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FUCHSIAN MODULI ON A RIEMANN SURFACE
—ITS POISSON STRUCTURE AND
POINCARE-LEFSCHETZ DUALITY

KATSUNORI IWASAKI

The moduli space of Fuchsian projective connections on a closed
Riemann surface admits a Poisson structure. The moduli space of
projective monodromy representations on the punctured Riemann sur-
face also admits a Poisson structure which arises from the Poincare-
Lefschetz duality for cohomology. We shall show that the former
Poisson structure coincides with the pull-hack of the latter by the
projective monodromy map. This result explains intrinsically why a
Hamiltonian structure arises in the monodromy preserving deforma-
tion.

Introduction. It has been known that a Hamiltonian structure arises
in the theory of monodromy preserving deformation of meromorphic
differential equations. See [KO], [O]. However it has not yet been
known why such a Hamiltonian structure does arise. Our result in the
present paper will explain the reason clearly and intrinsically. Rather
it will be even self-evident from our point of view why such a Hamil-
tonian structure arises.

In this introduction we shall explain only idea of the present paper.
As for rigorous statements written by using precise notation, see the
later sections.

Let M be a closed Riemann surface of genus g > 0. Let m be a
positive integer such that n = m + 3g — 3 is positive. In the previ-
ous paper [I] we constructed a moduli space <§" of a certain class of
Fuchsian differential equations L on M such that L has m-generic
singular points and ^-apparent singular points and such that L has
fixed characteristic exponents at each generic singular point. As for
the definition of generic singular point and apparent singular point,
see §1. Let B be the configuration space of m-points in M. We have
the natural projections w : % —> B which assigns to each differential
equation in W its generic singular points.

In [I] we also constructed a moduli space of projective monodromy
representations of the punctured Riemann surface Λf\{m-points}.
More precisely, we constructed a space R together with a projection
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Is: R —• B with the following property: For each S e B, the fiber
Rs of ls: R —• B over S is the moduli space of representations p
of the fundamental group π\(M\S) into the projective linear group
such that the local representation around each point in S induced by
p is fixed. Notice that Is: R^ B is a local system whose character-
istic homomorphism is given by a natural action of the "braid group"
π\(B) on the moduli space Rs of projective representations.

We define the projective monodromy map PM: W —• R which
assigns to each differential equation in I? its projective monodromy
representation. By definition, the apparent singular points have no
effect on the projective monodromy representation. So the projective
monodromy map is well-defined. It is known that PM is a local
biholomorphism. We have the commutative diagram:

op PM β

w \ /Is

B
A Poisson structure {•, •} on the analytic space P is a Lie algebra

structure on the structure sheaf &p such that, for each germ / at
p G P , {/, •} acts on the stalk @p p at p as a derivation. See, e.g.,
[LM].

In [I] we showed that the moduli space i? of differential equations
admits a Poisson structure. On the other hand the moduli space R
of projective representations also admits a natural Poisson structure
which arises from the Poincare-Lefschetz duality for cohomology. We
shall recall the Poisson structure on W in §1. We shall describe the
Poisson structure on R in §3. Our main theorem in the present paper
is the following:

MAIN THEOREM. The Poisson structure on % coincides with the pull-
back of that of R by the projective monodromy map PM: % —• R.

This main theorem will be restated more rigorously as Theorem 5 in
§3 after precise terminology and notation will be introduced in §l-§3.
This theorem was conjectured in [I].

The local system structure on Is: R-+ B induces a foliation ^ on
R which is transverse to each of its fibers. The fundamental 2-form
Ω# associated to the Poisson structure on R is horizontal with respect
to &R . Let ^ n P be the foliation on If which is the pull-back of SFR by
the local biholomorphism PM: % —• R. The monodromy preserving
deformation on % is given by ^ n P . So we call ^mv the monodromy
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preserving foliation. J^p is transverse to each fiber of w : I? —> B.
By Main Theorem, the fundamental 2-form Ω% associated to the
Poisson structure on I? coincides with the pull-back of Ω^ by PM.
Hence we immediately obtain the following:

COROLLARY. The monodromy preserving foliation ^ n P is an Ω>%-
Lagrangian foliation. Namely we have LXΩ% = 0 for any ^n P -
horizontal vector field X on &, where Lx denotes the Lie derivative
with respect to X.

Since any local horizontal vector field X is a horizontal lift of a
local vector field on B and vice versa, the equation LXΩ% = 0 gives
us a completely integrable Hamiltonian system with B as the space
of independent variables.

1. Moduli of differential equations. Let us recall the notation and re-
sults in the previous paper [I] which will be necessary in what follows.
For details see [I].

Let M be a closed Riemann surface of genus g > 0, K the canon-
ical line bundle over M, ξ a holomorphic line bundle over M with
the first Chern class a(ξ) = 1 - g e H2(M; Z) = Z. We denote
by */#(£) the sheaf of meromorphic sections of ξ. Then there exist
differential operators L: J?(ξ) —• ^{ζ®κ®2) such that the following
condition holds: In terms of a local coordinate x of M and a local
trivialization of ζ at any point of M, L is represented by

(i) i =

where Q is a locally defined meromorphic function. Geometrically
speaking, these differential operators are identified with meromorphic
projective connections on M.

The Riemann surface M admits a projective structure subordinate
to its complex structure, i.e., it admits a complex coordinate system
all of whose transition functions are projective linear transformations
(e.g., [Gl]). Fix a projective structure on M; then Q(dx)®2 becomes
a meromorphic quadratic differential globally defined on M. We de-
note this quadratic differential also by Q. This abuse of notation
will cause no confusion. Hereafter we identify a meromorphic dif-
ferential operator L with the corresponding meromorphic quadratic
differential Q.

In this paper we assume that all differential operators are of the
form (1) and of Fuchsian type. Consider a differential operator L
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and let S be the set of singular points of L. By assumption all
singular points are regular singular. Since the solution sheaf of the
differential operator L is a local system over M\S, it determines
the linear monodromy represenation p^\ %\{M\S) —> SL2(C) of the
fundamental group of M\S up to conjugacy.

A regular singular point p £ S is said to be generic if the difference
of charactersitic exponents of L at p is different from integers. A
regular singular point q e S is said to be apparent if the local circuit
matrix at q induced by PL is in the center {±7} of SL2(C). An ap-
parent singular point is non-generic. The non-generic singular points
are divided into two categories; one is the logarithmic singular points
and the other is the apparent singular points. In this paper we assume
that all singular points are either generic or apparent. We shall not
consider logarithmic singular points.

Let Sge be the set of generic singular points of L, Sap the set of
apparent singular points of L: S = Sge U SΆV. Passing to the quo-
tient SL2(C) -> PSL2(C) = SL2(C)/{±/}, the linear monodromy
representation PL induces the projective monodromy representation
pp: π\(M\S%e) —• PSL2(C). Remark that the apparent singular points
Sap have no effect on the projective monodromy representation. This
is the reason why we call these singular points apparent singular points.

At an apparent singular point the difference of characteristic expo-
nents takes an integer not less than 2. An apparent singular point is
said to be of ground state if the difference of characteristic exponents
takes the minimal possible value 2. In this paper we assume that all
apparent singular points are of ground state.

Given a differential operator L, let m be the number of generic
singular points of L, n the number of apparent singular points of L.

Assumption (A). We assume that

n = m + 3 # - 3 > 0 ,

namely n is the moduli number of Riemann surfaces of genus g with
m punctures.

The assumption n > 0 implies that the universal covering space of
the punctured Riemann surface M\Sge is the unit disk { z e C ; \z\ <

i}
From now on, we shall consider differential operators marked by

ordering of their singular points.
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Given θ = (θΪ9...9θm) e (C\Z) m , let E(m; θ) be the set of
differential operators L with m + n ordered regular singular points
such that the following two conditions hold:

(i) For j = 1, . . . , m, the difference of characteristic exponents
of L at the 7th singular point is θj.

(ii) The last ^-singular points of L are apparent and of ground
state.

The first condition implies that the first ra-singular points are
generic.

Let B(l) be the set of mutually distinct ordered /-points in M.
Then we have the natural map π: E(m; θ) —• B(m + n) which assigns
to each element of E(m; θ) its ordered singular points in
B(m + ή). Let p: B{m + ή) —• B(m) be the projection into the first
m-components, w := p o π the composition of p and π. Then we
have the following commutative diagram:

E(m θ)

(2) B(m + n) \w

B{m)

B(m) and B(m + ή) are naturally complex manifolds of dimension
m and m + n, respectively.

THEOREM 1 [I]. E admits a natural analytic space structure of pure
dimension m+2n such that π: E(m θ) —• B(m+n) is a holomorphic
map. All maps in the diagram (2) are surjective. Each w-fiber is an
analytic subspace of E(m θ) of pure dimension In.

We denote by E(p; θ) the w-fiber of E(m θ) over p e B(m).
Given r = (px, . . . , pm, q{, . . . , qn) e B(m + n), let ξτ be the

holomorphic line bundle over M defined by

ξT := κ®2 ® [px + - + pm - (qx + + qn)].

Remark that Assumption (A) and the Riemann-Roch formula imply
the Fredholm alternative:

dimH°(M; &{ξr)) = dimH ι (M;

Let X(m) be the subset of B{m + ή) consisting of all r e B(m + ή)
such that dimH°(M <?(ξτ)) = 0. Then X(m) is a nonempty Zariski
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open subset of B(m + ή) such that the restriction of the projec-
tion p: B(m + ή) —• B(m) to X(m) is surjective. Let %{m\ 0) :=
π~1(X(m)) c £ ( m ; 0). Then, instead of (2), we have the following
commutative diagram:

(3) X(m)

B(m)

THEOREM 2 [I]. The open analytic subspace &(m 0) of E(m 0)
is smooth. All maps in the diagram (3) are surjective. Each w -fiber is
a complex submanifold of J?(m 0).

We denote by ίΓ(p; 0) the w-fiber of %{m\ 0) over p e B(m).
A differential operator is said to be reducible if it is "decomposable
into a product of two first order differential operators." Otherwise it
is said to be irreducible. For a precise definition of (ir)reducibility,
see [I]. It is (ir)reducible if and only if its monodromy representation
is (ir)reducible. Given a subset D of E(m 0), we denote by Diττ

the subset of D consisting of all irreducible elements of D. Let D =
E{m\ 0), £ ( p ; 0), <T(m; 0) or ^ ( p ; 0). Then Dlΐr is a nonempty
Zariski open subset of D. Moreover D^ = D for 0 in a nonempty
Zariski open subset of (C\Z)m

REMARK 3. All statements of Theorem 1 and Theorem 2 are still
valid even if E(m 0) and J?(m 0) are replaced by E(m 0 ) ^ and
%?{m 0)iπ., respectively.

We shall discuss a local coordinate system of the complex manifold
J?(m 0). Fix a projective structure on M subordinate to its com-
plex structure. Let r* = (p\, . . . , p^ , q\, . . . , q*) be any point in
X{m). Hereafter we assume that the suffixes i and j run through
1, . . . , m and 1, . . . ,«, respectively. Let (£/;, x{) and (Vj, yj) be
sufficiently small projective coordinate charts of M centered at p*
and qj, respectively. "Sufficiently small" means that these charts are
disjoint. Then W := Π™ i Ui x Π;=i vj i s a product neighbourhood
of r* in X{m). We shall give a local coordinate of %?{m\θ) in

Let L be any element of l?(m 0)| PΓ and set π(L) = (p\9 ... 9Pm>
Q\ 9 . . . , Qn) € ^ . We set ^ = x/(/?/) and λ7 = yj(qj). Then the
meromorphic quadratic differential Q corresponding to L admits the
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following Laurent expansion at each singular point:

It was shown in [I] that (ί, , λj, μj) is a local coordinate of l?(m θ)
in &{m\θ)\W.

Consider the closed 2-form Ω in &(m\θ)\W defined by
n m

(4) Ω := ΣδμjΛδλj - £ < W f Λ<5ί/,
7=1 i = l

where δ denotes the exterior differential on 8?(m; θ). The following
theorem is fundamental in the previous paper.

THEOREM 4 [I]. Ω is a global closed 2-form on If (m θ) and defines
a Poisson structure on 8?(m θ).

The purpose of the present paper is to give an intrinsic description
of this Poisson structure in terms of the Poincare-Lefschetz duality
for cohomology.

2. Moduli of monodromy representations. Given a topological space
X, let HX be the fundamental groupoid of X. Given a Lie group G,
let Hom(ΠX, G) be the set of all groupoid homomorphisms of HX
into G, Map(X, G) the set of all maps of X into G. Map(X, G)
acts on Hom(ΠX, G) if w e Map(X, G) and p e Hom(X, G)9

then w p, defined by {w p)(γ) := vo (q)p(γ)w (p)~x for γ e ΠX
with initial point p e X and terminal point q e X, is an element
of Hom(Z, G). The correspondence p »-> w p defines a left ac-
tion of w on Hom(X, G). We denote by RQ{X) the quotient set
Map(X? G)\Hom(ΠX, G) with respect to this action. A continuous
map / : X —• Y induces a groupoid homomorphism Π / : ΠX —> ΠΓ
and this in turn induces a map RG(/) RG(Y) ~+ RG(X) ^ G ( ) is a

contravariant functor of the category of homotopy equivalence classes
of topological spaces into the category of sets.

Given a topological space with base point (X, p), let
Hom(πi (X,p)9 G) be the set of all group homomorphisms of the fun-
damental group %\{X,p) into G. The G acts on Hom(πi(X, /?), G);
if £ G G and p e Hom(π\(X, p) 9 G), then g - p, defined by
(g P)(ϊ) •= gP{y)g~ι for y G π^X,/?), is an element of
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Hom(πι(X, p), G). The correspondence p h-> g p defines a left
action of g on Hom(π\(X, p), G). We denote by RG(X, p) the
quotient set G\Hom(π\(X, p), G) with respect to this action.
Since π\(X 9 p) is a subset of ΠX, there is a natural restriction
map xp: Hom(ΠX, G) —> Hom(πi(X, p)9 G). This map t p is com-
patible with the actions described above and hence defines the natural
restriction map

(5) tp:RG(X)-+RG(X,p).

One observes that this map is bijective. If G is a linear group or pro-
jective linear group, then RG(X, p) is the set of all linear or projective
linear representation classes of the fundamental group π\(X,p). In
this case let RG(X, p)irr be the subset of RG(X, p) consisting of
all irreducible representation classes, RG(X){n the subset of RG(X)
corresponding to RG(X, p)in by the bijection (5).

Given p = (p\, . . . , pm) e B(m), let Afp be the punctured Rie-
mann surface M\{p\, . . . , pm}. Let q: 9Dt —> B(m) be the universal
family of punctured Riemann surfaces, i.e., 93ΐ := {(/?, p) e M x
B(m); p G M p } , q being the projection into the second component.
Hereafter we identify Mv with Mp x {p} c Wl. Let q': 971* -> Λf x
-δ(m) be the real blow-up of MxB(m) along the locus (MxB(rn))\0Ά
and set AT* := q'"1 (Af x {p}). We denote by q*: 9Jί* -^ B{m) the nat-
ural projection. M* is homeomorphic to the compact surface with
boundary obtained from M by deleting small open disks centered at
Pi's, q' maps the interior IntΛf* of M* onto Mp homeomorphically.
The boundary dMp = q*~ι{{p\, . . . , pm} x {p}) of M* is a disjoint
union of m-copies of the unit circle Sι. Let h: Mp —• M* be the
composition of the inverse map of q': IntM* —• Mv with the inclu-
sion IntM* c-^ Λ/*. Then h gives a homotopy equivalence. Hence
we have the natural bijection

(6) RG(h):RG(M;)-+RG(Mp).

For any q = (qx, . . . , qm) e B(m), let U = Uγ x x Um be a
product open neighbourhood of q in B. Suppose that each Uf is
simply connected and sufficiently small. Then there exists a diίferen-
tiable map Φ: M x U -> M such that (i) Φ( , q): Af -• Af is the
identity and (ii) for each point p = {p\, . . . , pm) e U, Φ p := Φ( , p)
maps Af onto itself diffeomorphically and takes #, to /?;. This map
gives a local trivialization Φ: Af£ x U -+ q*~ι(U) of 9JI*. For each
p E C/, we set Φ p := Φ( , p). Φ p maps (M*, dMi) to (Mp*, dM;)
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diίfeomorphically. Let i: dM* <-• M* be the inclusion map. Then we
have the following commutative diagram for each p e t / :

-^ίi R0(M;)

; - ^ RG(dM*)

The horizontal arrows in this diagram are bijective and indepen-
dent of the choice of Φ described above. From this observation one
obtains the following commutative diagram for each γ e ΠB(m) with
initial point q and terminal point p :

(7) JWJ

RG(dM;) - ^ RG(dΛQ)

This commutative diagram gives a covariant functor of the funda-
mental groupoid TlB(m) of B(m) into the category of maps of sets
and determines a local system over B(m).

Hereafter we assume that G is the projective linear group PSL2(C).
Let p be a point in Mv and consider the fundamental group

πι(Mp,p) of Mp. We regard π\(Mp,p) as a discrete group. We
equip Hom(πi(Λfp, /?), G) with the compact-open topology and
RG(Mp,p) = G\Hom(πi(Mp,/?), G) with the quotient topology.
Its subspace RG(Mp,p)iTT carries a natural structure of complex
manifold of dimension In, which we shall describe below.

The fundamental group π\(Mp, p) has a generator

{OL\ , . . . , ag, βι, . . . , βg, γι, . . . , γm}

subjecting one relation [a\, β\] [ag , βg]γ\ -ym = \, where [a, β]
is the commutator of a and β . One observes that Hom(πi (Mp,/?), G)
is homeomorphic to the subvariety of GlgJtm defined by the equation
[AuBι]...[Ag,Bg]Cι.. Cm = / f o r ( A Ϊ 9 ... , A g 9 B u ... , B g ,
C\, . . . , Cm) e Glg+m . This subvariety is evidently smooth. Hence
we can regard Hom(πi (Afp, p), G) as a complex manifold. By Shur's
lemma, G acts on Hom(πi(Mp, p), G ) ^ freely. One can show as in
Theorem 27 [G2] that the quotient space

RG{MV, p)in = G\Hom(πi (M p , p), G) i r r
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has a natural structure of complex manifold. It is independent of the
choice of the generator of π\(Mp, p).

Since tp in (5) maps RG(Mp)iΐT to i?(?(Λ/p,/?)irr bijectively, it in-
duces a structure of complex manifold on RoiMp)^. Moreover the
bijection (6) induces a structure of complex manifold on i?G(Λf*)irr

from that on i?6(Λ/p)irr. It is easy to see that this complex structure
is independent of the choice of the base point p and hence canonical.

We remark here that RG(S1) is the space of all conjugacy classes of
the group G = PSL2(C) equipped with the natural quotient topology
induced from that of G. This space is described as follows: Let
<£ be the space obtained by attaching a single point named 1* to
the Gauss plane C such that open neighbourhoods of 1* in C are
of the form: { l*}uί/, where U is any open neighbourhood of 1
in C. Then RG(S1) is homeomorphic to <£. A homeomorphism
/ : RG(S1) —> € is given as follows: For any conjugacy class c in G,
if c is the class consisting of the unit element then we set f(c) = 1*
otherwise f(c) = ^traced2, where A is any representative of c. We
identify RG(Sι) with C.

Since dM* is the disjoint union of m-copies of S1, RG{OM*)

is naturally bijective to i? (^(51)m = €m. Now recall that there is
the restriction map RG{ή: i?(?(M*)irr -> RG{dM*) = €m. Given
θ = (θι,...,θm) G (C\Z)m, let RG{M*> 0) i r r be the inverse im-
age of (cos2π#i,. . . . , cos2π0m) e £m by the above restriction map.
Then one can show that RG(M* θ)in is a complex submanifold
of RG{M*)-IXX of dimension In. The commutative diagram (6) in-
duces a biholomorphism S(γ): RG(M*\ θ) -• RG{M^\ θ) for each
y G Πi? with initial point q and terminal point p, which gives
Upe£ RG{M£\ 0)iπ a structure of local systems over B(m) with values
in the category of complex manifolds.

Hereafter we set

R(p)irr:=RG(M;)iττ and R(p; θ)irr:= RG(M;; θ)irτ

for simplicity. Moreover we set R(m; 0) i r r := UPeJ?(m)^(P> θ)iττ.
Since R(m; θ)in —> B(m) is a local system as mentioned above and
each of its fibers i?(p; 0)irr is a complex manifold of dimension 2n,
i?(m θ ) ^ is naturally a complex manifold of dimension m + 2n.

Now recall the moduli space If (ra θ)^ of Fuchsian differential
equations on M defined in §1. Let PM: %{m\ θ)'m —• R(m; θ)iττ

be the projective monodromy map which assigns to each differential
equation L G %(m θ ) ^ its projective monodromy representation
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class. PM is a holomorphic map and it takes each <^(p; θ)^ into
θ)iττ - We obtain a commutative diagram:

i?(m;0) i r r

(8)

B(m)
The projective monodromy map PM: lf(ra; Q\m —> R{m\ θ)^ is
locally biholomorphic [I].

3. Poisson structure and the Poincare-Lefschetz duality. The moduli
space R(m; θ)in of monodromy representations admits a canonical
Poisson structure which arises from the Poincare-Lefschetz duality
for cohomology. To describe this Poisson structure, we have to give a
cohomological description of the tangent space TpR{j> θ)m at each
point peR(p; θ).

In this section we denote by X the space M* for simplicity of no-
tation. Let Pp be the flat principal G-bundle over X associated to
the representation p. The Lie group G admits the so-called adjoint
action Ad on its Lie algebra g. Let Lp be the flat g-bundle over X
associated to Pp with respect to the adjoint action. Let us consider
the cohomology of the pair (X, dX) of topological spaces with coef-
ficients in the local system Lp. The cohomology exact sequence for
(X, dX Lp) is given as follows:

(9) 0= H°(X;LP) ^ H°(ΘX;LP)

£+ Hι(X,dX;Lp) -U Hι{X\Lp) -A H\dX\Lp)

-C H\X,dX\Lp) =0.

Here we obtain H°(X; Lp) = 0 from the irreducibility of the rep-
resentation p G i?(p; 0)irr and Shur's lemma in the representation
theory. We obtain H2(X, dX\ Lp) = 0 from H°(X; Lp) = 0 and
the Poincare-Lefschetz duality which will be stated below.

We now state the Poincare-Lefschetz duality. Since Lp is a flat
0-bundle, the Killing form B: g® g -+ C on g induces a bilinear
morphism B: Lp ® Lp —• £χ, where C^ is the constant system over
X with fiber C. This induces a C-linear map

5*: H2{X, dX\ LP®LP) - H2(X, 8X\ Cx) = C.

On the other hand, the cup product gives a bilinear form

H\X Lp) Θ H2-\X, dX Lp) - H2(X ,dX\Lp® Lp).
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Composing the bilinear form with B*, we obtain the Poincare-
Lefschetz bilinear form:

(10) H\X\ Lp)®H2-i(X, dX; Lp)-+C.

The Poincare-Lefschetz duality theorem asserts that this bilinear form
is a perfect pairing for i — 0, 1, 2.

Let i: dX ^ I be the inclusion map, r = RG(ι): ^G(X)iττ —•
RG{dX) the associated restriction map. It follows from the deforma-
tion theory that the tangent space TpRG(X)in of R^X)^ at p is
identified with the first cohomology Hι(X; Lp). Similarly the tan-
gent space Tr{p)RG{dX) is identified with Hι(dX; Lp). With these
identifications, the differential map (dr)p: TpRG(X)iττ —> Tr^R(dX)
of r: RG(X)iττ —• RG(dX) at p coincides with the homomorphism
;*: Hι(X; Lp) -> Hι(dX; Lp). Since i?(p; θ)iττ is the fiber of r
through p, the tangent space TpR(v\ 0) i r r is identified with the ker-
nel of 7*: Hι(X; Lp) —• Hι(dX; Lp). The cohomology exact se-
quence (9) implies that the homomorphism /*: Hι(X, 9X; L^) —•
Hx{X\Lp) induces an isomorphism

/*: / ί 1 ^ , dX; Lp)/δ*H°(ΘX; Lp)

-+ ker[7*: Hι (X L^) -+Hι(dX L p ) ] .

Hence we obtain the following cohomological description of the tan-
gent space TpR(p 0) i r r :

(11) 7>*(p; θ)irτ = k e r t i ί 1 ^ ; Lp) A

r δ*H<>(dX;Lp) '

Thesubspace δ*H°(dX;Lp) of J f 1 ^* 9X; L^) is the orthogonal
complement of ker[j*: HX(X\ Lp) —• Hx(dX\ Lp)] with respect to
the Poincare-Lefschetz bilinear form (10) for / = 1. Hence, in view
of (11), the Poincare-Lefschetz bilinear form (10) for / = 1 induces
a nondegenerate bilinear form on the tangent space TpR(p; θ). This
bilinear form is skew-symmetric. Thus we have obtained an almost
symplectic structure on the complex manifold i?(p θ). One can show
that this almost symplectic structure is integrable. Hence it is in fact a
symplectic structure. We shall not prove the integrability here, because
it will be simultaneously established in the course of the proof of our
main theorem.

We have seen that R(m θ)in —• B(m) is a local system and each
fiber i?(p; 0) i r r of this local system is a symplectic manifold. There
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uniquely exists a Poisson structure on R{m\ θ)^ such that every
^ ( p ; 0)irr> P € B(m), are symplectic leaves. We call it the canoni-
cal Poisson structure on R{m θ)^.

Our main theorem in this paper is the following:

THEOREM 5 (MAIN THEOREM). The Poisson structure on W{m 0) i r r

described in Theorem 4 coincides with the pull-back of the canonical
Poisson structure on R(m 0) i r r by the projective monodromy map
PM:g(m;θ)iττ->R(m;θ)in.

4. Tangent map of the projective monodromy map. Let L be a dif-
ferential operator in ^ ( m 0) i r r . As before we always identify L
with the corresponding meromorphic quadratic differential Q. Let
p = PM(Q) be the projective monodromy representation of Q. In
this section we shall consider the tangent map dPM: TQ^(m θ)^ —•
TpR(m θ)in of the projective monodromy map PM: %{m θ)^ —>
^ ( m > 0)hτ at Q. To give a cohomological description of this tangent
map is the first step toward the proof of Theorem 5.

Let Δ(M) = {Δfc k G K} be a cell decomposition of the Riemann
surface M, where Δ^ are closed 2-cells with piecewise smooth bound-
ary. We provide each 2-cell Δ^ with the orientation induced from that
of the Riemann surface M. Assume that this cell decomposition is
sufficiently fine, so that there exists a projective coordinate system
% = {{Uk,xk)\keK} such that Ak c Uk for k e K. Moreover

we assume that the index set K contains {1,2, ... , m + n}. For
/ = 1, . . . , m, we subdivide the cell Δ/ into four smaller cells Δ ^ ,
α = 0 ? 1 , 2 , 3 , in a manner indicated in Figure 1 (see next page).

Put X = M \ U ^ i I n t Δ j 0 ) . Then Δ(X) = {A^ i=l,...,m,a =
1, 2, 3} U {Δfc k e K\{1, . . . , m}} is a cell decomposition of X.
For j = 1, . . . , n, we take a simply connected open set Vj such
that CIVj c I n t Δ m + 7 , where Cl and Int mean closure and interior,
respectively. We put W = Π£LiIntΔJ0) x Π"=i vj w e denote by
%{™>\ 0)irr|W the inverse image of W by the projection π : ^ ( m ; 0 ) i r r

—• X(m). From now on we shall consider differential operators L
in %{m\ θ\λττ\W. We denote by d and δ the exterior differentials
on the Riemann surface M and on the moduli space %{m 0 ) ^ ,
respectively.

Recall that L is a differential operator L: JP(ζ) -• M(ξ <g> κ®2)
(see §1). Let (ξjk) be the transition function of the line bundle ζ
with respect to the covering ^ . Let Lk = -D\ + Qk be the local
expression in Uk of the differential operator L, where Dk = d/dxk .
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i : 2-cells(ι = l,...,

FIGURE 1

Let us consider the differential equation

(12) Lkuk = 0 inUk.

We choose the following fundamental system hk = (fk, gk) of solu-
tions of (12) for each k.

(i) For k = 1, . . . , m (12) has a regular singular point at pk with
characteristic exponents \(\±θk). Since we assume that θk is not an
integer, there uniquely exists the fundamental system hk = (fk,
of solutions of (12) in Uk such that

O(xk - tk)}9

O(xk - tk)} as xk -+ tk

fk =

gk =

Here we put the constant functor l/y/θ^ so that the Wronskian
W(fk, gk) = 1. Note that hk is multivalued and holomorphic in
(xk, Q). The multivaluedness is given by

- tk)) = hk(xk)Ck,hk(tk

where Ck is the diagonal matrix diagίexpί-πx/ 1 1 !^), exp(πv

/ : :Tθ/)).
Fix a branch of hk, then hk determines single valued fundamental
systems h^ of solutions of (12) on ΔJ^, 0 = 1 , 2 , 3 . They satisfy
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the transition relations:

(13) h[a+ι) = h ^ o n Δ ί :

a + 1 ) ί α )

(ii) For k e K\{ 1,2 m};fixa base point xk = sk in Uk . If
k = m + I, ... , m + n, then we take sk such that sk $ Vk_m. Let
hk = (fk, gk) be the fundamental system of solutions of (12) which
satisfy the initial conditions fk(sk) = 1, Dkfk(sk) = 0, ĝ Cfy) = 0
and Dkgk{sk) = 1. Note that Λ̂  is holomorphic in (xk, Q). If
k = m+l, ... , m + n, then /^ is double-valued:

A* ( 4 + exp(2πy/^ϊ)(xk - 4 ) ) = - M * * )

otherwise hk is single-valued.
For a fundamental system h = (f, g) of solutions of Q, we denote

by h = [h] = [/, g] its projectivization, i.e., ratio of / and g. We
call such an h a projective solution of Q. The differential equation Q
determines a flat principal PSL2(C)-bundle P = PQ over X whose
horizontal section on each 2-cell Δ^ is a projective solution of Q.
Note that hjΛ) = [h\a)] is a horizontal section of P on Δ[α) for i =
l , . . . , m , <z = 1 , 2 , 3 . Similarly, Λ̂  is double-valued for k =
m + 1, ... 9 m + n, hk is well-defined.

The Lie group PSL2(C) admits the adjoint action Ad on its Lie
algebra sl2(C). Let E = P x A d sl2(C) be the associated flat bundle
with fiber sl2(C). Note that E is isomorphic as a flat bundle to Lp

considered in §3, where p = PM(Q). We denote by (h,F) the
element of E determined by ( h , F ) G P X S1 2 (C). Let V be the
covariant differential on E associated to its flat structure. If h is
horizontal, then V(h, F) = (h, dF).

It is sometimes better to rename the 2-cells A(X) = {Ay / =
I, ... ,m}υ{Ak;k e K\{1, ... ,m}} as A(I) = { A > G i } . If
Δ'α = A^ (resp. Ak), then we put h'a = hjα ) (resp. hk).

There exists a matrix Caβ € PSL2(C) such that h^ = \*!βCaβ on
Δ^ Π A!n, if Δ^ Π Δ^ is nonempty. Caβ is holomorphic in Q. Put
Faβ = C'jjδCaβ . This is an sl2(C)-valued 1-form on %{m\ θ)iττ\W.
Recall that a cochain c with values in the flat bundle E assigns to
each cycle σ in X a horizontal section c(σ) eΓh(σ; E) of E, where
Γ/fc( ) means the set of horizontal sections. Now we shall define an E-
valued 1-cocycle c = CQ in the following manner: Let σ be a 1-cell in
X given by σ = Δ^ nΔ« and assume that σ and dA!a have the same
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FIGURE 2

orientation. We call such a σ the 1 -cell determined by the (ordered)
pair (Af

a, Af

β) of 2-cells. See Figure 2.

We define c(σ) by (h^ | σ , Faβ) e Γh(σ;E), where h^|α is the

restriction of h'β to σ. We note that if (Δ^, Δ^) = (ΔJ2), Δ | 1 } ) ,

(Δj.3), ΔJ2 )), or (Δ[ 1 } , Δ[.3)), then (13) implies that Faβ = 0 and hence
c{σ) = 0. We put c(σ) = 0 for 1-cycles σ on the boundary dX.

The 1-cocycle cQ determines a cohomology class

[cQ] e Hι(X, ΘX E) ~ Hι(X, dX;Lp).

Recall that TpR(m 0) i r r is naturally isomorphic to

H\X, dX\ Lp)/δ*H°(dX; Lp).

See (11). Hence [CQ] determines an element of TpR{m\ 0)iπ More
precisely, [cQ] is in T^{m θ)^ ® TpR(m θ)^ and gives the dif-
ferential map dPM of the projective monodromy map PM at Q e
g>(m;θ)irτ\W.

We shall give another representation of the 1-cocycle c. Let Φ^ e
SL2(C) be a matrix defined by

Put Gfc = Φ^ 1 £Φfc G sl2(C). For / = 1, . . . , m, Φ, has branch
point at pt whose circuit matrix is given by

Ci = diag(exp(-π>/--T0/), exp(π>/—T0/))

Hence we have

Gi{ti + exp(2ττ/::T)(x/ - U)) =

Fix a branch of G7 then Gι determines single-valued holomorphic
functions Gf] on the 2-cell A{"] for a = 1, 2, 3. For j = 1, . . . , n ,
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has branch point at qj whose circuit matrix is given by —/.
Hence Gm+j is single-valued meromorphic with pole at qj . For k e
^\{1 , . . . , m+ή), Φ^ and G^ are single-valued holomorphic. When
we express the 2-cells by A(X) = {A'a a e A}, we put G'a = G\a)

(resp. Gjc) if Δ'α = Δ ^ (resp. Δ^). Let ^£{E) be the sheaf of mero-
morphic sections of £ on J . We shall define an «^(£)-valued func-
tion u on the 2-cells A(X) by u(A'a) = (h'a, G'a) e Γ(Δfa;Jt(E)).
We can easily see that if c is regarded as an ^#(£')-valued 1-cochain,
then

(15) c{σ) = u{A!β)\σ-u{A!a)\σ,

where σ is the 1-cycle in X determined by (Δ!a9A'β). In partic-
ular, since the 1-cocycle c vanishes in a neighbourhood of dX, u
determines a C°°-section of E on dX, which we shall denote by
χ e T(dX; W°°(E)). Notice that dX = ~Σ?=i Vi w i t h yt = dAf]

and χ is given by

χ \ 7 ι = fc, Gi)\7i f o r i = l , . . . , m .

The right-hand side is well-defined as a section of (έ?oo(E)\yi.

5. Reduction to a residue calculus. In this section we shall compute
the Poincare-Lefschetz duality pairing (10) explicitly. We first express
the above duality in the framework of the de Rham cohomology and
then reduce the problem to a residue calculus around the singular
points of differential operator Q e έ?(m θ)in. The notation will be
the same as that in §4.

Let ^°(E) be the sheaf of C°°-sections of E which vanish on
dX. Since %°°(E) is a soft sheaf, there exist a ^°°(£>valued func-
tion v on the 2-cells A(X) such that

(16) c{σ) = v(A'β)\σ-v(Δί)\σ9

where σ is the 1-cycle in X determined by (Δ^, Δ^). By (16) we can
define a C^°(£ )-valued closed 1-form φ on X by φ\A, = Vv(A'a).
Notice that φ vanishes on 9 1 . This closed 1-form represents the de
Rham class corresponding to [c] e Hι(X, dX E).

The Killing form B( , •) on the Lie algebra sl2(C) induces a hori-
zontal symmetric bilinear form B(-, •) on the flat bundle E. Explic-
itly, it is given as follows: For local sections su = {hu 9 Fu) 9 v = 1, 2
with hj, horizontal,
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We extend it to the bilinear form

( p \ / Q

E ® [\T*X \®[E® f\T*X -+ /\ Γ*X

in an obvious manner. Hereafter we write ua = u(Af

a) and va = v(Af

a)
for simplicity of notation. The fundamental 2-form Ω on l?(ra; θ)irτ

associated to the Poincare-Lefschetz duality is then represented by the
integral

Ω
Jx

We have

= f B(φ,φ).
Jx

(φφ) Σf

f B(υa,φ),

where the summation is taken over all a e A . Put wa = va—ua . Then
(15) and (16) imply that wa = Wβ on Δ^ ΠΔ«. Namely w defined
by w\A' = wa is a global section on X. We note that w\dχ = —χ9

a

where χ e Γ(dX ^?°°(is)) is defined in the end of §4. Hence we have

B(w,φ).

The second term on the right-hand side equals JdχB(w, φ). Since
B[w , φ) = 0 on dX, this term equals zero. Hence we have

We denote by (*) and (**) the first and the second terms on the right-
hand side, respectively. First we shall compute (*). If Δ^ = Δ m + 7

with j = 1, . . . , n, then B(ua, Vua) is meromorphic in Δ^ with
pole at qj. If Δ^ is either Δ ^ with / = 1, . . . , m, a — 1, 2, 3 or
Ak with k G K\{\, ... , m + n}, then B(ua , Vua) is holomorphic in
Δ^ . Hence the residue theorem implies

j ) , Vu(Am+j))
7=1

dGm+j),

7=1

where Res( ) denotes the residue at a point p eM.
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Next we shall compute (**). By (15) we can define an J[(E)-
valued 1-form ψ by letting ψ\A' = Vua . Note that ψ\eχ = Vχ. We
have

(**) = Σ / dB(ua,w)-Σ fB(ψ9w).

Evidently the first term on the right-hand side vanishes. The second
term equals - Jdχ B(ψ 9w) = JdX B(Vχ, χ). Hence we have

(**) = / B{Vχ, χ) = - Σ / B(VX > X)\y,
JdX ~{Jyι

m p

trace(rfG| G, ).

Since trace(^/G/ G/) is a single-valued meromorphic function in Δ ^
with pole at Pi, the residue theorem implies

m

(**) = ^Resp.trace(G/ dG\).
ι = l

We have thus obtained the following:

LEMMA 6.

n m

Ω = Σ Res^ trace(Gm + 7 dGm+j) + ^ Resp trace(G/ dG{).
7=1 ' /=1

6. Proof of Main Theorem. In this section we shall complete the
proof of our main theorem. We put p^ = qk~m for fc = m + 1 , .. . , π .
By Lemma 6 we have only to compute the residue of trace(G^ dG^)
at the singular point p^ for k — 1, . . . , m + n. We shall derive a
more explicit formula for trace(G^ dG^).

Recall that G^ = Φ ^ ^ Φ ^ , where Φ^ is defined by (14). Note that
Φfc satisfies the differential equation D^Φ^ = Pi&k ? where

k \Uk

An easy calculation shows D^G^ = -Φ^δPA^ . This can be rewritten
as DjcGk = ^kδQk 9 where

XT, _ (fkSk Sk
k~\-f2k ~
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Fix a base point sk in Uk\{pk} Integrating the above formula with
respect to xk, we obtain

Γkψk(ήδQk(ήdt.

Hence we obtain trace(G^ dGk) = Rk Λ δQk dxk, where

(17) Rk(xk) = tmcc(Gk(sk)Ψk(xk))

tπιce(Ψk(ήΨk(xk))δQk(ήdt.

Since tmce(Gk dGk) is a single-valued meromorphic function in Uk

with pole at pk, so is Rk .
We associate to Lk = -D^ + Qk the third order differential operator

It is well known that if (fk, gk) is a fundamental system of solutions
of Lkf = 0 then (fg , fkgk, g%) is a fundamental system of solu-
tions of (Ak): Akv = 0. The entries of the matrix Ψ^ are solutions
of (Ak). Hence the first term on the right-hand side of (17) is a so-
lution of (Ak). Let us consider the second term. Put Zk(xk, t) =
trace(Ψk(t)Ψk(xk)). By a direct calculation we have Zk(xk, t) =
-{fk{t)gk(Xk)-fk(Xk)gk{t)}2- This implies that Zk{xk, t) is a funda-
mental solution of (Ak). Namely Zk(xk , ί) is a solution of (Ak) with
respect to xk and satisfies the initial condition: D£Zk(xk, 01**=* = 0
for v = 0, 1 and D\Zk{xk, ί)\xk=t = - 2 . This means that the
function υ defined by v(xk) = f*k Zk(xk, t)q(t)dt is a solution of
Akv = q. Hence the second term on the right-hand side of (17) is a
solution of Akv = δQk . Therefore we conclude that Rk is a solution
of Akv =δQk. We have thus obtained the following:

LEMMA 7.

trace(Gfc . dGk) = Rk Λ δQk . </**,

where Rk is a single-valued meromorphic function in Uk with pole at

pk and satisfies AkRk = δQk for k = 1, ... , m + n.

We shall find lower order terms of the Laurent expansion of Rk at
pk . Recall that Qk admits the following Laurent expansion at pk :
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In the notation of §1 we have x = xk, t = tk, a = \{θ^, - 1),

f,
^ m > ' m + n > i

Since a is independent of Q, we obtain

b = Hk ϊoτ k = 1, . . . , m and x = yk_m, t = 4 _ m , α = f

2 M * "
S i n c e (t\, ... , tm; λι, ... 9 λ n ; μ \ 9 ... , μ n ) i s a l o c a l c o o r d i n a t e o f
the moduli space i?(m; θ)iπ , ^^ is nowhere vanishing. Moreover α ^
0. Hence the pole of Qk at pk is precisely of order 3. By Lemma 7,
JRfc is a single-valued meromorphic function in Uk with pole at pk .
We assume that Rk admits the following Laurent expansion at pk :

Rk = a(x - ήN + β(x - t)N^ + γ(x - t)N+2

+ β(x - t)N^ + O((x - t)N+4),

where N is an integer and a Φ 0.
We shall determine the order N of Rk at /?£. We see that AkRk =

τ(x - t)N~3 + 0{{x - t)N~2), where τ = -\a{N - \){N2 -2N- 4a).
By Lemma 7, since AkRk = δQk holds, ^ i ? £ must have a pole of
order 3 at pk . For this it is necessary that N is a non-positive integer.
If τ 7̂  0, then we have iV = 0. Let us consider the alternative case
τ = 0 which happens if and only if JV = 1 or 1 ± >/4a + 1. For
k = 1, ... , m, 1 ± \j4a+ 1 = 1 ± θ^ Hence we have JV = 1 or
1 ± θk . These are however inadequate because N = 1 is positive and
iV = 1 ±θk are not integers. For k = m+1, ... , m+n, l±>/4α+ 1 =
— 1,3. Since TV is non-positive, we have N = —I. Thus we have
only to consider the following two cases: (Case 1) N = 0, (Case 2)
k = m + 1, . . . , m + n and N = -1.

First we shall consider (Case 1). In this case a direct calculation
shows

AkRk = . ^ . ba bβ^lay
κ κ (x-ϊγ (x-ή2 x-t w

Comparing the Laurent coefficients of the equation AkRk = SQk , we
obtain a = -δt and bβ + lay = δb. On the other hand, we have
Res^iίfc Λ Qk dxk = aΛδb + (bβ + lay) Λ δt. Therefore we obtain

(18) Resp î?̂  ΛQk-dxk = lδbΛδt.

Next we shall consider (Case 2). In this case a direct calculation
shows

+ l ) b(lba + β)
+
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Comparing the Laurent coefficients of the equation AkRk = δQk , we
obtain -(2ba + β) = δt and -ea + by + \z = δb. On the other hand,
we have ResPk{Rk/\δQk-dxk) = (2ba + β)/\δb + {-ea + bγ + ^ε)Λdt.
Therefore, also in this case, we obtain the same result as (18). We have
thus obtained the following:

LEMMA 8.

ResPk(Rk Λ δQk dxk) = ί _^ [
2δHk Λ δtk for k = 1, ... , m,

Λ <JA/ /or 7 = 1, ... , n,

By Lemma 6-Lemma 8, we obtain

7 = 1 ι = l

Hence Ω coincides with the fundamental 2-form on £{m\ θ) defined
by (4) up to the constant multiple - 2 . This establishes Theorem 5.
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