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COBCAT AND SINGULAR BORDISM

A. K. DAS AND S. S. KHARE

Dold proved that a homomorphism φ: //"(BO) —> Z2 corresponds
to a manifold Mn if and only if φ(Sqp u + vp-u) = 0, V/? > 0 and
Vw e Hn-p(BO), vp being the Wu class. The object of the present
work is to have a singular analogue of this result and to study the
bordism classification of singular manifolds in BO.

1. Introduction. Singh [1] has developed the notion of cobcat for
a manifold Mn and has classified, upto bordism, all manifolds Mn

with cobcat(ΛF) < 3. Cobcat(Mw) was defined to be the smallest
positive integer k such that the number (Wι? W[ , [Mn]) = 0 for
all partitions i\Λ h ip = n wi th k <p <n.

Here we develop the notion of cobcat for a singular manifold
(Mn, /) in a space X and discuss the bordism classification of all
singular manifolds (Mn, /) in BO with cobcat(Mn, /) < 3, n = 2r.

Here all the manifolds are to be unoriented, smooth and closed, and
all the homology and cohomology coefficients are to be in Z 2 . The
space X is such that for each n, Hn(X) and hence Hn(X) is a finite
dimensional vector space over Z 2 .

We are thankful to Dr. H. K. Mukharjee of NEHU (India) for giving
helpful suggestions. The first author is also grateful to NBHM for its
financial support during the course of this work.

2. Preliminaries. Consider the set Nn(X) of bordism classes of n~
dimensional singular manifolds (Mn , /) in X, / : Mn —> X being a
continuous map. We know that Nn(X) is an abelian group under the
operation "disjoint union"

2, f2] = [ M f u M ^ Λ u / 2 ] ,

where fx u f2: M\ uM%->X is given by

Further, we have

n>0
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We know that for a point, N*(pt) = N*, the unoriented bordism ring,
and there is a N* -module structure in N*(X) given by

[Mn , f] x [Nm] = [Mn x Nm , fπ],

where π: Mn x iVm —• Mn is the projection.
For a singular manifold (ΛP, /) in X let τ: AfΠ -> BO be the

classifying map of the tangent bundle over Mn . Then there is defined
a homomorphism t: Hn(BO xX) —• Z2 given by

ί(tι; »x) = ((τ, /)*(w ® x), [M«]> = (τ*(w)/*(x), [M"]>,

where w®xe Hn(BOxX) = 0^=o//""'(BO) ® i/^X) and (τ, / ) ;
Mn -+ BO x l is given by (τ, /)(z) = (τ(z), /(z)).

The number (Wiχ -^^/*(xn_p), [Mw]) is called the Stiefel-
Whitney number of (M n, /) associated to the cohomology class
xn-p e Hn~p(X) corresponding to the partition i\ + + ir = p.
Moreover, this number is as usual bordism invariant [2].

Analogous to [1], given a singular manifold (Mn , /) in X there is
associated a Poincare algebra P* given as follows:

Let J = {z e H*(BOxX): either dimz > n, or for all z' e
yp-dim^BO χ χ ) ? { ( τ > / } * z ( τ ? / } * z / ? [ M Ί ) = 0 } m

It is easy to see that / is an ideal of the graded algebra H*(BO xX).
Set

„ H*(BOxX) + u .. . , u
P* = — ^ — , the quotient algebra.

j

Let q: H*(BOxX) -• P* be the quotient map. Clearly, P* = 0 if
and only if (Mn , /) bounds. Let z e 77*(BO x l ) ; w e say, " z = 0
in P*"if tf(z) = 0.

As in [1], we have the following proposition, whose verification is a
routine matter.

PROPOSITION 2.1. If (Mn, /) is not a boundary then
(a) P* w α# n-dimensional graded algebra with Poincare duality,
(b) the Steenrod algebra acts on P* with the action given by

(c) if ze Hn(BO xX) then q(z) = 0 if and only if

) = 0. D

It is easy to see that for all p > 0, and for all z e iF-^(BO xX),

where t>p e HP(BO) is the Wu class. So, in view of the above propo-
sition, we have Sqp(z) = (υp ® \)z in P*.
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3. Extension of Dold's and Milnor's results to singular case. Dold
[3] has proved the following

Result 3.1. For each integer n > 0, if φ: Hn(BO) -• Z 2 is a homo-
morphism then there is an /i-dimensional closed manifold Mn with
φ(w) = (τ(w), [Mn]) for all w e Hn(BO) if and only if φ{Sqp(u) +
vP'U) = 0 for all u e Hn~P(BO) and for all p > 0, ^ G iF(BO)
being the Wu class. D

Here we shall extend this result to the singular case as follows:

THEOREM 3.2. For each n>0, if h: Hn(BO xX) -> Z2 is a homo-
morphism then there is an n-dimensional singular manifold (Mn, /)
with h(w <g> JC) = (τ*(w)f*(x), [Mw]) /or all w®xe Hn(BO xX) if
andonlyifh(Scf(u®y) + {vp-u)®y) = 0 for all u®y e Hn~p(BO xX)
and for all p>0, vp e HP(BO) being the Wu class.

Proof. It is easy to see that the condition is necessary. We prove
that the condition is sufficient also. Let {cm,/}/€/„, denote a basis for
the vector space Hm(X) over Z2 , m > 0. Let cm^ e Hm(X) be
the cohomology class dual to cmj i.e. (c m ' / , cmj) = δij . Note that
{cm>1} forms a basis for Hm(X). Now, for each cmj we can choose
a singular manifold (MJ1, jf) with (f™)*([M/

m]) = c m J , [2]. Thus,
we have

Now,

n~\xl) = φi/^BO) ® Hn~\X).
ι=o

Define,

by

Clearly, A? satisfies the condition given in Result (3.1) and so there
exists a manifold Vf* such that

for each i
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Define hj: Hι (BO) -+ Z2 by

fκγ{cn-ϊ'i), [M] x Vf\)

χ

Now,

h j ( S q ι ( I ) + v, I)

= h{vx ®cn-x'1) + Σ ( ^ i ((//Γc"- 1 ' '® 1), [Λff x

j

Since, Sq1 cn'1 >' e Hn(X), there is a subset Kn c /„ such that

Therefore,

d) ' s i n c e ((f"ycn'k, [Mβ = skj
k k

= 0.

So, by Result (3.1), there exists a manifold V^ such that

for each i Eln-\.
Now, using induction, we define /?•: Hι(BO) —»• Z 2 by

(τ*W • {{fn-mγcn-l,i 0 ^ ? [ A f

0<w<l

where I <l <n, and each ί y is given by hj1 (m < I).

χ
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Now, it is enough to show that h\ satisfies the condition given in
(3.1). For if it is so, then there exists a family {V}}ieini of manifolds
such that for each / G /„_/,

Also, we already have a family {^ °}ιe/ of manifolds such that

for each i e In. It is then easy to see that the given homomorphism
h: Hn(BO x l ) ^ Z 2 corresponds to the singular manifold (Mn , /)
given by

Mn = \jM»-ιxV/ and f=

where the disjoint union |J is taken over all / e /„_/ and all 0 < / <
n, and π: M"~ι x V} -± Mf~ι denotes the projection map.

Note that, for each p > 0 and for each u e Hι~p(BO),

hli(Sqp u + vp - u) = 1 + 11 + III,

where

= h(Sqp u Θ cn~1^ + (υp u) ® cn~lJ)
ί \

= h
r+s=p

φ\

, by hypothesis on h,

h(Sqru®Sqscn-ι>i),
r+s=p

Π = Σ <τ*(Sqp u)((fjι-m)*cn-''i ® 1), [M?~m x VJ"])

0<m<l

III =

"- / ' i ' ® 1), [Mj-m x VJ*1]), and

^-1'1 <8> 1), [M]~m x VJ"])

n-l'i® 1)), [Mj-m x VJ"]).



220
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j,m r+s=p

yφ-p

> (Sq (τ u)((f? ) Sq c ' ® 1 ) ,

x

rφp

Now, since Sqs c""7'1' e i/n-/+s(ΛΓ), there is a subset ϋ:π_/
such that

So,

(1)

of 7Λ_/+i

h(Sqru®cn-ι+s'k)

(τ*(Sqr u)((fjι~m)*cn-ι+s'k

X

J ,m

*(Sq r ι/), [Kz"

noting that I - s <l

(Scf(τ*u)((f?-m)*Sqscn-ι>i®l)ΛMJ-mxVJn])

Also,

(*) S q V ^ ' ^ 1), [M»-m x F f ])

J,m

by dimensional consideration, since m> l—s. Further, we note that u
is a polynomial in Stiefel-Whitney classes of BO, so that Sqr(τ*w) is
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a polynomial in Stiefel-Whitney classes of M"~ι+S x Vj~s. Therefore
the above expression (*) becomes equal to

(2) E α / - ^ r S q ^ - ' ' * , [MJ'ι+s])(Sqr(τ*u)9 [V]-'])
j

= Σ Σ ((J«-'+')*cn-i+s>k, [M»-ι+s])(Sqr{τ*u), [VJ'S])

k

Hence, combining I with (1) and II + III with (2), it follows that

hl(Sqp u + vp u) = I + II + III = 0.

That is, h\ satisfies the condition given in (3.1). D

Now, consider the universal bundle γ: EO -> BO and the carte-
sian product γ x γ over BO x BO. Let μ: BO x BO -> BO be the
classifying map of γ x γ. μ has the property that

The product of two singular manifolds (Mm, /) and [Mn, g) in
BO is given by (Mm x Mn , μ o (f x g)), and this product induces a
multiplication in iV*(BO) given by

[Mm, f] x [MM , g] = [Mm x Mn , ^ o (/ x g)],

which makes iV*(BO) an algebra over Z 2 .
Analogous to [4], we have

LEMMA 3.3. The Stiefel-Whitney numbers

(W2iι W2ir(μ o (g x g))*(W2ir+ι W2iJ , [N x JV]>

of the product (N, g)x(N, g) in BO are equal to

while the numbers

(Wjχ Wjp(μ o (g x g))*(Wjp+ι • WjJ , [N x

z^ro if some j ^ is odd.

Proof, Routine verification.
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THEOREM 3.4. Let (M2n, /) be a singular manifold in BO, such
that

whenever some j ^ is odd. Then

[M2n , f] = [(N», g) x (TV", *)] in N2n(BO).

Proof. We shall construct a singular manifold (Nn, g) in BO whose
Stiefel-Whitney numbers

are equal to

(W2i{ W2i/*(W2ir+ι•.. ^ 2 ί ; + 5 ) , [M2n]).

This will imply that (M2n , /) is cobordant to (Λ^ , g) x (iVw , ^ ) , by
(3.3).

Let Rn c /F(BOxBO) be the vector space generated by all el-
ements of the form Sq/7(x ® y) + (vp x) ® y . The Stiefel-Whitney
numbers of each manifold (Nn, g) determine a homomorphism

given by hχ(x®y) = ((τ, g)*{x®y), [iV]), and by Theorem (3.2) we
know that a given homomorphism Hn (BO x BO) -* Z 2 corresponds
to a singular manifold in BO if and only if it annihilates Rn .

Define the "doubling homomorphism"

d: if* (BO x BO) -+ if* (BO x BO)

by

Let [M2n, /) satisfy the hypothesis of Theorem (3.4). Then we shall
show that hM°d: if"(BO x BO) -• Z 2 annihilates Rn . This will
prove the existence of the required manifold (Nn, g ).

Let I c if*(BOxBO) denote the ideal generated by the family
® 1, 1 ® Wi)i o d d . Note that

Sq2/ d(Wj ® 1) = (Sq2
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where (£) denotes the binomial coefficients reduced modulo 2. There-
fore using the fact that

we get

Sq2id(Wj ® 1) = (J2 (^ ~ 1 1 l ~ iyj W2i_2lW2j+2] ® 1 mod

= ί/(Sq'(^®l)) mod/.

Similarly, Sq2id{l <g> Wj) = </(Sq'"(l ® »})) mod /. Further, if

Sq2' d(x <S>y) = d(Sq'(x ® y)) mod / and

Sq2i d(x ® y) = ^(Sq^x' ® /) ) mod /,

then

{Sq2pd{x®y))(Sq2gd{x'^y')) mod /
p+q=i

)) mod /

(x ®y)(x' ®/))) mod /.

Hence, by induction, it follows that

Sq2/ d(x <8) y) = d(Sq'(x ® y)) mod /,

for each x ® y G i/*(BO x BO).
It is simple to verify that / is closed under Steenrod squaring op-

eration. Applying induction on p, one gets

d(vp <g> 1) = (υ2p <g> 1) mod /.

Now, consider the manifold (M2n, f). By the hypothesis on
(M2n, f) we have

hM{I2n) = 0, where I2n = I n i/2"(BO x BO).

Therefore, for any generator Sqp(x ®y) + (vp ® l)(x <g>y) of R" we
have, using the congruences established above,

(hM o rf)(Sqp(x ® y) + (υp ® l)(x ® y))

= hM(Sq2p(d(x ® y)) + (ϋ 2 p ® l)έ/(x ®y) + (terms in 72"))

= 0.
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That is, fiM°d annihilates Rn and so by Theorem (3.2) there exists
a singular manifold (Nn, g) in BO such that HM °d = h^. Hence,
the theorem follows. D

4. Cobcat and singular bordism in BO. Analogous to [1], we define
the cobcat for a singular manifold {Mn, /) in X as follows

DEFINITION. Cobcat(Mw, /) is the smallest positive integer k such
that for each m, 0 <m < n, the number

for all partitions i\ H h ip of m and for all partitions j \ H h j q

of n-m, with k <p + q < n (xj e Hh[X) for all j '^). If no such
k exists define cobcat(ΛP , / ) = « + 1.

REMARK 4.1. (a) Cobcat(Mw) < cobcat(Mw, / ) ,
(b) cobcat(Afn , /) = 1 if and only if (Mn , /) bounds,

(c) cobcat(Mr t, /) < nil(Im(τ, /)*) < cat(τ, /) < cat(Mw),

(d)

cobcat(Λff u M2

W, fx u f2) < max{cobcat(Mf, ft), cobcat(Af2

w, /2)}.

Now we shall discuss the singular version of some results proved in
[1]. Let P* be the Poincare algebra associated to the singular manifold
(Mn , /) in X. As in [1], an element z of any graded algebra A* will
be called ^-decomposable if it is zero or is the sum of the products
Z\-Z2 zp where zz e A* with dim zf > 0 for each /, and p > k.

PROPOSITION 4.2. Let cobcat(ΛF , / ) < / : .
( a ) / / z G P* is k-decomposable, then z is zero.
(b) If z e P* is (k - \ydecomposable and dimz < n then z is

zero.

Proof. Note that any ^-decomposable element z of H* (BO xX) =
H*(BO) ®H*{X) can be written as a sum of the products z\-z2

zp , where each z\ is of the type Wj®\ or 1 ® x} 9 and p >k. Also
for any z' e 7/w-d i m z(BO xX) we have

( ( τ , / ) * z 1 ( τ , / ) * z 2 . . . ( τ , / ) * z / 7 ( τ ? / ) * z / , [ M « ] ) = 0,

since c o b c a t ( Λ P , / ) < / : and p > k. Hence (a) follows, using the
fact that any /^-decomposable element of P* can be obtained from a
^-decomposable element of H*(BO xX).

As in ([1], 1.2), (b) follows from (a). D
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From now on, the ambient space X will be taken to be the universal
base space BO and {Mn, f) will denote a singular manifold in BO
with cobcat(M", /) < 3.

LEMMA 4.3. (a) // z(Wt ® 1) = 0 and z(l <S> W,) = 0 in P*, where
z e Hn-'{BO x BO) and 0 < i < n, then z = 0 in P*.

(b) For j > 0,

and

2 y + 1 q^ 27) / 7 1 < n

in P*.

Proof, (a) By the hypothesis, the last proposition and the fact that
cobcat(Λ/n, /) < 3, we have

<(τ, /)*z(τ, f)*z', [Mn]) = ((τ, /)*(z z>), [M"]) = 0

for all z' € // '(BO x BO). So z = 0 in P*.
(b) Note that

Sqι(W2J ® 1) = ( ^ ® 1)(H^ ® 1) + ̂ + 1 ® 1

If 2j + 1 < n then (W^ <8> l)(W^y ® 1) > being decomposable, is zero
in P* . If 2} + 1 = n, then ( ^ ® l)(W2j ® 1) = S q ^ ^ ® 1) in P*.
For the last part of (b) one has

Sq !(l

LEMMA 4.4. If n is even and n > 2, then Wt®\ = 0 and \®Wt•=• 0
m P* for all odd i.

Proof. By Lemma (4.3), it is enough to show that
(a) {Wi

(b) {Wi
(c) (1 ® Wi){\ ® Wn-i) = 0 in P* for all odd i.
For (a), let i = 1 then

i (8) 1) = Sq1 Sq'ί^n-Σ ® 1) = 0

in P*, using (4.3) and the fact that Sq1 Sq1 = 0. Now let i = 2j+l,
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j > 0 and n - i = Ik + 1, k > 0 then by (4.3)

= (Wx ® l)(JF2y 0 1) S q 1 ^ ® 1) = 0

in P*, as it is 3-decomposable. Hence (a) follows. For (b), using the
same technique as in (a), we have (Wx? ® 1)(1 ® f^-i) = 0 in P* for
all odd / < n - 1. However, for / = n - 1, we have by (4.3)

W\)

Wx) = 0

in P*, as it is 3-decomposable. Thus (b) follows. Now, (c) can be
proved by the same technique used in (a) and (b) above. α

PROPOSITION 4.5. If {Mn, /) is a non-bounding n-dimensional sin-
gular manifold in BO with cobcat(Mn, /) < 3, where n is even and
n > 2, then (Mn, /) is cobordant to a product (N, g) x (N, g) in
BO, where (N, g) is also non-bounding and cobcat(7V, g) < 3.

Proof. By Theorem (3.4) and Lemma (4.4), there exists a singular
manifold (N, g) is BO of dimension n/2 such that (Mn, /) is
cobordant to the product (N, g) x (N, g). Also,

/ ^ + 1 W2iJ, [M]),

where z'i H h ip+q = n/2 is a partition of n/2. Hence the propo-
sition follows. D

In the above proposition one can observe that if the underlying
manifold Mn in (Mn, /) were a boundary then TV in (N, g) would
also be a boundary. Further, using induction, one can easily get the
following

COROLLARY 4.6. Let (Mn, /) bean n-dimensional singular mani-
fold in BO with cobcat(Λfn, /) < 3. Let n = 2r m where either m is
odd and m>3,orm = 2. Then either (Mn , /) is a boundary or else
(Mn, /) is cobordant to (N, g ) 2 \ where (N, g) is a non-bounding
m-dimensional singular manifold in BO with cobcat(ΛΓ, g) < 3. D
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Finally, in view of the above results and the fact that iV2(BO) is gen-
erated by the bordism classes [(RP1, τ θ 2 ] , [RP2, τx] and [RP2, c],
where τγ: RP1 -• BO is the classifying map of the canonical line bun-
dle over RP1 (i = 1,2) and c: RP2 -> BO is the constant map, we
can make the following remarks.

REMARK 4.7. Let (Mn, /) be as in (4.6) and n = 2r, r > 1.

Then either (Mn, /) is a boundary or else (Mn, /) is cobordant
to (iV, gγr , where (JV, g) is a 2-dimensional singular manifold
generated by (RP1, τ/) 2, (RP2, τz) and/or (i?P 2, c). D

REMARK 4.8. In Remark (4.7) if, in addition, the underlying man-
ifold Mn in (Mn, /) were a boundary then (TV, g) would be equal
to exactly one of the following

(i) (RPKτt)2,
(ii) (i?P 2,c)u(i?P 2,τ/),or

(iii) (RP1, τz)
2 U (i?P2, c) u (i?P2, τ,),

where (Mt ,/i)u(M 2, f2) = (Mx uM1,fιuf2). Ώ
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