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QUALITATIVE BEHAVIOR OF SOLUTIONS
OF ELLIPTIC FREE BOUNDARY PROBLEMS

KirK E. LANCASTER

A general free boundary problem is investigated and the qualitative
behavior of the fixed boundary is compared with that of the fixed
boundary. As an illustration, consider the following situation. Let
I'™ be a given Jordan curve in R?. For each Jordan curve I' in %>
which surrounds I'™*, we let Q = Q(I"*, I') be the region between
I'™ and I'. Let Q be the second-order elliptic operator given by

Qu = auxx + 2buyxy + cuyy, in Q

where a, b, ¢ dependon x, y, ux,and u, and ac—b*> 0. Con-
sider the free boundary problem of finding a curve I' and a function
ue CHQNCH(QUI)NC'Q) such that

Qu=0 inQ
u=1 onI™

and, for a fixed A > 0,
u=0, |Vul=1 onl,

where Q = Q(I'™™, T') . Suppose I" and u constitute a solution of this
free boundary problem. Using curves of constant gradient direction,
the geometry of the free boundary I" is compared to the geometry of
the fixed boundary I'* . In particular, I" is shown to have a “simpler”
geometry than does I'™.

0. Introduction. Let a, b, ¢ € CO(®*) with ac — b? > 0 in R*
and define Q to be the quasilinear, elliptic, second-order partial dif-
ferential operator given by

(1) Qu = auxy + 2buxy + Cityy

for u e C2, where a = a(X,y,p, Q)’ b = b(x,y,P> q)’ ¢ =
c(x,y,p,q) and p = ux(x,y), g = uy(x,y). We are interested
in the following free boundary problem.

Quasilinear free boundary problem. Given I'* a Jordan curve in R?2

or a finite collection of pairwise disjoint Jordan curves in $R? and a
number A > 0, find a bounded domain Q c R?, a finite collection I’
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of pairwise disjoint Jordan curves in M2, and a function u € C%(Q)N
ClQuUT)NCY%Q) such that I'NnT™* =@, 6Q=TUTI*, and

(2a) Qu=0 1inQ,
(2b) u=1 onI™,
(2¢) u=20 onT,
(2d) [Vu|=4 onT.

We are also interested in the following related free boundary prob-
lem. Let F € CO(M? x R2 x ®?*2) satisfy:

F(x,y, P, R) is locally uniformly Lipschitz with respect to the
P c¢®? and R € M2x2 variables;

F is elliptic;

|Fp| is locally bounded,;

F(x,y,P,0)=0 forall (x,y)e®? and P = (p, q) € R?,
where :2*2 denotes the 3-dimensional space of real, symmetric 2 x 2
matrices (see [12], pp. 441-446). Let J be the elliptic, fully nonlinear
partial differential operator of second-order depending on x, y, Du,
D?u given by

() Ju=F(x,y, P, R)
with P = Du and R = D?u € R?*2.

Fully nonlinear free boundary problem. Given I'* a Jordan curve in
M2 or a finite collection of pairwise disjoint Jordan curves in %2 and
anumber A > 0, find a bounded domain Q c %2, a finite collection I’
of pairwise disjoint Jordan curves in 98?2, and a function u € C2(Q)N
Cl(QuUI)UCYQ) such that 'NI™* =@, 8Q =T UTI™, and

(2a) Ju=0 in Q,
(2b") u=1 onI™,
(2¢) u=0 onT,
(2d) [Vul|=4 onT.

We will call T™* the fixed boundary and T" the free boundary of this
problem. We should note that the requirement that Q be bounded
can be relaxed.

A number of authors have considered questions about certain qual-
itative aspects of the free boundary. For example, D. Tepper ([20],
[21]; see also [8], pp. 432-443) proved that if Q = A, Q is an annular
domain, and I'™* is convex or starlike, then I' is also convex or star-
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like. For an inhomogeneous free boundary problem, T. Vogel ([22])
obtained the convexity or starlikeness of I" when I'™* is convex or
starlike. For parabolic free boundary problems, K. Nickel ([14], [15])
considered profiles of solutions of the heat equation and A. Friedman
and R. Jensen ([10]) obtained the convexity of the free boundary in
Stefen and dam problems.

In 1983 (approximately), A. Acker ([1]) and A. Friedman-T. Vogel
([11]) independently considered the case Q = A (i.e. u is harmonic
in Q) and used curves of constant gradient direction to obtain quali-
tative information about the geometry of the free boundary in terms
of the geometry of the fixed boundary when Q is (equivalent to) a
doubly connected or annular domain (i.e. I' and I'* are Jordan curves
with one of the curves lying inside the other); these curves of constant
gradient direction are related to “nodal lines” ([9]; see also [10], [14],
[17]). Vogel ([22]) also used these curves to examine a galvanization
problem. Subsequently, Acker showed that curves of constant gradient
direction can be a powerful tool for investigating the geometry of free
boundaries by obtaining more detailed qualitative information about
the free boundary in terms of information about the fixed boundary
([2], [3]) and obtaining qualitative results without the assumption that
Q is doubly connected ([4]). Further, Acker, together with the author,
used this method to study free boundary problems for parametric min-
imal surfaces in &3 ([6]) and the one-dimensional heat equation ([7]).
Acker ([5]) has also found examples in R”, n > 2, which show that
the qualitative results above are generally false in three or more di-
mensions.

We will show that the “method of curves of constant direction” can
be used to investigate the quasilinear and fully nonlinear free bound-
ary problems for any operator Q or J as given by (1) or (1’) re-
spectively. We will prove that each component of I" has a “simpler”
geometry than does I'™*. For example, when € is an annular domain,
we will prove that the total curvature, the number of local maxima
(minima) with respect to a prescribed direction 7, and the number of
inflection points of I' are less than or equal to the total curvature, the
number of local maxima (minima) with respect to v/, and the num-
ber of inflection points of I'* respectively. When we do not assume
Q has a particular topological structure, we see that total “positive
curvature” and the number of /-minima of I" are less than or equal
to the total “positive curvature” and the number of 7-minima of I'*
respectively. We note that all of the qualitative results of Acker for
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the harmonic free boundary problem obtained using curves of con-
stant gradient direction remain valid for our free boundary problems.
Since, in addition to the free boundary problems (2) and (2'), this
method has proven useful for inhomogeneous ([22], [3]), parabolic
([71), and axial-symmetric ([S]) free boundary problems, we suspect
that curves of constant gradient direction will eventually prove use-
ful for investigating a number of additional elliptic and parabolic free
boundary problems.

1. Main results. We will adopt the notation of [2] and [4]. Suppose
I'* and A are given and Q, I', u constitute a solution of the free’
boundary problem (2). We assume I'* is a C! curve or union of
curves and has bounded curvature. We will orient 0Q so that the
forward direction on 9Q is such that Q lies locally to the left of
Q and locally to the right of I'* (e.g. Figure 1, [4]). We let 7i(x, y)
denote the unit normal vector to 9Q at (x, y) € dQ which points to
the left; hence Vu(x, y) = |Vu(x, y)|fi(x, y) for (x,y) € 0Q. We
will assume that for each unit vector &, the curve I'* contains at most
finitely many maximal segments (including isolated points) on which
i(x,y)==¢.

DEeFINITION. Given a unit vector 7, we call (xy,y9) € I’ a v-
minimum (V-maximum) of T" if 7i(xy, yo) = ¥V and (xp, o) is a
strict local minimum (maximum) relative to I" of f(x,y)=7-(x,y)
(see, for example, Figures 2 and 3, [4]).

DEeFINITION. Given a unit vector 7, we call (xp, yo) € I'* a -
minimum ( V-maximum) of I'* if 7i(xy, yo) = Vv and either (xg, yo)
is a strict local minimum (maximum) relative to I' of f(x,y)
= V. (x,y) or there is a closed line segment y* C I'* such that
(X0, ¥0) € ¥* and V- (x,y) > (<) V- (X0, yo) for (x,y) €TI™*\»*
near y*. Here y* is considered as a single local extremum.

DEerFINITION. Given o C I', we say that y has positive (negative)
curvature on o if and only if I" has nonvanishing curvature on ¢ and
for each (x, y) € g, there exists r > 0 such that the set of points
which are within r of (x, y) and lie to the left (right) of 90Q is a
convex set. We define the notation of positive and negative curvature
of I'™* similarly.

DeFINITION. We call (x, y) € Q a positive (negative) inflection
point of 0Q if and only if dQ has negative (positive) curvature lo-
cally before (x, y) and has positive (negative) curvature locally after
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(x,y) or there is a line segment o C I'* with (x, y) € o such that
I'™ has negative (positive) curvature locally before o and positive
(negative) curvature locally after o .

THEOREM 1. Let T* be a given C?* Jordan curve and A > 0. Sup-
pose Q, ', u is a solution of either free boundary problem with the
following properties:

(i) Q is a bounded, C?* annular domain.

(ii) ue C¥Q).
Let (x1,¥1), ..., (Xn, yn) be a positively ordered set of distinct points
on T (ie (x1,y1) < (x2,¥2) < =+ < (Xn, ¥n) < (X1, ¥1) in the
natural ordering on T') such that for each i, the points (x;, y;) has
one of the following properties:

(a) For given unit vector V;, A(Xi, y;i) = V.

(b) #(x;, yi) =V; and (x;, y;) is a V-maximum (V-minimum) of
I.

(¢) (xi,¥:) is a positive (negative) inflection point of T .
Then there is a positively ordered set of distinct (possibly degenerate)
line segments oy, ..., 6, on I'* such that for each i, each point (x, y)
in the segment a; has the same property relative to I'™* that (x;, y;)
has relative to T (e.g. #i(x,y) = v; for each (x,y) € a;.) Further,
the total positive (negative) curvature of I" is less than or equal to that
of T*.

When I', I, and u are real-analytic and Q is an annular domain,
we obtain:

THEOREM 2. Let I™* be a given analytic Jordan curve and A > 0.
Suppose Q, T', u is a solution of either free boundary problem with
the following properties:

(i) Q is a bounded, analytic annular domain.

(ii) u is real-analytic on Q.
Let UV be a unit vector and let (xi, y1), ..., (Xn, yn) be the distinct
v-minima (V-maxima) of I'. Then each point (x;, y;) is joined by a
simple, piecewise-analytic directed curve y; to a point (x},y}) € I'*
such that

(a) |Vu| is strictly increasing (decreasing) on 7y;.

(b) arg(Vu) is constant on y;.

(c) The points (xi,¥}), ..., (x;,yy) are distinct U-minima (V-
maxima) of T™*.
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(d) |Vu(xt, yi)| > (<) A for each i.
(e) For i# j, thedirected curves y; and y; do not cross or coalesce.

Further, the total positive (negative) curvature of I is less than or equal
to that of T*.

When Q is a bounded domain which is not annular, we obtain the
following two results.

THEOREM 3. Let T™* be a given finite union of pairwise disjoint, C?
Jordan curves and A > 0. Suppose Q, I', u is a solution of either free
boundary problem with the following properties:

(i) Q is a bounded C?* domain.

(i) ue C}Q).
Let (x1,¥1), ..., (Xn,yn) be a positively ordered set of distinct v-
minima of I'. Then there is a positively ordered set of distinct (possibly
degenerate) line segments o, ..., o, on I'* such that for each i, each
point (x,y) in the segment o; is a V-minimum of I'*. Further, the
total positive curvature of T is less than or equal to that of T*.

THEOREM 4. Let T™* be a given finite union of pairwise disjoint,
analytic Jordan curves and A > 0. Suppose Q, I', u is a solution of
either free boundary problem with the following properties:

(1) Q is a bounded, analytic domain.

(ii) u is real-analytic on Q.
Let U be a unit vector and let (x1, y1), ..., (Xn, Yn) be the distinct v-
minima of I'. Then each point (x;, y;) is joined by a simple, piecewise-
analytic directed curve y; to a point (x},y;) € I'* such that

(a) |Vu| is strictly increasing on ;.

(b) arg(Vu) is constant on ;.

(c) The points (x{,y}), ..., (xy,yy) are distinct v-minima of
I*.

(d) |Vu(x}, y})| > A foreach i.

(e) For i # j, thedirected curves y; and y; do not cross or coalesce.

Further, the total positive curvature of T is less than or equal to that
of T*.

2. Preliminary results. Let us define e(x, y)=uxx(X, y)upy(x, y)-
Uy(x,¥)?, E={(x,y)€Q:e(x,y)<0},and Z ={(x,y) € Q:
|Vu(x, y)| > 0} . Further, set

(3) ¢(x,y) = |Vu(x, »)?,  (x,»)€Q,
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and

(4) W(x>y):arg(vu(x>y))a (x>y)E§\Z

Notice that y is a multiple-valued function. If a € R, # = (sin(a),
—cos(a)), and 7+ = (cos(a), sin(a)), then {(x,y) € Q\Z :
w(x,y)=a}={(x,y) €Q: 7-Vu(x,y)=0, - Vu(x, y) > 0}.

The following lemma indicates the behavior of ¢ on level sets of
w when the graph of u is a saddle surface.

LEMMA 1. Suppose u € C*(Q) satisfies tyxUyy — uiy <0 on Q.
For a € R, define

(5) So={(x,y)€Q:y(x,y)=a}.

Suppose (xg, yo) € Sa NENZ. Then locally near (xy, yo), the set
S, is a simple, C! curve o which divides its complement into two
connected components on which y — a has opposite signs. Further, ¢
is strictly increasing on o if we choose the forward direction such that
w > « locally to the right of o (or w < a locally to the left of o).

Proof. Notice that Vi = |Vu|"2(Uxlxy — Uylxx , Uxllyy — Uylixy)
and Ve = 2(Uxlyx +Upllxy , Uxllyxy +Upityy) . Now |[Vi(x, y)| =0 iff
e(x,y)=0iff (x,y) ¢ E. Since (xo,y0) € E, |V¥(xo, o) # 0.
The first part now follows from the implicit function theorem. Let
us now orient ¢ so that ¥ > a locally to the right of g . Let us set
Vyt = (-, wx). Notice that Vi is orthogonal to ¢ and points
to the right of o. Also, Vi is a (forward) tangent vector to o . Let
us write

(6)  Vé(x,y)=Bi(x,y)Vu(x,y)+ Ba(x, »)Vyt(x,y),

where By(x, y) = Vo(x,y)-Vy*(x, »)/|Vy(x, y)I*. We claim that
B(x,y)>0 forall (x,y)e€o. In fact, a direct computation yields

V-Vt =2(ui, — tuxxityy) >0

on ¢ and our claim follows. If we parametrize o by (x(¢), y(t)),
then

(7) Vo (X', ¥) = B(Vy— - (x', 1) >0

and so ¢(x(¢), y(¢)) is strictly increasing in ¢. O
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COROLLARY. Suppose u € C2(Q) satisfies uxxityy —u2, <0 on Q,
(2b), and (2c) and suppose o is an open line segment with a C 9
such that oNE is densein o. Then ¢ is strictly decreasing on o and
v < a locally to the right of o .

Here we orient o as a subset of 9Q; that is, Q is locally to the
left of ¢ when o C T and locally to the right of ¢ when o C I'™*.

Proof. On o, notice that Vi is orthogonal to ¢ and Vy' points
backwards (or to the left) along o . The fact that ¢ is strictly decreas-
ing on g follows from the proof of Lemma 1. Now if ¥ > a locally
to the right of a point z of o, then Lemma 1 would imply that ¢ is
strictly increasing on o near z, a contradiction. Thus ¥ < a in a
neighborhood in Q of . o

REMARK. When u € C%(Q) is a solution of (2a’), we may regard
u as a solution of the quasilinear equation (2a) for some Q asin [12,
p. 444]. If we set

(8) Ej(xyyspaq’rll’r12:r2lsr22)

—(X,y,DP,4, "1, "2, 1, 2),
8r,1

for i, j=1,2 (with rjp = ry;), then we see that u is a solution of
(2a) when a =a'l, b =4!?, and ¢ =a?? and

.. 1
9) a’}(x,y,p,q>=/0 Fi(x,v,p,4q, 8D%u(x, y))db.

Thus, in the proofs throughout this note we will only consider solu-
tions of (2a) (e.g. [12, §17.1]).

LEMMA 2 Suppose u € C%(Q) satisﬁes either (2a) or (2a'). Then
UxxUyy — uxy <0 in Q and uxxuy, — = 0 at a point if and only
if Uxx = Uxy = Uy, = 0 at the pomt Further if D*u # 0, then
ENQ and ZNQ are open, dense subsets of Q and if n,, n, € R with
n?+n? >0 and 0 = {(x,y) € Q: nux(x, y)+muy(x, y) =0}, then
oNE isdensein o. If uec C*(Q) and 6 = {(x, y) € Q: nux(x, y)+
muy(x,y) =0}, then 6 NE is also dense in o.

Proof. We may assume u satisfies (2a). If we set 7 = uxyx, § = Uyy,
and t = uy,, we see that 0 = r(ar + 2bs + ct) and so rt — s? =
—1(ar?2brs +cs?). Since Q is elliptic, a¢? +2b&1& +cé2 > 0 if and
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only if 5: (&1, &) #0. Thus uxxiyy — u)zcy < 0. The fact that E
and Z are dense follows from the strong maximum principle and the
density of 6 N E in o follows from the proof of Lemma 1 of [13]
after we rotate Q so that 7§ becomes (0, 1). O

REMARK. Suppose Q isa C? domain and u € C2(QuUDNCY(Q).
Then |Vu| # 0 on 9Q and I' cannot contain any line segments.
Notice that |Vu| is bounded in Q and so Q or J is uniformly elliptic
for u. The first claim follows from the Hopf boundary point lemma
(Lemma 3.4, [12]) and the second follows from the corollary to Lemma
1.

A. Annular domains. Here we will assume the following:

(i) T'* is a given C? Jordan curve and A > 0.
(i) Q, I', u constitutes a solution of one of the free boundary
problems.
(iii) Q is an annular domain and T is a C? Jordan curve.
(iv) ue C2(Q)NnCY(Q).

LEMMA 3. For each (x,y)€Q, |Vu(x,y)|>0 and Z =Q.

Proof. Let (xg, yo) € E and define i by
(10) i(x, y) = zo + po(x — X0) + go(¥ — o),

where zg = u(Xg, ¥o) >0, po = ux(Xo, o), and go = uy(xo, yo). As
in Lemma 2, [13], we see that & = u or there are two curves a;, 0,
which meet at (xg, y9) and divide a neighborhood of (xp, y¢) into
four open “sectors” w;, w,, w3, w,s such that ¥ > & in wy U ws
and u < @ in w,Uw,. If the plane z = &t does not intersect XoUZX,,
where £y =I'x {0} and Z; =T™* x {1}, then # >0 =u on I' and
1< 1=u on I'". Since Q is an annular domain, the previous two
statements are in contradiction; this follows, for example, from the
maximum principle and the Jordan curve theorem (e.g. the proof in
§373, [16]). Hence, the tangent plane to the graph of u at (xg, Vo)
must intersect Xy UXZ; . This implies that

(11) |Vu(xo, yo)l
> min{u(xo, yo)d(xo, yo), (1 — u(xo, ¥0))d* (X0, ¥o)} >0

for every (xp,)0) € E, where d(x, ) = inf{|(x y)— (s, 0|
(s,t) €T} and d*(x, y) =inf{|(x, y) = (s, )| (s, t) e *}. Since
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u € C*Q), (4) holds for all (xp, yo) € Q. Since we already know
|Vu| >0 on 8Q, the lemma follows. O

LEMMA 4. Let (xo,y0) € T and let § = (n1, m2) with |n| = 1
and 1 - Vu(xg, yo) # 0. Let @ denote the connected component of
{(x,y) € Q:#-Vu(x, y) # 0} which contains (xy, yo). Let a € R
such that 1§ = (sin(a), — cos(a)). Then:

(a) w is relatively open in Q and wNT* is relatively open in T*.

(b) w is simply connected and w N T is connected.

() #-Vu=0on QnNndow and y is constant (= a or a+ 7
(mod 27)) on each component of QNow.

(d) onT* #£2.

(e) dw is a simple, C! curve in a neighborhood of each point of
JoNkE.

(f) If a component y of QN Ow is oriented so that #f-Vu < 0
locally to the right or #j-Vu > 0 locally to the left, then ¢ is strictly
increasing on 7.

Proof. Notice that (a), (c), and (e) are clear. If y is a component
of 0wNQ, then yNE isdensein y and v = 6 with 8 = a or
0 = a+ rmod 2n. Suppose y is oriented as in (f). Then ¥ > 0
locally to the right or ¥ < 6 locally to the left and so ¢ is strictly
increasing on y N E by Lemma 1. Since ¢ € C°(Q) and yNE is
relatively open and dense in y, (f) follows. Suppose w is not simply
connected. Then there is a component y of dw and a bounded
component U of R\ w such that y =9U. If y C Q, then the strict
monotonicity of ¢ yields a contradiction unless U is a single point,
in which case the strong maximum principle implies #-Vu #0 in U
and so U C w, a contradiction. Thus yN9Q # @. For convenience,
let us assume #-Vu > 0 in . The monotonicity of ¢ implies yNI"
contains no more than one point and U must contain a component
I of I'. Let (xp, yo) €I with 7-Vu(xg, yo) <0 and let wy be the
component of W which contains (X, o). Then wNwy = @ and so
woNI'y = @. If I'* contains only one component, this contradicts (d).
Suppose next that wNI is not connected. Then there is a component
y of dwN Q which joins two points of I". Since #-Vu =0 on p,
¢ is strictly monotonic on y. However, this contradicts the fact that
¢ = A% on T'; hence (b) holds. Finally suppose @ NT™* = @. Then
dw is a Jordan curve in QUI". Now #-Vu =0 on dwNQ and so ¢
is strictly monotonic on dwN Q. Once again, this contradicts ¢ = A2
on I' and so (d) follows. |
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LEMMA 5. Let w,, w, be connected components of {(x,y) € Q:
- Vu(x,y) # 0} for some i with |if] = 1. If (w3 Uwy)NT is not
connected, then w;Nw, = 2.

Proof . If wiNw, # @, then w; = w, and so (w;Uwy)NT = w1 NI
is connected by (b) of Lemma 3. O

B. General domains. Here we will assume the following:
(i) T* is a given finite union of disjoint C? Jordan curves and

A>0.

(i) Q, T', u constitutes a solution of one of the free boundary
problems.

(iii) Q is a bounded domain and I is a finite union of disjoint C?
Jordan curves.

(iv) ue CHQ)NCHQ).
In this case, we expect |Vu| =0 at some points.

LEMMA 6. Let (xq,y9) € I' and let 1§ = (n1, n2) with |n| = 1
and 1 - Vu(xg, yo) # 0. Let w denote the connected component of
{(x,y) € Q: if-Vu(x, y) # 0} which contains (xo, yo). Let o € R
such that # = (sin(a), —cos(a)). Then:

(a) w is relatively open in Q and wNT* is relatively open in T*.

(b) wNnT is connected and if w is not simply connected and if U
is a bounded component of K2\ w, then U contains a component Iy
of T*.

() 7-Vu=0on QNdw and y is constant (= o or a+ @
(mod 27)) on each component of ZNow.

(d) onT* #£ 2.

(e) dw is a simple, C! curve in a neighborhood of each point of
JwnNENZ.

(f) If a component y of Z Ndw is oriented so that 1j-Vu < 0
locally to the right or #j-Vu > 0 locally to the left, then ¢ is strictly
Increasing on 7.

The proof is essentially the same as the proof of Lemma 4. Notice
that |Vu|#0 in w.

LEMMA 7. Let w;, w, be connected components of {(x,y) € Q:
i-Vu(x,y) # 0} for some #f with |ffl =1. If (wyUwy)NT is not
connected, then w\Nwy = 3.

The proof is the same as the proof of Lemma 5.
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C. The real analytic case. Here we will assume the following:

(i) I'™* is a given finite union of disjoint real-analytic Jordan curves
and 4> 0.

(i) Q is a bounded domain and I" is a finite union of disjoint
real-analytic Jordan curves.

(iii) u is real-analytic on Q and either Q isreal-analytic on $R%xR?
or J is real-analytic on P2 x R2 x R*2.

For each unit vector 7 = v + 1, , let H; denote the set of piece-
wise analytic, directed curves y in Q on which |Vu| is strictly in-
creasing and Vu(x, y) points in the /-direction at each point (x, y)
of y. Since u is real-analytic on Q, we wish to regard u as a real-
analytic solution of (2a) in a neighborhood of Q. This will simplify
the statement of certain results (e.g. Lemma 9).

LemMA 8. Suppose (xg, yp) € Q. Set
(12) u(x, y) = zo + po(x — X0) + qo(¥ — o)

where zo = u(xg, o) € (0, 1), po = ux(xo, ¥o), and qo = uy(xg, yo) -
Then either u =14 or

(13)  wu(x,y)=da(x,y)+HX,y)+ 00 asr—0,

where n > 2 is an integer, r = dist((x, y), (xo, Yo)), H is a har-
monic, homogeneous polynomial of degree n in (X,y), and X, y are
linearly independent, linear functions of x, y.

Let ny, ny € R with n? +n3 = 1. Suppose u # it, nux(xo, yo) +
mauy(Xo, ¥o) =0, and (xo, yo) is a branch point of u (i.e. uxx(xo, ¥o)
= Uxy(X0, Y0) = Uyy(x0, y0) =0). Then n >3 and

(14) Mux(x, y) +muy(x,y)=GXx,y)+0(r") asr—0,

where G is a harmonic, homogeneous polynomial of degree n — 1.
Hence the zeros of nyux + mu, in a neighborhood of (xo, yo) lie
on n—1 > 2 analytic curves which intersect at (Xy, yo) and di-
vide a neighborhood of (xg, yo) into 2(n — 1) disjoint open “sectors”
@1, ..., W2 Such that mux + mu, < 0 in wy, ..., wy,-3 and
Mmux +muy, >0 in wy, ..., Wy-2.

Proof. The proof of the first part is similar to [19, p. 380]; also
see [13]. Let us consider the second part. Suppose X = €;(x — Xg) +
€2(y —yo) and y = dy(x — Xo) +d2(¥ — yo) ; here, €,0 —&,d; # 0. Now
B(xX,7) = e Hx(X, ¥) + 01 Hy(X, ¥) and 3Z(x,y) = e, Hx(X, ¥) +
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0,H;(X, y). Since npo + n2q0 = 0, we obtain (14) when G(X,y) =
(me1+me)Hx (X, ¥) + (1161 4+ 1202)Hy(X , ¥) . Since Hx and H; are
harmonic, homogeneous polynomials of degree n—1, either G =0 or
G is as claimed. Since u # @i, Hy and Hj are linearly independent;
it then follows that G # 0. The remainder of the proof follows using
standard facts about harmonic functions (e.g. [16], §373). O

LEMMA 9. For a € R, define
Se={(x,y)€ZU0Q: y(x,y)=qa}.

Then

(a) If |Vw(xo, o)l # 0 at a point (xq, yo) € Sa, then locally
at (xg, Yo) the set S, is an analytic simple curve y which divides
its complement into two connected components on which y — «a has
opposite signs. Further, ¢ is strictly increasing on y if we choose the
Sforward direction such that w > o locally to the right of y.

(b) Suppose Vy has a zero of order n at (xg, y9) € Sa, for some
integer n > 1. Then locally at (xy, yo), the set S, is swept out by
2n+2 directed, analytic arcs Cy, C,, ..., Copyr Which emanate from
(xo0, yo) and divide its complement into 2n + 2 open sectors

Wy, W2, ..., Wap42

on which y — o alternates in sign. We may choose our notation so that
C;UCy is the local boundary of w; (with Cypye3 =Cy), (—1)(¥v—a)
is negative in w;, and (—1)'¢ is strictly decreasing on C;.

Proof. Notice that (a) follows Lemma 1. If we set 7 = (sin(e),
—cos(a)) and 7+ = (cos(a), sin(a)), then S, = {(x,y) € Q: 7 -
Vu(x,y)=0, +-Vu(x,y) > 0}. Suppose (xg, ¥o) € S, such that
|Vu(xo, yo)| = 0. Notice that (xg, yo) ¢ E. According to the second
part of Lemma 8, we see that near (xg, Jo) the set 77-Vu = 0 consists
of n—1 > 2 analytic curves through (xg, yo). Since S, is contained
in the relatively open set {(x,y) € Q: 7+ - Vu(x, y) > 0}, we see
that the set y = o consists of the same n — 1 analytic curves and the
remainder of the lemma follows from Lemma 1 and Lemma 8. O

LEMMA 10. Let v be a unit vector and let T" have a v-minimum at
(X0, Yo). Then:

(a) At least one directed curve 9 € Hjy, which exists locally at
(X0, o), emanates into Q from (xg, Yo)-
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(b) Let y € H; be any maximal continuation of 3 in Hy. Then
y remains uniformly bounded away from any zero of |Vu| and any
closed, connected set in T* on which #i(x,y)# vV and y\ 9 remains
bounded away from T .

(c) The curve y must terminate at a point (xg, y3) € I'* such that

(15) A(xg, y5) =V
and
(16) [Vu(xg, o)l > 4.

REMARK. If Q is an annular domain, then Lemma 3 implies |Vu| >
0 on Q and the conclusions of Lemma 10 hold when I' has a 7-
maximum at (xg, y9) with the modifications that y € H; terminates
at (xo, yo), » begins at (x§, y5), and |Vu(xg, y5)| < 4.

The proof of Lemma 10 follows from Lemma 9 as in the proof of
Lemma 2, [4].

3. Proof of main results.

Proof of Theorem 1. Suppose first that (xg, yo) € I' and 7(xg, yo) =
V= (,1r). Set 1=—-0t=(vy,-v) and W = {(x,y) € Q: 7
Vu(x, y) # 0}. Since I'" contains no line segments and Vu € C%(Q),
(x0, ¥0) € OW . Let w be acomponent of W such that (xg, yg) € 0w
and let y be a component of dwNQ with (xy, y9) € 7. From Lemma
4, we see that 7NI™ # @ and 7-Vu=0on 7. Also #+-Vu >0 on 7
since - Vu(xg, o) = ¥-Vu(xg, o) >0 and [Vu| # 0 on Q. Thus
if (x,y)eynI™, #(x,y)=v. If gy is the maximal line segment
on I'* which contains 7NI™*, then 7(x, y) =7 forall (x, y)€agy.

Suppose next that (xg, yo) € I' with 7i(xy, y9) = ¥ such that
(X0, yo) isa U-minimum of I". Let us use the notation of the previous
paragraph. Then 7. (x, y) > 7« (xo, yo) for (x,y) € '\ {(x0, y0)}
near (X, ¥o). Since I' is the O-level curve of u, this implies #-Vu >
0 locally before (xg, yg) on I' and # - Vu < 0 locally after (xg, »o)
on I'. Now let ws be the components of W such that (xg, yg) is
the left (or initial) endpoint of @; NI and is the right (or terminal)
endpoint of @_NT. Then #-Vu < 0 in w, and #-Vu > 0 in
w-. Let y, be the component of dw, N Q whose closure contains
(x0, yo) and let y_ be the component of dw_ N Q whose closure
contains (xp, yo). As above, 1 NI'™ # @ and if (x,y) € yxNI™*,
then 7i(x,y) = V. Notice that 7_ N I™ lies to the left (or before)
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Y= NI*. If o4 are the (possibly degenerate) closed line segments in
I'™ such that 9, NI™* C oy and 7_NI* Co- andif z_, z;, e I'™
are the left endpoint of ¢_ and the right endpoint of o, respectively,
then 7i-Vu > 0 and y < o locally to the left of z_ on I'* and
#-Vu <0 and y > «a locally to the right of z; on I'*, where a € R
with (cos(a), sin(a)) = /. The fact that I* has a /-minimum be-
tween z_ and z; follows using an argument similar to that of [1] (in
particular, see Lemma 1 and the proof of Theorem 1 in [1]). The case
where (xg, ¥g) is a v-maximum of I" follows similarly.

Now suppose (xg, ¥o) € I' with 7(xg, yo) = ¥V and (xg, yo) is a
positive inflection point of I'. Then if # = —/1 as above, 7-Vu <0
locally before and locally after (xp, yg) on I'. Let W = {(x,y) €
Q:7%-Vu(x,y) <0} and let ws+ be the components of W and y4
be the components of dw, NQ as in the previous paragraph. Then
fi-Vu =0 on y. and ¢ is strictly increasing (decreasing) on 7, (7-)
as (x,y) € yx leaves (xg, yo). Thisimplies 7_Ny; = {(xp, ¥o)} . Let
z_, z, € I'* be the leftmost point of _NI™ and the rightmost point
of 77 NTI™* respectively. Let V' be the open subset of Q bounded by
y_ Uy, and that portion of I'* between z_ and z, . Let us suppose
that #-Vu < 0 in V' ; this will lead to a contradiction. Let z €
OVNE Cy_Uy, and pick ¢ >0 sothat 7-Vu <0 in B(z,¢) C Q.
Now 0B(z,e)N(w-Uw,;) # @ and so - Vu < 0 on a portion of
the boundary of B(z, ¢). If we rotate Q so that 77 = (0, 1) and so
- Vu = u, and if we notice that u, is the generalized solution of a
linear, elliptic, homogeneous equation (e.g. [12], §13.2), we see that the
strong maximum principle (e.g. [12], Theorem 8.19) implies #-Vu < 0
in B(z,e¢e). However, - Vu=0 on y_ Uy, and z € y_Uy,. This
contradiction implies 7 - Vu > 0 for some points in V. Now let D
be a component of {(x, y) € Q: #-Vu(x,y) >0} suchthat DC V.
Since ¢ is strictly monotonic on D N Q, we see that DNT™* # @
and D NT™* must contain a point z, at which #.Vu > 0. Since
1 - Vu < 0 locally to the left of (or before) z_ and locally to the right
of (or after) z, and z( lies between z_ and z,, I'* must have a
positive inflection point between z_ and z, .

Notice that the final conclusion of the theorem concerning the total
positive and negative curvature follows from (a) in a manner simi-
lar to the proof of Theorem 2 of [4] for the positive curvature case.
To complete the proof, we need only observe that if 7(x;,y,) =
A(xy, y2) = ¥V for (xi,y1), (x2,¥2) € T with (x1,y1) # (x2, ¥2)
and if y; is y, y_, or y, as above with (xg, o) = (x;, y;), then
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7iN7; = @. To see this, let (x0,y% € I' lie between (x;, y;)
and (x;,,) such that A(x°,y%) = & # 7. Set § = —& and
wo={(x,y) eQ: 5-Vu(x,y) #0}. Nowlet w® be a component of
WO with (x°, y9) € w0 and let y° be a component of dw’NQ with
(x9, ¥%) € y0. Then »° is a curve from (x°, y°) with y0NT™* # &
and §-Vu =0 on 0. Since |[Vu|#0 in Q, y0 (strictly) separates
71 and 7;. o

Proof of Theorem 2. When the (x;, y;) are U-minima of I', the
proof of the existence of curves y; € H; and 7-minima (x}, y;) € I*
as indicated in the theorem is essentially the same as the proof of
Theorem 5 of [4] with Lemmas 9 and 10 taking the places of Lemmas
1 and 2 of [4]. Since |Vu| > 0 in Q (Lemma 3), we may modify
the proof in [4] when the (x;, y;) are V-maxima of I'. In fact, if
we modify the rules in [4] for continuation of curves ¥ = a so as to
keep w < a locally to the right except at negative inflection points
of I'*, where we require ¥ > o locally to the left, then the proof of
the existence of curves y; on which ¢ is decreasing and which begin
at (x;, y;) and end at v-maxima (x}, y;) of I'* as in the theorem
is similar to the proof in the 7-minima case. The last conclusion of
Theorem 2 follows from Theorem 1. O

Proof of Theorem 3. In [4], continuation rules for curves of constant
gradient direction were developed using the analyticity of # and I'*
and these curves, which began at 7-minima of I", were shown to ter-
minate at 7-minima of I'*. Since we do not know the behavior of u
in a neighborhood of a point z of I'* at which e(z) = 0, a consid-
erable portion of this proof will involve technical details required to
allow us to continue curves of constant gradient direction which have
reached I'*.

Suppose (xg, yo) € I’ with 7i(xp, y0) = ¥ and (xg, yg) is a U-
minimum of I and set 7 = —v/t. Let W, = {(x,y) € Q: 7 -
Vu(x,y) < 0} and W_ = {(x,y) € Q: #-Vu(x,y) > 0}. No-
tice that on I', #-Vu < O locally to the right (or after) and #-Vu >0
locally to the left (or before) (xg, yo); hence (xg, ¥o) € WoNW_ . Let
w; be a component of W, whose closure contains (xg, o) and let p,
be the component of dw; N Q whose closure contains (xp, yg). Let
us orient p; so that w; lies to the right of y;; that is, so that (xg, yo)
is the initial point of y;. By Lemma 6, ¢ is strictly increasing on 7y,
nwNI* #@,and #.Vu =0 on y;. Notice that y; C dW_, since
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otherwise we obtain a contradiction of the strong maximum principle
(e.g. the third paragraph of the proof of Theorem 1).

Let (x1, y1) € ;1 NnI™* and notice that 7i(x;, y;) =v. If (x1, 1)
is a 7-minimum of I'* and @; contains a portion of I'* to the right
of (xi, y1), we stop. Otherwise we continue y; beyond (x{, y;). If
(x1, y1) is not a positive inflection point of I'*, then either #-Vu > 0
locally to the right of (x;, y;) on I'* or there is a line segment o C I'*
with (x;, y1) € ¢ and #f-Vu > 0 locally to the right of ¢ on I'*. If
(x1,y1) is a positive inflection point of I'™*, then #-Vu < 0 locally
to the left of (x;, y;) or locally to the left of a line segment o C I'™*
with (x;, y1) € . We will describe a rule for obtaining a set y with
y1 C v such that y begins at (xy, y9) and ends at a V-minimum of
.

Suppose (x;, y;) is not a positive inflection point of I'™*. Let o
be the (possibly degenerate) maximal closed line segment such that
(x1,y1) €0 cI'* andlet z;, z, be the initial and terminal endpoints
of o respectively (with z; = z, if g is degenerate). By the corollary
to Lemma 1, we see that @w; No C {z;, z,} and if z; # z,, then
d(z1) > d(z3). If WNo ={z,, z2}, z; # z2, and & is the component
of W_ whose closure contains o, then y = 3¢ N Q satisfies 7 N
0Q = {z1,z;} and #-Vu = 0 on y; since ¢ lies to the left of
y as (x,y) € y moves from z; to z;, ¢(z;) < ¢(z3), which is a
contradiction. Thus @; No = {zy}, where zy is z; or z;, and @;
does not intersect the portion of I'™* locally to the right of zy. Let w,
be the component of w; NB(zy, &) which satisfies dw,Ny; NQ # &,
for each ¢ > 0. Let y, be the component of dwNQ which is disjoint
from p; and satisfies y,NOw,; # @ for each ¢ > 0. Notice that y, is
the component of dw; N Q “immediately to the right” of y;. From
Lemma 6, we see that ¢ > A2 on 7, and so 7, NI = @. Let us
orient y, so that w; is to the right of y,. Then as (x,y) € »,
leaves zy, ¢(x,y) increases (strictly). Notice that there is no open
set @ C Q with 8d C 7; (i.e. y, cannot cross itself) because of the
strict monotonicity of ¢. Therefore I* Ny, \ o # @.

Suppose (x;, ;) is a positive inflection point of I'™*. Let ¢ be the
(possibly degenerate) maximal closed line segment satisfying (x;, y;)
€ o cTI™ andlet z; and z, be the initial and terminal endpoints of o
respectively. As above, @y No = {z¢}, where zy = (x;, y;) is either
zy or zp,and ¢(zy) > ¢(z,) if zy # z,. Since # - Vu < 0 locally to
the left of z;, @; does not intersect the portion of I'™*locally to the
left of z;.
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Suppose z; # z; and let wy be the component of W_ whose clo-
sure contains o. Let A; and A, be the components of dwy N Q
with z, € 4; and z, € A, respectively such that dw, N dwy C
A1 Uao U, for all sufficiently small ¢ > 0, where w, is the component
of {(x,y) € wy: dist((x, y), d) < &} whose closure contains o .
Suppose also zyp = z, and y;Ny; # @. Then y; N B(zy,¢) C 4
for some & > 0. Let us define y, = 0 UA, and orient y, beginning
at z, and going toward (and beyond) z;.

Suppose now zy = z; or zo # z; and y;Ni; = @. Let Y0 € y)NE;
by Lemma 1, #- Vu < 0 to the right of y; near y° and 7 -Vu > 0
to left of »; near »°. Let (y") be a collection of points after »° on
Y1, given in increasing order on y;, at which the condition #-Vu > 0
to the left of p; near y” is not satisfied. By Lemma 2, for each n,
there exists z" € y; N E between y"*~! and " and so 7-Vu >0 to
the left of y; near z". Then there is a component w” of W, with
y" € Qw™ such that w” lies to the left of y; near y" for each n.
Let A" be a component of dw" \ (y; U9Q), oriented to begin at y”",
such that w” lies to the right of A" and so ¢ is strictly increasing
on A". Now A*NT = @ and so A* must interest I*. Suppose A”
and A" either intersect one another or intersect the same component
of l"’% ={(x,y)eI*:#-V(x,y)=0}. Then the component Uy, of
Q\ (A"UA"Uy;) whose closure contains A” UA" must enclose a com-
ponent of I'* because otherwise the strong maximum principle yields
a contradiction. Since I'* has only a finite number of components,
only a finite number of pairs (m, n) can satisfy the last supposition.
Since I'; has a finite number of components, there can only be a finite
number of points (y”) as supposed and hence -Vu > 0 locally to the
left of y; in a neighborhood of y; N B(zq, &) for some &, > 0. Let
w;, be the component of W_ whose closure contains 7; N B(zg, &) .
Notice that if zp = z, # z;, then wy, N wy = @ (at least in a neigh-
borhood of o). Now let y, be the component of dw,; N Q whose
closure contains zy and which lies immediately to the left of y; on
dw; . Let us orient p, to begin at z;.

Let us review our procedure. If (x;, y;) is a /-minimum of I'*
and the component of dw; N Q immediately to the right of y; is a
portion of I'™*, we terminate our procedure. Otherwise, we see that
there exists a set y, beginning at (x;,y;) on which #-Vu = 0
and ¢ is strictly increasing. In particular, y, is the component of
dw; N Q immediately to the right of y; if (x;, y;) is not a positive
inflection point of I'* and p, \ ¢ is the component of dw, NQ im-
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mediately to the left of y; if (x;, y;) is a positive inflection point
of I'*, where w, is the component of W_ immediately to the left
of y; near (x;,y;). We may continue this process to obtain points
(X1, ¥1), (X2, ¥2)5 -+, (Xn, yn) and aset y =y Uy U--- Uy, such
that ¢ is strictly increasing on y and #-Vu =0 on y. Due to the
monotonicity of ¢ and the maximum principle, y cannot cross itself
and (x;, y;) and (x;, y;) can be elements of the same component
o of I'; only if o is a nondegenerate line segment, (x;, y;) is the
terminal endpoint of o, (x;, y;) is the initial endpoint of ¢, and
?i1U---Uy; surrounds a component of 9. Since I'; and 9 each
have a finite number, say M and N, of components, this process
must terminate after a finite number (< M + N) of steps. On the
other hand, the process cannot terminate except at a /-minimum of
I'™*, since we can continue y past (X,, Yn) if (Xn,yn) is not a v-
minimum of I'*. Hence y terminates at a 7-minimum of I'*. From
the rules used for continuation, we see that two curves y and y can-
not terminate at the same point unless y; = $; for some i and ;.
However, this cannot occur unless y and # begin at the same point.
The fact that the total positive curvature of I" is bounded by the to-
tal positive curvature of I'* follows as in the proof of Theorem 2 of
[4]. O

The proof of Theorem 4 follows from the proof of Theorem 3 above
or from the proof of Theorem 5 of [4].

REMARK. In [11], Friedman and Vogel examined two-dimensional
ideal fluid flows with a cavity behind an obstacle in an infinite channel
with an oscillatory wall. One aspect of their work involved determin-
ing some geometric aspects of the free boundary and used curves of
constant gradient direction. Using the ideas of this paper, especially
Lemma 1, geometric properties of two-dimensional, compressible, ir-
rotational, inviscid, subsonic cavitation flows (e.g. [18, p. 109]) past
an obstacle in an infinite, oscillatory channel could be determined.
When Q is assumed bounded, the results of this section apply di-
rectly to our free boundary problems when, for example, (2a) or (2a’)
is the minimal surface equation, the p-Laplace equation, or Pucci’s
equation ([12]). When Q is not assumed bounded, we can still obtain
qualitative information about the free boundary in the same manner
as for compressible flows.
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