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QUALITATIVE BEHAVIOR OF SOLUTIONS
OF ELLIPTIC FREE BOUNDARY PROBLEMS

KIRK E. LANCASTER

A general free houndary problem is investigated and the qualitative
behavior of the fixed boundary is compared with that of the fixed
boundary. As an illustration, consider the following situation. Let
Γ* be a given Jordan curve in ίR2. For each Jordan curve Γ in VK1

which surrounds Γ*, we let Ω = Ω(Γ*, Γ) be the region between
Γ* and Γ. Let Q be the second-order elliptic operator given by

Qu = auxx + 2buxy + cuyy in Ω

where a, b, c depend on x, y, ux, and uy and ac-b2 > 0 . Con-
sider the free boundary problem of finding a curve Γ and a function
u e C2(Ω) Π C1 (Ω U Γ) n C°(Ω) such that

Qu = 0 in Ω

u = 1 on Γ*

and, for a fixed λ > 0,

w = 0, \Vu\=λ onΓ,

where Ω = Ω(Γ*, Γ). Suppose Γ and u constitute a solution of this
free boundary problem. Using curves of constant gradient direction,
the geometry of the free boundary Γ is compared to the geometry of
the fixed boundary Γ*. In particular, Γ is shown to have a "simpler"
geometry than does Γ*.

0. Introduction. Let a, b, c e C°{m4) with ac - b2 > 0 in 9t4

and define Q to be the quasilinear, elliptic, second-order partial dif-
ferential operator given by

(1) Qu = auxx + 2buxy + cuyy

for u e C 2 , where a = a(x, y, p, q), b = b{x ,y, p, q), c =
c{x 9y9p9q) and p = ux(x 9y)9 q = uy(x, y). We are interested
in the following free boundary problem.

Quasilinear free boundary problem. Given Γ* a Jordan curve in 5H2

or a finite collection of pairwise disjoint Jordan curves in 9t2 and a
number λ > 0, find a bounded domain Ω c £H2 , a finite collection Γ
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of pairwise disjoint Jordan curves in 9t2, and a function u e C2(Ω) n
Cι{ΩuT)nC°{U) such that ΓnΓ* = 0, dΩ = ΓuΓ*,and

(2a) Qu = 0 i n Ω ,

(2b) u = 1 onΓ,

(2c) u = 0 onΓ,

(2d) I V M | = A o n Γ .

We are also interested in the following related free boundary prob-
lem. Let F e C°(ίR2 x 9t2 x <H2x2) satisfy:

F{x 9y, P, R) is locally uniformly Lipschitz with respect to the
P e <H2 and R e <H2x2 variables;

JF is elliptic;
\FP\ is locally bounded;
F(x,y,P,0) = 0 for all ( c, j/) € <H2 and P = (/?,#) e <H2,

where 9t2x2 denotes the 3-dimensional space of real, symmetric 2x2
matrices (see [12], pp. 441-446). Let 3 be the elliptic, fully nonlinear
partial differential operator of second-order depending on x, y, Du,
D2u given by

(10 3u = F(x,y,P,R)

with P = Du and R = D2w e 9ΐ2 x 2 .

î W/y nonlinear free boundary problem. Given Γ* a Jordan curve in
$H2 or a finite collection of pairwise disjoint Jordan curves in 9ί2 and
a number λ > 0, find a bounded domain Ω c 9ΐ2, a finite collection Γ
of pairwise disjoint Jordan curves in 9l2 , and a function u G C2(Ω) n
Cι{ΩuΓ)uC°{Ω) such that ΓnΓ* = 0 , dΩ = ΓuΓ*,and

(2a') 3u = 0 i n Ω ,

(2br) u = 1 on Γ*,

(2cr) w = 0 o n Γ ,

(2d;) | V M | = Λ o n Γ .

We will call Γ* the fixed boundary and Γ the free boundary of this
problem. We should note that the requirement that Ω be bounded
can be relaxed.

A number of authors have considered questions about certain qual-
itative aspects of the free boundary. For example, D. Tepper ([20],
[21]; see also [8], pp. 432-443) proved that if Q = Δ, Ω is an annular
domain, and Γ* is convex or starlike, then Γ is also convex or star-
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like. For an inhomogeneous free boundary problem, T. Vogel ([22])
obtained the convexity or starlikeness of Γ when Γ* is convex or
starlike. For parabolic free boundary problems, K. Nickel ([14], [15])
considered profiles of solutions of the heat equation and A. Friedman
and R. Jensen ([10]) obtained the convexity of the free boundary in
Stefen and dam problems.

In 1983 (approximately), A. Acker ([1]) and A. Friedman-T. Vogel
([11]) independently considered the case Q — Δ (i.e. u is harmonic
in Ω) and used curves of constant gradient direction to obtain quali-
tative information about the geometry of the free boundary in terms
of the geometry of the fixed boundary when Ω is (equivalent to) a
doubly connected or annular domain (i.e. Γ and Γ* are Jordan curves
with one of the curves lying inside the other); these curves of constant
gradient direction are related to "nodal lines" ([9]; see also [10], [14],
[17]). Vogel ([22]) also used these curves to examine a galvanization
problem. Subsequently, Acker showed that curves of constant gradient
direction can be a powerful tool for investigating the geometry of free
boundaries by obtaining more detailed qualitative information about
the free boundary in terms of information about the fixed boundary
([2], [3]) and obtaining qualitative results without the assumption that
Ω is doubly connected ([4]). Further, Acker, together with the author,
used this method to study free boundary problems for parametric min-
imal surfaces in ΰ\3 ([6]) and the one-dimensional heat equation ([7]).
Acker ([5]) has also found examples in W , n > 2, which show that
the qualitative results above are generally false in three or more di-
mensions.

We will show that the "method of curves of constant direction" can
be used to investigate the quasilinear and fully nonlinear free bound-
ary problems for any operator Q or 3 as given by (1) or (1') re-
spectively. We will prove that each component of Γ has a "simpler"
geometry than does Γ*. For example, when Ω is an annular domain,
we will prove that the total curvature, the number of local maxima
(minima) with respect to a prescribed direction ϋ, and the number of
inflection points of Γ are less than or equal to the total curvature, the
number of local maxima (minima) with respect to v, and the num-
ber of inflection points of Γ* respectively. When we do not assume
Ω has a particular topological structure, we see that total "positive
curvature" and the number of ^-minima of Γ are less than or equal
to the total "positive curvature" and the number of z/-minima of Γ*
respectively. We note that all of the qualitative results of Acker for
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the harmonic free boundary problem obtained using curves of con-
stant gradient direction remain valid for our free boundary problems.
Since, in addition to the free boundary problems (2) and (2'), this
method has proven useful for inhomogeneous ([22], [3]), parabolic
([7]), and axial-symmetric ([5]) free boundary problems, we suspect
that curves of constant gradient direction will eventually prove use-
ful for investigating a number of additional elliptic and parabolic free
boundary problems.

1. Main results. We will adopt the notation of [2] and [4]. Suppose
Γ* and λ are given and Ω, Γ, u constitute a solution of the free
boundary problem (2). We assume Γ* is a C 1 curve or union of
curves and has bounded curvature. We will orient δΩ so that the
forward direction on d Ω is such that Ω lies locally to the left of
Ω and locally to the right of Γ* (e.g. Figure 1, [4]). We let n(x, y)
denote the unit normal vector to <9Ω at (x, y) e <9Ω which points to
the left; hence Vu(x,y) = \Vu{x9y)\n{x9y) for (x,y)edΩ. We
will assume that for each unit vector e', the curve Γ* contains at most
finitely many maximal segments (including isolated points) on which
n(x9y) = e.

DEFINITION. Given a unit vector ϋ', we call (xo,yo) Ξ Γ a v-
minimum (v-maximum) of Γ if n(xo, yo) = v and (xo, yo) is a
strict local minimum (maximum) relative to Γ of f(x 9y) = v (x9y)

(see, for example, Figures 2 and 3, [4]).

DEFINITION. Given a unit vector v, we call (XQ, yo) € Γ* a v-
minimum (v-maximum) of Γ* if n(xo ,yo) = v and either (XQ , yo)
is a strict local minimum (maximum) relative to Γ of f(x, y)
= v (x9y) or there is a closed line segment γ* c Γ* such that
(*o, yo) e 7* and v-(x,y) > (<) i? (xo, y0) for (x9y) e Γ* \ y*
near 7*. Here y* is considered as a single local extremum.

DEFINITION. Given σ c Γ, we say that γ has positive (negative)
curvature on σ if and only if Γ has nonvanishing curvature on σ and
for each (x9y) € σ, there exists r > 0 such that the set of points
which are within r of (x, y) and lie to the left (right) of <9Ω is a
convex set. We define the notation of positive and negative curvature
of Γ* similarly.

DEFINITION. We call (x9 y) e dΩ a positive (negative) inflection
point of dΩ if and only if dΩ has negative (positive) curvature lo-
cally before (x, y) and has positive (negative) curvature locally after
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(x9y) or there is a line segment σ c Γ* with (x9y) G σ such that
Γ* has negative (positive) curvature locally before σ and positive
(negative) curvature locally after σ.

THEOREM 1. Let Γ* be a given C2 Jordan curve and λ > 0. Sup-
pose Ω, Γ, u is a solution of either free boundary problem with the
following properties:

(i) Ω is a bounded, C2 annular domain.
(ii) ueC2(U).

Let (x\,y\)9 . . . , (xn>yn) be a positively ordered set of distinct points
on Γ (i.e. (x\9yχ) < (X2,yi) < - < (*Λ,JΊI) < (*i>JΊ) in the
natural ordering on Γ) such that for each i, the points (x/,y/) has
one of the following properties:

(a) For given unit vector ϋι, AI(JC, , yι) = v\.
(b) n(Xi, yt) = z/, α«ί/ (Λ:, , y, ) w α v-maximum (ΰ-minimum) of

Γ.
(c) (x/, y/) w α positive (negative) inflection point ofT.

Then there is a positively ordered set of distinct (possibly degenerate)
line segments a\, . . . , σn onΓ* such that for each i, each point (x, y)
in the segment a\ has the same property relative to Γ* that (xz, y{)
has relative to Γ (e.g. n(x, y) = Vi for each (x9y) € Ci.) Further,
the total positive (negative) curvature of Γ is less than or equal to that
ofΓ*.

When Γ, Γ*, and u are real-analytic and Ω is an annular domain,
we obtain:

THEOREM 2. Let Γ* be a given analytic Jordan curve and λ > 0.
Suppose Ω, Γ, u is a solution of either free boundary problem with
the following properties:

(i) Ω is a bounded, analytic annular domain.
(ii) u is real-analytic on Ω.

Let ϋ be a unit vector and let (x\, y{), . . . , (xn , yn) be the distinct
u-minima (v-maxima) of Γ. Then each point (xz?y/) is joined by a
simple, piecewise-analytic directed curve yι to a point (x*, y\) e Γ*
such that

(a) I VM| is strictly increasing (decreasing) on yz.
(b) arg(Vw) is constant on yz.
(c) The points (x*,y*)9 ... , (x*, y*) are distinct v-minima (v-

maxima) of Γ*.
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(d) |Vw(x*, y*)| > (<) λ for each i.
(e) For iφ j , the directed curves yι and γj do not cross or coalesce.

Further, the total positive (negative) curvature of Γ is less than or equal

to that of Γ*.

When Ω is a bounded domain which is not annular, we obtain the
following two results.

THEOREM 3. Let Γ* be a given finite union of pairwise disjoint, C2

Jordan curves and λ > 0. Suppose Ω, Γ, u is a solution of either free
boundary problem with the following properties:

(i) Ω is a bounded C2 domain.
(ii) ueC2(Ω).

Let (x\, y\), . . . , (xn, yn) be a positively ordered set of distinct v-
minima of Γ. Then there is a positively ordered set of distinct (possibly
degenerate) line segments σ\, . . . , σn on Γ* such that for each i, each
point (x, y) in the segment oi is a v-minimum of Γ*. Further, the
total positive curvature of Γ is less than or equal to that of Γ*.

THEOREM 4. Let Γ* be a given finite union of pairwise disjoint,
analytic Jordan curves and λ > 0. Suppose Ω, Γ, u is a solution of
either free boundary problem with the following properties:

(i) Ω is a bounded, analytic domain.
(ii) u is real-analytic on Ω.

Let v be a unit vector and let (x\, y\), . . . , (xn ,yn) be the distinct ΰ-
minimaofT. Then each point (Xi>yi) is joined by a simple, piecewise-
analytic directed curve yz to a point (x*, y*) e Γ* such that

(a) I Vw| is strictly increasing on yι.
(b) arg(Vw) is constant on yι.
(c) The points ( c*, y\), . . . , (Λ£, y%) are distinct ΰ-minima of

Γ*.
(d) \Vu{x*i 9yΐ)\> λ for each i.
(e) For iφ j y the directed curves y, and γj do not cross or coalesce.

Further, the total positive curvature of Γ is less than or equal to that
ofΓ*.

2. Preliminary results. Let us define e(x, y) = uxx(x, y)uyy(x, y)-
uxy(x,y)2, E = {(x, y) e Ω: e(x, y) < 0}, and Z = {(x,y) e Ω:
|VW(JC , y)\ > 0}. Further, set

(3) φ(x,y) = \Vu(x,y)\2, ( X J ) E Ω ,
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and

(4) ψ(x, y) = arg(Vu(x, y)), ( X J ) E Ω \ Z .

Notice that ψ is a multiple-valued function. If α G 91, η = (sin(α),
-cos(α)), and ηL = (cos(α), sin(α)), then {{x, y) G Ω\Z :
^(*,)>) = α} = {(x,3;)eΩ: if Vw(*, y) = 0, if1 Vκ(*, y) > 0}.

The following lemma indicates the behavior of φ on level sets of
ψ when the graph of u is a saddle surface.

LEMMA 1. Suppose u e C2(Ω) satisfies uxxuyy - u\y < 0 on Ω.
For α G 9ΐ

(5)

Suppose (XQ , y0) £ S α Π ί n Z . 77zen locally near (x 0, y 0 ), ί/ze set
Sa is a simpley C 1 curve σ which divides its complement into two
connected components on which ψ — a has opposite signs. Further, φ
is strictly increasing on σ if we choose the forward direction such that
ψ > a locally to the right of σ (or ψ < a locally to the left of σ).

Proof. Notice that Vψ = \S7u\~2(uxuxy - uyuxx, uxuyy - uyuxy)
and Vφ = 2(uxuxx + uyuxy , uxuxy + uyuyy). Now \Vψ(x, y)\ = 0 iff
e(x, y) = 0 iff (x, y) φ E. Since (x 0, Jo) e F , |V^(x 0, yo)\ Φ 0.
The first part now follows from the implicit function theorem. Let
us now orient σ so that ψ > a locally to the right of σ. Let us set
VψL = (—ψy, ψx). Notice that Vψ is orthogonal to σ and points
to the right of σ . Also, Vψ1 is a (forward) tangent vector to σ. Let
us write

(6) xrφ(χ,y) = βι(χ,y)Vψ(χ,y) + βi{χ, y)^Ψ±(χ, y),

where βi(x, y) = V0(x, y) - Vψ±(x, y)/\Vψ(x, y)\2 . We claim that
β(x, y) > 0 for all (x, y) e σ. In fact, a direct computation yields

Vφ . Vyr1 = 2(Mjy - M^Myy) > 0

on σ and our claim follows. If we parametrize σ by (x(t)9y(ή),
then

(7)

and so φ{x(t), y(0) is strictly increasing in ί. D
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COROLLARY. Suppose u e C2(Ω) satisfies uxxuyy-uXy < 0 on Ω,
(2b), and (2c) and suppose σ is an open line segment with σ c <9Ω
such that σΓ\E is dense in σ. Then φ is strictly decreasing on σ and
ψ < a locally to the right of σ.

Here we orient σ as a subset of <9Ω; that is, Ω is locally to the
left of a when a c Γ and locally to the right of σ when ( j c Γ .

Proof. On σ, notice that S7ψ is orthogonal to a and VψL points
backwards (or to the left) along σ. The fact that φ is strictly decreas-
ing on a follows from the proof of Lemma 1. Now if ψ > a locally
to the right of a point z of α, then Lemma 1 would imply that φ is
strictly increasing on σ near z, a contradiction. Thus ψ < a in a
neighborhood in Ω of σ. D

REMARK. When u e C2(Ω) is a solution of (2a'), we may regard
u as a solution of the quasilinear equation (2a) for some Q as in [12,
p. 444]. If we set

(8) Fij{x,y,p,q, rn, r12, r21, r22)

= ~β~(χ > y > P > $ > r π > r i2> ^21 > 7*22) >

for 1,7 = 1,2 (with ri 2 = r 2 1 ) , then we see that u is a solution of
(2a) when a = an , b = a12, and c = α 2 2 and

(9) alJ(x,y,p,q)= / / Jy(*,;F,/?, q, ΘD2u{x,y))dθ.
./o

Thus, in the proofs throughout this note we will only consider solu-
tions of (2a) (e.g. [12, §17.1]).

LEMMA 2. Suppose u e C2(Ω) satisfies either (2a) or (2a7). Then
uxxUyy - uxy < 0 in Ω am/ WJCXW^ - w2

y = 0f l/a /wmί if and only
if uxx = uxy = 1% = 0 at the point. Further, if D2u φ 0, then
£TιΩ a#d Z n Ω are #/?£«, oίms^subsets of Ω a/?<i //> //i, /̂2 G 9ΐ w/Y/z
*72 + ̂  > 0 arcd σ = {(x,y) G^2: η\Ux(x, y) + ηiuy{xj y) = 0}, then
σnE isdensein σ. If u e C2(Ω) and a = {(x, y) e Ω: r\\ux{x, y) +
r\iuy{x, y) = 0}, ίΛeft ( i n £ w a/so ύfmse m σ.

Proof. We may assume w satisfies (2a). If we set r = uxx, s = uxy ,
and ί = Uyy, we see that 0 = r(ar + lbs + cί) and so rt - s2 —
-±(ar22brs + cs2). Since Q is elliptic, aξ\ + 2bξχξ2 + cξl>Q if and
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only if ξ = (ζx 9ξ2)φ0. Thus uxxuyy - u2

y < 0 . The fact that E

and Z are dense follows from the strong maximum principle and the
density of σ n E in σ follows from the proof of Lemma 1 of [13]
after we rotate Ω so that η becomes ( 0 , 1 ) . D

REMARK. Suppose Ω is a C2 domain and ue C2(ΩuΓ)nCι(Ω).
Then |Vw| Φ 0 on dΩ and Γ cannot contain any line segments.
Notice that |V«| is bounded in Ω and so Q or 3 is uniformly elliptic
for u. The first claim follows from the Hopf boundary point lemma
(Lemma 3.4, [12]) and the second follows from the corollary to Lemma
1.

A. Annular domains. Here we will assume the following:

(i) Γ* is a given C2 Jordan curve and λ > 0.
(ii) Ω, Γ, u constitutes a solution of one of the free boundary

problems.
(iii) Ω is an annular domain and Γ is a C 2 Jordan curve.
(iv) ueC2(Ω)nCι(Ω).

LEMMA 3. For each (x, y) e Ω, |Vw(x, y)\ > 0 and Z = Ω.

Proof. Let (xo, yo) £ E and define ύ by

(10) u(x, y) = ZO+PQ(X - x0) + qo(y - y0),

where z 0 = u(x0, y0) > 0, p0 = ux{x0, yo), and q0 = uy(x0, )>o) As
in Lemma 2, [13], we see that ft = w or there are two curves β\, σ2
which meet at (xo, yo) and divide a neighborhood of (xo > yo) i nto
four open "sectors" ωx, ω 2 , ω 3 , ω 4 such that w > ύ in ω 2 U ω 3

and u < ύ in ω2Uω4. If the plane z = ύ does not intersect ΣQUΣI ,
where ΣQ = Γ x {0} and Σι = Γ* x {1}, then ύ > 0 = u on Γ and
ύ < 1 = u on Γ*. Since Ω is an annular domain, the previous two
statements are in contradiction; this follows, for example, from the
maximum principle and the Jordan curve theorem (e.g. the proof in
§373, [16]). Hence, the tangent plane to the graph of u at (XQ , yo)
must intersect ΣQ U Σ i . This implies that

(11) \Vu(xo,yo)\

, J>o) > (1 - u{x0, yo))d*(xo, yo)} > 0

for every (xo>yo) G £ , where έ/(x,y) = inf{|(x,y) - (5, ί ) Γ ! :
( J , ί ) 6 Γ} and rf*(x, y) = inf{ | (x ,y)-(s, ί ) ! " 1 : (^ 0 e Γ*}. Since
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u E C2(Ω), (4) holds for all (XQ, yo) E Ω. Since we already know
|Vw| > 0 on 3Ω, the lemma follows. D

LEMMA 4. Let (XQ, yo) E Γ and let η = (η\, ηι) with \η\ = 1
and η Vu(xo, yo) Φ 0. Let ω denote the connected component of
{(x, y) E Ω: ή Vw(x, y) ^ 0} vv/z/cΛ contains (XQ , yo) ^ ί α E ίH
such that if = (sin(α), - cos(α)). Then:

(a) ω is relatively open in Ω and ω Π Γ* /*? relatively open in Γ*.
(b) ω w simply connected and ω n Γ /s connected.
(c) // . Vw = 0 ow Ω Π 9ω <2̂ <i ^ w constant (= a or a + π

(mod 2π)) on α̂cΛ component of Ωndω.
(d) ω n Γ* φ 0 .
(e) dω is a simple, C1 cwrv̂  in a neighborhood of each point of

dωnE.
(f) If a component γ of Ω n dω w oriented so that ή Vw < 0

/ocα//y ô /Â  r/gλί or ή-Vu > 0 locally to the left, then φ is strictly
increasing on γ.

Proof Notice that (a), (c), and (e) are clear. If γ is a component
of dω Π Ω, then γ n E is dense in y and ψ = θ with θ = α or
θ = a + π mod 2π. Suppose γ is oriented as in (f). Then ψ > θ
locally to the right or ψ < θ locally to the left and so φ is strictly
increasing on γ ΠE by Lemma 1. Since φ E C°(Ω) and γ Γ\E is
relatively open and dense in γ, (f) follows. Suppose ω is not simply
connected. Then there is a component y of 9ω and a bounded
component £/ of 91 \ ω such that γ = dU. If y C Ω , then the strict
monotonicity of φ yields a contradiction unless (7 is a single point,
in which case the strong maximum principle implies ή-VuφO in U
and so ί / c ω , a contradiction. Thus γΠdΩφ 0. For convenience,
let us assume ή- Vu > 0 in ω. The monotonicity of φ implies γnΓ
contains no more than one point and U must contain a component
Γj$ of Γ*. Let (x0, yo) € Γ with //• Vw(x0, Jo) < 0 and let ω 0 be the
component of W which contains (xo, yo) Then ωΠcoo = 0 and so
ωonΓ^ = 0 . If Γ* contains only one component, this contradicts (d).
Suppose next that ωnΓ is not connected. Then there is a component
γ of 9 ω n Ω which joins two points of Γ. Since η Vw = 0 on γ9

φ is strictly monotonic on γ. However, this contradicts the fact that
φ = λ2 on Γ hence (b) holds. Finally suppose ω Π Γ* = 0 . Then
dω is a Jordan curve in ΩuΓ. Now //• Vu = 0 on <9ωnΩ and so 0
is strictly monotonic on dωΓ\Ω. Once again, this contradicts φ = λ2

on Γ and so (d) follows. D
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LEMMA 5. Let ω\, ω2 be connected components of {(JC, y) e Ω:
η Vw(x, y) φ 0} for some ή with \ή\ — 1. If {ω\ U ω2) Π Γ
connected, then ω\ n α>2 = 0 .

Proof. If ωiΠω 2 ^ 0 , then &>i = ω2 and so
is connected by (b) of Lemma 3. D

B. General domains. Here we will assume the following:

(i) Γ* is a given finite union of disjoint C 2 Jordan curves and
λ>0.

(ii) Ω, Γ, u constitutes a solution of one of the free boundary
problems.

(iii) Ω is a bounded domain and Γ is a finite union of disjoint C 2

Jordan curves.

(iv) ueC2(Ω)nCι(Ω).

In this case, we expect |Vw| = 0 at some points.

LEMMA 6. Let (XQ, yo) e Γ and let η = (η\, η^) with \η\ = 1
and ή VW(XQ , yo) Φ 0. Let ω denote the connected component of
{{x, y) G Ω: η Vu{x, y) Φ 0} which contains {XQ , yo). L^/ α G ίH
such that η = (sin(α), - cos(α)). Γ/ẑ /2:

(a) ω is relatively open in Ω and ω n Γ* w relatively open in Γ*.
(b) ω Π Γ w connected and if ω is not simply connected and if U

is a bounded component of 5H2 \ ω, then U contains a component ΓQ
QfΓ*. _

(c) rf Vu = 0 on Ω, Π dω and ψ is constant (—a or a + π
(mod 2π)) on each component of Z n <9ω.

(d) ω π Γ * ^ .
(e) <9ω w α simple, C 1 cwrv̂  /n α neighborhood of each point of

dωΠEnZ.
(f) If a component γ of Z ndω is oriented so that ή Vu < 0

locally to the right or ή Vw > 0 locally to the left, then φ is strictly
increasing on γ.

The proof is essentially the same as the proof of Lemma 4. Notice
that |V«| φθ in ω.

LEMMA 7. Let ω\, ω2 be connected components of {(x, y) G Ω:
η Vu(x, y) φ 0} for some η with \η\ = 1. If (co\ U ω2) Π Γ is not
connected, then ω\ Π ω2 = 0 .

The proof is the same as the proof of Lemma 5.
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C. The real analytic case. Here we will assume the following:

(i) Γ* is a given finite union of disjoint real-analytic Jordan curves
and λ > 0.

(ii) Ω is a bounded domain and Γ is a finite union of disjoint
real-analytic Jordan curves.

(iii) u is real-analytic on Ω and either Q is real-analytic on ΰ\2xΰ\2

or 3 is real-analytic on 9ί2 x 9\2 x 9ΐ2 x 2 .

For each unit vector v = V\ i + v2j, let H$ denote the set of piece-
wise analytic, directed curves γ in Ω on which |Vw| is strictly in-
creasing and Vu(x, y) points in the //-direction at each point (x, y)
of γ. Since u is real-analytic on Ω, we wish to regard u as a real-
analytic solution of (2a) in a neighborhood of Ω. This will simplify
the statement of certain results (e.g. Lemma 9).

LEMMA 8. Suppose (x0, y0) eΩ. Set

(12) u(x ,y) = z0 +po(χ -

where z0 = u(x0, y0) e (0, 1), p0 = ux(x0, y0), and q0 = uy(x0, y0).
Then either u = ύ or

(13) u(x9y) = u(x,y) + H{x9 y) + 0{rn+{) asr^O,

where n > 2 is an integer, r = dist((x, y), (XQ, yo)), H is a har-
monic, homogeneous polynomial of degree n in (x,y), and x, y are
linearly independent, linear functions of x, y.

Let r\\, η2^^ with Y\\ + Y\\ — 1. Suppose uψϊi, η\Ux(xo, yo) +
η2uy(xo, yo) = 0, and (x0 •> yo) is a branch point of u (i.e. uxx(x0, 3̂ 0)
= uxy{x0, y0) = Uyy(x0, )>o) = 0). Γ/ẑ π n > 3 and

(14) mux{x,y) + η2uy(x,y) = G(x, y) + 0{rn) asr-+0,

where G is a harmonic, homogeneous polynomial of degree n — 1.
Hence the zeros of r\\Ux + η2uy in a neighborhood of (x 0 ? yo) He
on n — \ > 2 analytic curves which intersect at (XQ , yo) and di-
vide a neighborhood of (XQ , yo) into 2(n - 1) disjoint open "sectors"
ω i , . . . , o)2n-2 such that η\Ux + η2uy < 0 in ω\, . . . , ω2n-?, and
η\ux + η2uy > 0 in ω2, . . . ,

Proof. The proof of the first part is similar to [19, p. 380]; also
see [13]. Let us consider the second part. Suppose x = ε\(x — XQ) +
eiiy-yo) and y = δι(x-xo) + δ2(y-yo)',here, εxδ-β2δx φ 0. Now
| f (x, y) = eιHτ(x9 y) + δxHy{x9 y) and | f (x, y) = ε 2 %(x, y) +
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y(x, y). Since η\Po + η2qo = 0, we obtain (14) when G(x, y) =
{*l\&\ + *l2&2)Hχζx, y) + (V\d\ + V2<>2)Hy(x> y)- Since / % and Hy are

harmonic, homogeneous polynomials of degree n — 1, either G Ξ O O Γ

G is as claimed. Since uψϊi, H% and Hy are linearly independent;
it then follows that G ψ 0. The remainder of the proof follows using
standard facts about harmonic functions (e.g. [16], §373). D

LEMMA 9. For α e 9t, define

Then

(a) // |Vy(xo, J>o)l Φ 0 at a point (xo,yo) e Sa, then locally
at (XQ , yo) ίλe set Sa is an analytic simple curve γ which divides
its complement into two connected components on which ψ - a has
opposite signs. Further, φ is strictly increasing on γ if we choose the
forward direction such that ψ > a locally to the right of γ.

(b) Suppose Vψ has a zero of order n at (XQ , yo) e Sa, for some
integer n > 1. Then locally at (x$ ,yo), the set Sa is swept out by
2n + 2 directed, analytic arcs C\, C2, . . . , Cin+i which emanate from
( *o ? yo) and divide its complement into 2n + 2 open sectors

ωλ, ω2, . . . , ω2n+2

on which ψ-a alternates in sign. We may choose our notation so that
C/UC/+1 is the local boundary of cθi (with C2n+3 = Cι), (-iy(ψ-a)
is negative in ωx•, and (-l)ιφ is strictly decreasing on C\.

Proof. Notice that (a) follows Lemma 1. If we set η = (sin(α),
-cos(α)) and η1 = (cos(α), sin(α)), then Sa = {(x, y) € Ω: ή
Vu(x, y) = 0, ηλ Vu(x 9 y) > 0} . Suppose (x 0 , yo) ^ $a such that
|Vw(x0 9 yo)\ = 0. Notice that (x0, yo) $• E. According to the second
part of Lemma 8, we see that near (x0, yo) the set //• Vw = 0 consists
of n - 1 > 2 analytic curves through (XQ , yo). Since Sa is contained
in the relatively open set {(x, y) e Ω: f Vu(x, y) > 0}, we see
that the set ψ = a consists of the same n - 1 analytic curves and the
remainder of the lemma follows from Lemma 1 and Lemma 8. D

LEMMA 10. Let v be a unit vector and let Γ have a ϋ-minimum at

(xo,yo) Then:

(a) At least one directed curve γ e Hp, which exists locally at
(*o 5 yo) > emanates into Ω from (xQ, y0).
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(b) Let γ e Hp be any maximal continuation of γ in Hΰ. Then
γ remains uniformly bounded away from any zero of |Vw| and any
closed, connected set in Γ* on which n(x ,y)φv and γ\γ remains
bounded away from Γ .

(c) The curve γ must terminate at a point (XQ, y$) e Γ* such that

(\<s\ ff(χ*

and

(16) |V W (x 0 \y 0 *) l>^

REMARK. If Ω is an annular domain, then Lemma 3 implies | Vw| >
0 on Ω and the conclusions of Lemma 10 hold when Γ has a v-
maximum at (XQ , yo) with the modifications that γ e Hp terminates
at (xo ,yo), 7 begins at (xζ, yg), and |Vw(x^, y^)| < λ.

The proof of Lemma 10 follows from Lemma 9 as in the proof of
Lemma 2, [4],

3. Proof of main results.

Proof of Theorem 1. Suppose first that (XQ , yo) e Γ and H(XQ , yo) =
V = (v\, vi). Set // = - Ϊ / - 1 = (1/2, -^i) and ίF = {(x, y ) E Ω : f

, j;) Φ 0}. Since Γ contains no line segments and Vu e C°(Ω),
) ^ ^ ^ Let ω be a component of W such that (XQ, yo) edω

and let 7 be a component of dω n Ω with (XQ 5 ^o) ^ 7 From Lemma
4, we see that ynΓ* ^ 0 and // Vw = 0 on γ. Also ήL-Vu > 0 on 7
since ήL- Vw(x0? yo) = *?• Vw(x0? yo) > 0 and |Vw| / O o n Ω . Thus
if (x, y) e γ n Γ*, n(x, y) = z7. If σo is the maximal line segment
on Γ* which contains γ Π Γ* , then n(x, y) = 1/ for all (x, y) E σo.

Suppose next that (XQ J O ) ^ Γ with n(x0 ? yo) = ^ s u c h that
(•̂o» yo) is a ^-minimum of Γ. Let us use the notation of the previous
paragraph. Then ΰ. (x, y) > i7. (x 0, yo) for (x, y) € Γ \ {(x0, yo)}
near (xo, yo). Since Γ is the 0-level curve of u, this implies ή-Vu >
0 locally before (xo, yo) on Γ and η Vu < 0 locally after (x 0, yo)
on Γ. Now let ω± be the components of W such that (xo, yo) is
the left (or initial) endpoint of αλjΓ n Γ and is the right (or terminal)
endpoint of col n Γ. Then if Vu < 0 in ω+ and ή Vu > 0 in
ω_ . Let 7+ be the component of dω+ Π Ω whose closure contains
C*o> yo) a n d let y_ be the component of dω- Π Ω whose closure
contains (x 0, yo). As above, γZ Π Γ* ψ 0 and if (x, y) e γ± Π Γ*,
then n(x, y) = v . Notice that JI Π Γ* lies to the left (or before)
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ψ± n Γ*. If σ± are the (possibly degenerate) closed line segments in
Γ* such that J^n Γ* c σ+ and y i n Γ * c σ_ and if z_, z + e Γ*
are the left endpoint of σ_ and the right endpoint of σ+ respectively,
then n Vu > 0 and ψ < a locally to the left of z_ on Γ* and
η Vw < 0 and ^ > a locally to the right of z + on Γ*, where a e JR
with (cos(α), sin(α)) = ι?. The fact that Γ* has a z/-minimum be-
tween z_ and z + follows using an argument similar to that of [1] (in
particular, see Lemma 1 and the proof of Theorem 1 in [1]). The case
where (XQ , yo) is a ^-maximum of Γ follows similarly.

Now suppose (XQ, yo) e Γ with n(xo, yo) = ΰ and (XQ, J Q) is a
positive inflection point of Γ. Then if η = -vL as above, v-Vu<0
locally before and locally after (x0, y0) on Γ. Let W = {(x, y) e
Ω: jf Vu(x9 y) < 0} and let ω± be the components of W and y±
be the components of dω± n Ω as in the previous paragraph. Then
ή.Vu = 0 on y± and (/> is strictly increasing (decreasing) on f^~ (γl)
as (x, y) e γZ leaves (x0, y0). This implies yΓΠiv = {(x0, yo)} Let
z_ , z + G Γ* be the leftmost point of yΓDΓ* and the rightmost point
of yljΓ Π Γ* respectively. Let K be the open subset of Ω bounded by
y_ u 7+ and that portion of Γ* between z_ and z + . Let us suppose
that η Vw < 0 in F this will lead to a contradiction. Let z e
<9Fn£ C 7-Uy+ and pick ε > 0 so that ή-Vu<0 in 5 ( z , ε) c Ω.
Now 9 5 ( z , ε) Π (ω_ U ω+) 7̂  0 and so ή Vu < 0 on a portion of
the boundary of B(z, e). If we rotate Ω so that ή = (0, 1) and so
ή.\7u = uy and if we notice that uy is the generalized solution of a
linear, elliptic, homogeneous equation (e.g. [12], §13.2), we see that the
strong maximum principle (e.g. [12], Theorem 8.19) implies ή Vu < 0
in B(z, ε). However, ή Vu — 0 on y_ U y+ and z e y_ U y+ . This
contradiction implies η Vw > 0 for some points in K. Now let D
be a component of {(x J ) G Ω : η-Vu{x, j;) > 0} such that ΰ c K .
Since φ is strictly monotonic on dD n Ω, we see that ΰ n P / 0
and ΰ n Γ * must contain a point ZQ at which ?/ Vw > 0. Since
ή-Vu <0 locally to the left of (or before) z_ and locally to the right
of (or after) z + and z 0 lies between z_ and z + , Γ* must have a
positive inflection point between z_ and z + .

Notice that the final conclusion of the theorem concerning the total
positive and negative curvature follows from (a) in a manner simi-
lar to the proof of Theorem 2 of [4] for the positive curvature case.
To complete the proof, we need only observe that if n(x\, y\) =
n(x2,yi) = v for (xi,yi), {xi,yi) e Γ with (xuyι) Φ {xi,yi)
and if yι is γ9 y_, or y+ as above with (x0 5^0) = (χi J / J J then
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γ[Γ\γ2 = 0 . To see this, let (x°, y°) e Γ lie between (x\9y\)
and (X2,y2) s u c h that n(x°, y°) = e Φ ΰ. Set δ = —e-1 and
ίΓ 0 = {(*, y) G Ω: δ-Vu(x , y) ̂  0}. Now let ω° be a component of
W° with (x°, y°) e ω° and let y° be a component of dω° Π Ω with
(x° ,y°)eγΰ. Then γ° is a curve from (x°, y°) with y° n Γ* ^ 0
and (5 Vw = 0 on γ°. Since |Vw| Φ 0 in Ω, y° (strictly) separates
77 and yj. D

Proof of Theorem 2. When the {Xi9yi) are //-minima of Γ, the
proof of the existence of curves y\ e Hp and z?-minima (x*, y*) € Γ*
as indicated in the theorem is essentially the same as the proof of
Theorem 5 of [4] with Lemmas 9 and 10 taking the places of Lemmas
1 and 2 of [4]. Since |Vw| > 0 in Ω (Lemma 3), we may modify
the proof in [4] when the (JΓ, , y{) are z?-maxima of Γ. In fact, if
we modify the rules in [4] for continuation of curves ψ = a so as to
keep ψ < a locally to the right except at negative inflection points
of Γ*, where we require ψ > a locally to the left, then the proof of
the existence of curves y, on which φ is decreasing and which begin
at (x/, y{) and end at ^/-maxima (x* 9 y*) of Γ* as in the theorem
is similar to the proof in the z7-minima case. The last conclusion of
Theorem 2 follows from Theorem 1. D

Proof of Theorem 3. In [4], continuation rules for curves of constant
gradient direction were developed using the analyticity of u and Γ*
and these curves, which began at z7-minima of Γ, were shown to ter-
minate at z?-minima of Γ*. Since we do not know the behavior of u
in a neighborhood of a point z of Γ* at which e(z) = 0, a consid-
erable portion of this proof will involve technical details required to
allow us to continue curves of constant gradient direction which have
reached Γ*.

Suppose (x0, y0) e Γ with n(x0, yo) = ^ and (*0 > J>o) is a ΰ-
minimum of Γ and set if = -ϋ1-. Let W+ = {(x9y) G Ω: ή
Vu{x9y) < 0} and W- = {(x,y) e Ω: ή-Vu(x,y) > 0}. No-
tice that on Γ, ή- Vw < 0 locally to the right (or after) and ή- Vu > 0
locally to the left (or before) (xo, yo) \ hence (XQ , y^) e W+Γ) W- . Let
ωi bea component of W+ whose closure contains (JCQ , yo) and let γ\
be the component of dω\ Π Ω whose closure contains (XQ , yo). Let
us orient γ\ so that ω\ lies to the right of γ\ that is, so that (XQ , yo)
is the initial point of γ\. By Lemma 6, φ is strictly increasing on γ\,
yϊ" n Γ* Φ 0 , and η Vu = 0 on γ\. Notice that y\ c d W- , since
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otherwise we obtain a contradiction of the strong maximum principle
(e.g. the third paragraph of the proof of Theorem 1).

Let (x\9y\) G Y\Π Γ* and notice that n(x\, y{) = ΰ. If (JCI , y{)
is a //-minimum of Γ* and ωj~ contains a portion of Γ* to the right
of (JCI , y\), we stop. Otherwise we continue γ\ beyond (x\, y\). If
(x\9y\) is not a positive inflection point of Γ*, then either //• Vu > 0
locally to the right of (x\9y\) on Γ* or there is a line segment σ c Γ*
with (xi, y\) G σ and jf VM > 0 locally to the right of σ on Γ*. If
C*i > JΊ) is a positive inflection point of Γ*, then η Vw < 0 locally
to the left of (xi, y{) or locally to the left of a line segment σ c Γ*
with C*i, j>i) G σ. We will describe a rule for obtaining a set y with
γ\ c γ such that y begins at (JCO , yo) and ends at a ^-minimum of
Γ*.

Suppose (JCI 9y{) is not a positive inflection point of Γ*. Let σ
be the (possibly degenerate) maximal closed line segment such that
(x\, y{) G σ c Γ* and let z i , Z2 be the initial and terminal endpoints
of σ respectively (with z\ = z 2 if σ is degenerate). By the corollary
to Lemma 1, we see that ωj" n σ c {zi, z2} and if zi ^ z 2 , then
φ(z\) > φ{zι). If ωΠσ = {z\, z 2 } , z\Φ zi, and <̂  is the component
of W_ whose closure contains σ, then γ = dξ Π Ω satisfies y Π
5Ω = {z\, z2} and ή Vw = 0 on y since £ lies to the left of
y as (x9y) € y moves from zi to z2 , ^(zi) < ^(z 2) , which is a
contradiction. Thus ωj" n cr = {ZQ} , where ZQ is zi or z 2 , and ωϊ"
does not intersect the portion of Γ* locally to the right of z 0 . Let ωε

be the component of ω\ n 5 ( z 0 , e) which satisfies 9 ω β n y i Π Ω ^ 0 ,
for each ε > 0. Let y2 be the component of dωπΩ which is disjoint
from γ\ and satisfies y2 Πdωε Φ 0 for each ε > 0. Notice that y2 is
the component of dω\ n Ω "immediately to the right" of yi. From
Lemma 6, we see that φ > λ2 on yϊ and so yj Π Γ = 0 . Let us
orient y2 so that ωi is to the right of y2. Then as (x 9 y) G y2

leaves ZQ, </>(*> y) increases (strictly). Notice that there is no open
set ώ c Ω with dώ cγϊ (i.e. y2 cannot cross itself) because of the
strict monotonicity of φ. Therefore Γ* Π γi \ σ φ 0 .

Suppose {x\ 9y\) is a positive inflection point of Γ*. Let a be the
(possibly degenerate) maximal closed line segment satisfying (JCI , y\)
G σ c Γ* and let z\ and z 2 be the initial and terminal endpoints of σ
respectively. As above, αλfn σ = {ZQ} , where ZQ = (x\ 9 y\) is either
zi or z 2 , and φ{zχ) > φ(z2) if z\ Φ z 2 . Since // Vw < 0 locally to
the left of z i , ω j does not intersect the portion of Γ* locally to the
left of zx.
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Suppose z\Φ z2 and let ωo be the component of W- whose clo-
sure contains σ. Let λ\ and λ2 be the components of dω$ n Ω
with z2 e λ\ and z\ G λ2 respectively such that dωε Π dcoo C
λ\ U σ U λ2 for all sufficiently small ε > 0, where ω ε is the component
of {(x9y) G CUQ: dist((jc, y), σ) < ε) whose closure contains σ.
Suppose also z0 = z2 and γ\Γ\γ\ φ 0 . Then γx Γ\B(z2, e) c Aj
for some ε > 0. Let us define 72 = σ U λ2 and orient 72 beginning
at Z2 and going toward (and beyond) z\.

Suppose now ZQ = z\ or ZQ Φ Z\ and y\ πλ\ = 0 . Let y° G y\ Γ\E
by Lemma 1, ή Vu < 0 to the right of yi near j/° and ή Vu > θ
to left of 7i near y°. Let (yn) be a collection of points after y° on
7i, given in increasing order on j \ , at which the condition η Vw > 0
to the left of y\ near yw is not satisfied. By Lemma 2, for each n,
there exists zw G yi Π ^ between yn~~x and yw and so η VM > 0 to
the left of yi near zn. Then there is a component u>w of W+ with
yn E dwn such that tί;" lies to the left of γ\ near yn for each n.
Let A" be a component of <9wn \ [y\ U 9Ω), oriented to begin at yn,
such that wn lies to the right of λn and so φ is strictly increasing
on λn. Now λn ΠT = 0 and so Λ," must interest Γ*. Suppose λm

and λn either intersect one another or intersect the same component
of Γ* = {(*, y) G Γ*: if V(x, y) = 0}. Then the component Umn of
Ω\ (λm U>lw Uγ\) whose closure contains λm Uλn must enclose a com-
ponent of Γ* because otherwise the strong maximum principle yields
a contradiction. Since Γ* has only a finite number of components,
only a finite number of pairs (m, n) can satisfy the last supposition.
Since Tt has a finite number of components, there can only be a finite
number of points (yn) as supposed and hence v-Vu > 0 locally to the
left of 7i in a neighborhood of γ\ Π B(z0, βo) f° r some εo > 0. Let
α>2 be the component of W- whose closure contains Jϊn B(ZQ, εo).
Notice that if ZQ = z2 φ z\, then α>2 ΓΊ ωo = 0 (at least in a neigh-
borhood of σ) . Now let γ2 be the component of dω2 n Ω whose
closure contains ZQ and which lies immediately to the left of y\ on
<9ω2. Let us orient γ2 to begin at ZQ .

Let us review our procedure. If (x\9y\) is a //-minimum of Γ*
and the component of dω\ n Ω immediately to the right of y\ is a
portion of Γ*, we terminate our procedure. Otherwise, we see that
there exists a set y2 beginning at (x\,y\) on which ή Vu = 0
and φ is strictly increasing. In particular, γ2 is the component of
dωγ Π Ω immediately to the right of γ\ if (JCI , y{) is not a positive
inflection point of Γ* and γ2 \ σ is the component of dω2 n Ω im-
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mediately to the left of γ\ if (x\ ,y\) is a positive inflection point
of Γ*, where ωι is the component of W- immediately to the left
of y\ near {x\, y\). We may continue this process to obtain points
(xι 9 y \ ) , ( x 2 , y 2 ) > >(xn, y n ) a n d a s e t γ = γx u γ2 U U γn s u c h
that φ is strictly increasing on γ and η Vu = 0 on γ. Due to the
monotonicity of φ and the maximum principle, γ cannot cross itself
and {Xi, yi) and (xj, yj) can be elements of the same component
σ of Γt only if σ is a nondegenerate line segment, (x, , yz) is the
terminal endpoint of σ, (x7, yj) is the initial endpoint of σ, and
j>ι+i U U yj surrounds a component of <9Ω. Since Γt and dΩ each
have a finite number, say M and TV, of components, this process
must terminate after a finite number (< M + N) of steps. On the
other hand, the process cannot terminate except at a ϊ?-minimum of
Γ*, since we can continue γ past (xn, yn) if (xπ, yn) is not a ΰ-
minimum of Γ*. Hence γ terminates at a ^/-minimum of Γ*. From
the rules used for continuation, we see that two curves γ and γ can-
not terminate at the same point unless ji = fj for some / and j .
However, this cannot occur unless γ and γ begin at the same point.
The fact that the total positive curvature of Γ is bounded by the to-
tal positive curvature of Γ* follows as in the proof of Theorem 2 of
[4]. D

The proof of Theorem 4 follows from the proof of Theorem 3 above
or from the proof of Theorem 5 of [4].

REMARK. In [11], Friedman and Vogel examined two-dimensional
ideal fluid flows with a cavity behind an obstacle in an infinite channel
with an oscillatory wall. One aspect of their work involved determin-
ing some geometric aspects of the free boundary and used curves of
constant gradient direction. Using the ideas of this paper, especially
Lemma 1, geometric properties of two-dimensional, compressible, ir-
rotational, inviscid, subsonic cavitation flows (e.g. [18, p. 109]) past
an obstacle in an infinite, oscillatory channel could be determined.
When Ω is assumed bounded, the results of this section apply di-
rectly to our free boundary problems when, for example, (2a) or (2a7)
is the minimal surface equation, the p-Laplace equation, or Pucci's
equation ([12]). When Ω is not assumed bounded, we can still obtain
qualitative information about the free boundary in the same manner
as for compressible flows.



316 KIRK E. LANCASTER

REFERENCES

[I] A. Acker, On the geometric form of free boundaries satisfying a Bernoulli condi-
tion, Math. Methods Appl. ScL, 6 (1984), 449-456.

[2] , On the geometric form of free boundaries satisfying a Bernoulli condition.
II, Math. Methods Appl. Sci., 8 (1986), 387-404.

[3] , On the geometric form of solutions of a free boundary problem involving
galvanization, Math. Methods Appl. Sci., 9 (1987), 99-104.

[4] , On the geometric form of Bernoulli configurations, Math. Methods Appl.
Sci., 10 (1988), 1-14.

[5] , On the geometric form of axial-symmetric free boundaries satisfying a
Bernoulli condition, manuscript.

[6] A. Acker and K. Lancaster, The geometry of curves of constant contact angle for
doubly-connected minimal surfaces, Comm. Partial Differential Equations, 14
(1989), 375-390.

[7] , Existence and geometry of a free boundary problem for the heat equation,
Pacific J. Math., 148 (1991), 207-224.

[8] A. Beurling, The Collected Works of Arne Beurling, Vol. 1, Boston: Birkhauser,
1989.

[9] R. Courant and D. Hubert, Methods of Mathematical Physics, Vol. 1, New York:
Springer, 1970.

[10] A. Friedman and R. Jensen, Convexity of the free boundary in the Stefan problem
and in the dam problem, Arch. Rational Mech. Anal., 67 (1978), 1-24.

[II] A. Friedman and T. Vogel, Cavitational flow in a channel with oscillatory wall,
Nonlinear Anal. TMA, 7 (1983), 1175-1192.

[12] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second
Order, second edition, Berlin: Springer, 1983.

[13] K. Lancaster, Partial continuity at reentrant corners for Perron solutions of
Dirichlet problems with certain boundary data, manuscript.

[14] K. Nickel, Einige Eigenschaften von Lόsungen der Prandtlschen Grenzschicht-
Differentialgleichungen, Arch. Rational Mech. Anal, 2 (1958), 1-31.

[15] , Gestaltaussagen Uber Losungen parabolischer Differentialgleichungen, J.
Reine Angew. Math., 211 (1962), 78-94.

[16] J. C. C. Nitsche, Lectures on Minimal Surfaces, Vol. 1, Cambridge: Cambridge
Univ. Press, 1989.

[17] L. Payne, On two conjectures in the fixed membrane eigenvalue problem, J. Appl.
Math. Phys. (ZAMP), 24 (1973), 721-729.

[18] M. Schiffer, Analytic Theory of Subsonic and Supersonic Flows, 1-161: Encylo-
pedia of Physics 9, Berlin: Springer, 1960.

[19] J. Serrin, A priori estimates for solutions of the minimal surface equation, Arch.
Rational Mech. Anal., 14 (1963), 376-383.

[20] D. Tepper, Free boundary problem, SIAM J. Math. Anal., 5 (1974), 841-846.
[21] , Free boundary problem—the starlike case, SIAM J. Math. Anal., 6 (1975),

503-505.
[22] T. Vogel, A free boundary problem arising from a galvanizing process, SIAM J.

Math. Mech. Anal., 16 (1985), 970-979.

Received March 13, 1991.

THE WICHITA STATE UNIVERSITY

WICHITA, KS 67208




