discrete Subgroups and Representations of Reductive Groups, Princeton University Press, Princeton, N. J., 1980.
- [4] H. Carayol, *Représentations cuspidales du groupe linéaire*, Ann. Sci. École Norm. Sup., 17 (1984), 191–225.
- [5] S. S. Gelbart and A. W. Knapp, *Irreducible constituents of principal series of*  $SL_n(k)$ , Duke Math. J., **48** (1981), 313-326.
- [6] \_\_\_\_, L-indistinguishability and R groups for the special linear groups, Adv. in Math., 43 (1982), 101–121.
- [7] I. M. Gelfand and M. I. Graev, Representations of a group of matrices of the second order with elements from a locally compact field, and special functions on locally compact fields, Russian Math. Surveys, 18 (1963), 29–100.
- [8] I. M. Gelfand and M. A. Neumark, Unitäre Darstellungen der Klassischer Gruppen, Akademie-Verlag, Berlin, 1957.
- [9] R. Howe, Tamely ramified supercuspidal representations of GL<sub>n</sub>, Pacific J. Math., 73 (1977), 437-460.
- [10] R. Howe and A. Silberger, Why any unitary principal series representation of SL<sub>n</sub> over a p-adic field decomposes simply, Bull. Amer. Math. Soc., 81 (1975), 599-601.
- [11] C. D. Keys, On the decomposition of reducible principal series representations of p-adic Chevalley groups, Pacific J. Math., 101 (1982), 351–388.
- [12] A. W. Knapp and G. Zuckerman, Multiplicity one fails for p-adic unitary principal series, Hiroshima Math. J., 10 (1980), 295–309.
- [13] P. Kutzko and P. J. Sally, All supercuspidal representations of SL<sub>1</sub> over a p-adic field are induced, in Representation Theory of Reductive Groups, Proceedings of the Utah Conference on Representation Theory, Progress in Mathematics, vol. 40, Birkhäuser, Boston, 1983.
- J.-P. Labesse and R. P. Langlands, *L-indistinguishability for* SL(2), Canad. J. Math., 31 (1979), 726-785.
- [15] D. Miličić, The dual spaces of almost connected reductive groups, Glasnik Mat., 9 (1974), 273–288.
- [16] A. Moy, Local constants and tame Langlands correspondence, Amer. J. Math., 108 (1986), 863–930.
- [17] A. Moy and J. P. Sally, Supercuspidal representations of  $SL_n$  over a p-adic field: the tame case, Duke Math. J., **51** (1984), 149–161.
- [18] F. Rodier, Whittaker models for admissible representations, in Harmonic Analysis on Homogeneous Spaces, Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc., Providence, R. I., (1973), 425–430.
- [19] \_\_\_\_, Représentations de GL(n, k) où k est un corps p-adique, Séminaire Bourbaki n° 587 (1982), Astérisque 92-93 (1982), 201-218.

- [20] F. Shahidi, Some results on L-indistinguishability of SL(r), Canad. J. Math., 35 (1983), 1075-1109.
- [21] A. Silberger, Isogeny restrictions of irreducible admissible representations are finite direct sums of irreducible admissible representations, Proc. Amer. Math. Soc., 73 (1979), 263-264.
- [22] \_\_\_\_, Introduction to Harmonic Analysis on Reductive p-adic Groups, Princeton University Press, Princeton, N. J. 1979.
- [23] \_\_\_\_, Discrete series and classifications for p-adic groups I, Amer. J. Math., 103 (1981), 1241-1321.
- [24] M. Tadić, Classification of unitary representations in irreducible representations of general linear group (non-archimedean case), Ann. Sci. École Norm. Sup., 19 (1986), 335–382.
- [25] A. V. Zelevinsky, Induced representations of reductive p-adic groups II, Ann. Sci. École Norm. Sup., 13 (1980), 165–210.

Received October 7, 1988.

UNIVERSITY OF ZAGREB P. O. BOX 635 41001 ZAGREB, YUGOSLAVIA