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MINIMAL ORBITS AT INFINITY
IN HOMOGENEOUS SPACES OF
NONPOSITIVE CURVATURE

MaRIA J. DRUETTA

Let M denote a simply connected, homogeneous space of nonpos-
itive curvature and let G be the connected component of the identity
of the isometry group of M .

In this paper we study the geometric consequences on A if M(oc0),
the boundary sphere of M , admits a G-orbit whose closure is a mini-
mal set for G . A characterization of symmetric spaces of noncompact
type in terms of the action of G in M(oc0), is obtained. As an ap-
plication we give some conditions, in terms of the Lie algebra of a
simply transitive and solvable subgroup of G that is in standard po-
sition, which are equivalent to the fact that A/ is a symmetric space.

Introduction. Let M denote a simply connected, homogeneous
space of nonpositive curvature (K < 0) and let G be the connected
component of the identity in /(Af), the isometry group of M .

In this paper we study the geometric consequences on M if M(o0),
the boundary sphere of M , admits a G-orbit whose closure is a mini-
mal set for G. In particular, we obtain a characterization of symmet-
ric spaces of noncompact type in terms of the action of G in M (o0).
As an application, some conditions in terms of properties of the Lie
algebra of a simply transitive, solvable subgroup of G that is in stan-
dard position, which are equivalent to the fact that A is a symmetric
space, are obtained.

In §1 we give a characterization of symmetric spaces in terms of
the G-minimality of the closure of some orbits of G in M(o0), or
equivalently in terms of K, the stability subgroup of G at any point
in M , we obtain that M is a symmetric space of noncompact type if
and only if G(x) = K(x) for a particular x in M (oco) (Theorem 1).

In §2 we get a decomposition of ,, the Lie algebra of G, that
coincides with the canonical one when A is symmetric. It is used to
give, as an application of Theorem 1, a characterization of symmetric
spaces of noncompact type in terms of properties of the Lie algebra
of a simply transitive, solvable group of isometries of A/ that is in
standard position (Theorem 2).
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Preliminaries. Let M be a complete, simply connected Riemannian
manifold with nonpositive sectional curvature (K < 0). Let I(M)
and Iy(M) denote the group of isometries of M and the connected
component of the identity respectively. All geodesics of M will be
assumed to have unit speed. Geodesics @ and S of M are asymp-
totic if d(a(?), B(t)) < ¢ forall t > 0 and some ¢ > 0. M(c0)
will denote the set of equivalence classes of asymptotic geodesics.
M = MUM c0) equipped with the cone topology is a compactification
of M and M (o), with the induced topology from M , is homeomor-
phic to the (n—1)-sphere, where n = dim M . For a geodesic y of M
we let y(o0), y(—o0) denote the asymptotic equivalence classes of y
and y~!(z — y(—t)) respectively. Isometries of M extend to homeo-
morphisms of M(co) by defining g(y(o0)) = (g o y)(c0). Moreover,
the map (g, x) — g(x) of I(M) x M(o0) is continuous.

We say that distinct points x and y in M(oco) can be joined by a
geodesic of M if there exists a geodesic y of M such that y(o0) = x
and y(—oo) = y. For each point p in M the geodesic symmetry
Sp: M — M is defined by s,(y(¢)) = y(—t) for all geodesics y of M
with y(0) = p and for all ¢+ in R. The map s, fixes p and is a
diffcomorphism of M (s, = exp,oS o exp, !, where S(v) = —v for
all v in T,M). Let G* denote the subgroup of diffeomorphisms of
M generated by the geodesic symmetries {s,: p € M}. It is called
the symmetry diffeomorphism group of A . The group G* acts on
M (o0) by homeomorphisms setting for each p € M and x € M (o),
Sp(x) = ypx(—o0) (where y,x denotes the unique geodesic such that
7px(0) =p and ypx(oc0) = x).

Let I" denote any subgroup of 7(M). Two points x and y in
M (00) , not necessarily distinct, are said to be I'-dual if there exists a
sequence {g,} C I such that g,(p) —» x and g;!(p) =y as n — c©
for some (or any) point p of M . The set of points in M (oco) that are
I'-dual to a given point x € M(oo) is closed in M(oo) and invariant
under I'. The limit set L(I') is defined by L(T') = I'(p)~ N M(x3)
(p € M) where I'(p)~ is the closure of the I-orbit of p in M. A
closed subset X C M(oo) is said to be a minimal set for I" if I'(x)~
(the closure of the I'-orbit of x in M(c0)) coincides with X for
every x € X.
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Assume that M is homogeneous. Then M admits a solvable Lie
group S acting simply and transitively on M (see [1, Proposition
2.5]). Let s denote the Lie algebra of S. We know that S with the
left invariant metric associated to the p-inner product on s, which
is induced by the action of I(M) on M (g — g(p), p is any fixed
point in M) is isometric to M . Moreover, s = [+, 4] ® 2 where =,
the orthogonal complement of [+, s] in s+, is an abelian subalgebra
of s (see [1, Theorem 5.2]). For each H € =, yy(t) = exptH(p) is
a geodesic of M since exptH 1is a geodesic of S (see in [2, §3] the
expression of the Riemannian connection associated to a left invariant
metric). The connected Lie subgroup A = exp(z) with Lie algebra =~
is a flat totally geodesic submanifold of S'.

Let 1 € (2*. 4 is said to be a root of =z in s+ if 4§ = {U €
s°: (adyg —A(H)I)*U = 0 for some k > 1 and all H € 2} is nonzero.
Here, 2° and ¢ denote the complexification of z and s respectively
(see [2, §5)).

If G=1y(M) and K is any maximal compact subgroup of G, by
the maximality of K and the Cartan fixed point theorem there exists
a point p € M such that K = G,, the stability subgroup of G at
p (G, is compact by Theorem 2.5 (Ch.IV) of [8]). Hence for any
p € M, G, is a maximal compact subgroup of G since the stability
subgroups of G are conjugate in G .

1. The orbits of G = [H(M) as minimal sets for G in M (co). Let
M be a simply connected, homogeneous space of nonpositive sectional
curvature. In this section we give a characterization of symmetric
spaces of noncompact type in terms of the G-minimality of the closure
of some orbits of G = Ip(M) in M(o0). For any z € M(c0) let G,
denote the subgroup of G defined by G, = {g € G: g(z) = z}.

The proof of the following lemma can be found in [3, Lemma 2.4a].
We state it here because it will be used often.

LEMMA 1.1. Let T be any group of isometries of M. Let x € M(o0)
and let y be a geodesic in M such that x = y(c0). If y = y(—o0) and
z is I'-dual to y then z eT'(x)~.

PrROPOSITION 1.2. Let T" be a subgroup of I(M) acting transitively
on M. Assume that T'(y)~, the closure of the T-orbit of y in M(c0),
is a minimal set for T'. If x is a point in M(oco) which is joined to y
by a geodesic of M then x is I'-dual to y.



290 MARIA J. DRUETTA

Proof. Let y be a geodesic of M with end points x = y(co) and
y = y(—o0) and set p = p(0). Since L(I') = M(o0) (I' acts transi-
tively on M) we can find a sequence {g,} C I" such that g,(p) — x as
n — oo . Passing to a subsequence if necessary, g, !(p) converges to a
point z € M(c0) as n — oo. By Lemma 1.1, z€I'(y)™ since z is I'-
dual to x and y is joined to x by y. By hypothesis, I'(z)” =T'(y)~
and hence y € I'(z)~ . We note that I'(z)~ is contained in the set of
points which are I'-dual to x since this set is closed, invariant under
I' and z is I'-dual to x. Thus, y is I'-dual to x or x is I'-dual to

y.

THEOREM 1. Let M be an irreducible, simply connected and nonflat
homogeneous space of nonpositive sectional curvature. Set G = Iy(M).
Let x € M(oo) be a point such that G, acts transitively on M. If
Yy € M(00) is a point that can be joined to x by a geodesic of M, then
the following properties are equivalent.

(1) G(y)~ is a minimal set for G in M(0).

(2) G(y) = K(y) for any maximal compact subgroup K of G.

(3) G(y) is a closed subset of M (o).

(4) M is a symmetric space of noncompact type.

(5) Gy acts transitively on M .

REMARK. If M is a simply connected, homogeneous space of non-
positive curvature then M admits a simply transitive, solvable group
S of isometries that has a fixed point in M (co) by Theorem 3.4 of [5]
(M has no flat de Rham factor). Moreover, if S is a transitive group
of isometries of M that does not have a fixed point in M (00), then
M must be symmetric of noncompact type by [7, Proposition 4.4.7].

Proof of Theorem 1. (1) = (2) Let K C G be any maximal compact
subgroup. Then there exists a point p € M such that K = G,, and
hence G = K - G since G, acts transitively on M. Let y € M(o0)
be a point that can be joined to x by a geodesic of M . Then,

(i) G(x)=K(x).

Let p € M be the point above, and let x* = s,(y) = ypy(—00).
Then x* is G-dual to y by Proposition 1.2 and the fact that G(y)~
is a minimal set for G in M(co0). Hence x* € G(x)™ = K(x) by(i)
and Lemma 1.1, and we obtain

(i) x = k*(x*) for some k* € K .

Let g € G be given, and let z = 5,(g(y)) = ?pg)(—00). Then y
can be joined to g~!(z) by a geodesic of M , and hence y and g~ !(z)
are G-dual by Proposition 1.2. Therefore y and z are G-dual, and
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it follows that z € G(x)~ = K(x) by (i) and Lemma 1.1. From (ii)
we obtain

(iii) z = k(x*) for some k € K.

Finally, y = 7,,-(—0co) and therefore k(y) = Pgpix)(—00) =
Ypz(—00) = g(y) by (iii) and the definitions of p and z. Hence
G(y)=K(©).

(2) = (3) This is obvious since K is compact.

(3) = (4) Weset K = G, where p = »(0) and y is the geodesic
in M such that y(—oc0) = y and p(c0) = x. If G(y) is closed
then G(y)~ = G(y) is a minimal set for G in M(oco), and hence
G(y) = K(y) by (1) = (2) since K is a maximal compact subgroup
of G.

If X = K(x)UK(y) then X = G(x)UG(y) is a closed, G-
invariant subset of M (oo). It then follows that X is invariant un-
der the symmetry diffeomorphism group G* since s,(k(x)) = k(¥),
sp(k(y)) = k(x) forany k € K (koy joins k(x) and k(y) through
p) and sg,) = gospog~! (M =G(p)).

Suppose that X = M(oco0). Since M(oco) is homeomorphic to the
(n — 1)-sphere, it follows from Baire’s Theorem that G(x) (or G(y))
has interior nonempty. Then G(x) (or G(»)) is an open set in M (o0o)
which is also closed, and consequently G(x) = M(co0). In this case,
by applying Proposition 4.12 of [3], M is a symmetric space of rank
one.

If X G M(c0), it follows from Theorem 3.2 of [6] that M is a sym-
metric space of noncompact type of rank > 2 since it is irreducible.

We remark that in the proof above we only needed a geodesic y of
M satisfying y(0) = p and G(y(£o00)) = K(p(£0)).

(4) = (5) Note that if K =G, (p € M), G(y) = K(y) by Theo-
rem 4.5 of [3], and it follows immediately that G =K -G, =G, - K.
Hence M = G(p) = Gy(p) since G acts transitively on M .

(5) = (1) If G, acts transitively on M we have that G =K -G, =
Gy - K, where K = G, (p € M). Thus G(y) = K(y) is a closed
subset of M(o0), and hence G(¥)~ = G(y) is a minimal set for G in
M(0).

This completes the proof of Theorem 1.

Note that Theorem 5.4 of [3] and Proposition 4.7.1 of [7] show that
if M is simply connected and homogeneous with sectional curvature
K <0, then M is symmetric of noncompact type if and only if G(y)~
is a minimal set for G for every y € M(oc0). Thus, by the remark
above, Theorem 1 gives us a strengthened version of this result.
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2. A canonical decomposition of the Lie algebra of Iy(M). Let M
be a simply connected, homogeneous space of nonpositive sectional
curvature. We assume that M has no flat de Rham factor. We denote
by B the Killing form on ¢, the Lie algebra of G = Ip(M).

In this section, a decomposition of £ that coincides with the canon-
ical one when M is symmetric of noncompact type, is obtained. As an
application of Theorem 1, we get some algebraic conditions in terms
of 2 and the data s, the Lie algebra of a subgroup S of G that
acts simply transitively on M and is in standard position, in order to
ensure that M is a symmetric space of noncompact type.

A closed subgroup S of G is said to be in standard position if

(i) S acts simply transitively on M .

(ii) For some point p € M, B(H,U) = 0 for all H € z and
U € £, where 2 is the orthogonal complement of [+, 4] relative to
the p-inner product on s and £ is the Lie algebra of K, the stability
subgroup of G at p.

We remark on the following facts about groups that are in standard
position:

(1) If B(2z, £) = 0 for one point p € M then B(z, £) = 0 for
every pe M.

(2) There is a simply transitive, solvable group of isometries of M
that is in standard position. If a simply transitive, solvable group S
is in standard position, then gSg~! is also in standard position for
any g€G.

(3) If Sy and S, are two simply transitive, solvable groups of
isometries on M in standard position, then they are conjugate by
an element of G.

(4) If M is a symmetric space of noncompact type and G = K -
A- N is an Iwasawa decomposition of G, then S = A4- N is a simply
transitive, solvable group of isometries of M in standard position.

We refer the reader to §6 (pages 45-57) of [2] for a more complete
discussion. The definition and facts mentioned above are explicitly
stated there (6.4, 6.5-(a), 6.5-(c), Theorem 6.7 and Corollary 6.10).

Let S be a solvable Lie subgroup of G that acts simply-transitively
on M and is in standard position. Let K be the stability subgroup
of G at p, a point in M chosen arbitrarily, and let ~» = {Xs ¢
#:B(X,U)=0 forevery Uec £}.

PROPOSITON 2.1. 2 = £ @ 1 is a direct sum decomposition of z
such that Ad(k)() C . Moreover, « is a maximal abelian subspace

Of/&.
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Proof. We first show that B restricted to £ x £ is negative definite.
Although the proof of this fact is the same as that in the symmetric
case, we include it for the sake of completeness.

Since K is compact and acts on & by the adjoint representation
Ad(K) c Gl(¢), & admits an inner product ( , ) such that Ad(k)
are isometries for all kK € K. Thus, ady is skew symmetric with
respect to ( , ) forevery X € £. Let {X;} be an orthonormal basis
of £ with respectto (, ). For X € ¢,

B(X, X)=tr(adyoady) = Y (ad} X;, X))

l

= -——Z(adXXl’, adXXi) S Os
i

and the equality holds if and only if X € »(¢), the center of 2. By
Theorem 2.1 and Proposition 2.3 of [3], #(#) = 0 since it is the Lie
algebra of the center of G. Thus, B|,, . is negative definite.

Next we will prove the proposition. It is clear that ,~ is a subspace
of 2z which is Ad(K) invariant since # and B are both invariant
under Ad(K). From the assertion above, we have that £ N ~ = 0.
It remains to show that z = £ + . Let {X;} be a basis for £ so
that B(X;, X;) = —d;; (B|gxs¢ 1is negative definite). If X € 2, we
set Y =X —-3,B(X, X;)/B(X;, X;))X;. Y € , and hence X =
YiBX, Xi)/B(Xi, Xj)Xi+Y €+ .

Since B(z, #) = 0, we have that z C . The last assertion follows
from Lemma 2.2 below since C ' (), the centralizer of z in ., is
a.

LEMMA 2.2. C,(2) ={X € £:[X,H]=0 forall H€ 2z} = 2.

Proof. Let H be an element in ~ satisfying o(H) > 0 forall a € 2*
such that a+if isarootof 2z in 4/ = [+, s]. Such an H exists since
M has no flat de Rham factor (see [1, Proposition 5.6]).

Let X be a unit vector in ,~ such that [X, H] = 0. If X(¢)
is the variation vector field df/ds (0,¢) on ygy(t) = exptH(p),
where f: R x R — M is the geodesic variation of yy given by
f(s,t) = exp sXexp tH(p), then X is a Jacobi vector field on yy
with X(0) =dg.X (¢: G — M is defined by ¢(g) = g(p)). More-
over, f(s,t) = (exp tHexp sX)(p) since [H, X] = 0. Therefore,
X(t) = d(exp tH)p(dp.X) and |X(t)] = |dpX|. Since X is a
Jacobi vector field on yg, it follows that it is also parallel on ygy
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(the convex function g(t) = |X ()| is constant and hence, g”(f) =
Vs, > Xl,z,ﬂ(t) — K(yy(¢), X(¢)) = 0). Hence, X induces a paral-
lel Jacobi vector field J on the geodesic exp tH in S such that
p(J(0)) = X, where p denotes the projection from & onto , asso-
ciated to the decomposition z = £ @ . By the same argument as in
the proof of Theorem 1.3 of [4], it follows that J(0) € z and hence,
X €a since 2C 1.

We observe that we have actually shown that C,(H), the centralizer
of H in ,,is . Here, H is chosen as in the beginning of the proof
of Lemma 2.2.

THEOREM 2. Let M be a simply connected, homogeneous space of
nonpositive curvature with no flat de Rham factor. Let g be the Lie
algebra of G = Io(M) and let S be a subgroup of G that acts simply
transitively on M and is in standard position. Let s and # be the Lie
algebra of S and K respectively, where K is the stability subgroup
of G at a point p in M chosen arbitrarily. If . is the orthogonal
complement of # with respect to the Killing form B on g and z is
the orthogonal complement of [+, 4] in 4, relative to the inner product
on s induced by p, then the following properties are equivalent.

(1) [@, LlC #£.

(2) = UfAd(K)(e): k € K}.

(3) The geodesics through the point p are orbits exp tX(p) for every
XE€E .

(4) M is a symmetric space of noncompact type.

Proof. (1) = (2) (See [8, Lemma 6.3 (iii), Ch. V].) Let H be an
element in 2 such that C,(H) = « (see the remark at the end of
Lemma 2.2). Let X € »~ be fixed and let f: K — R be the map
defined by f(k) = B(H, Ad(k)X). We will show that Ad(ky)X € =
whenever kq is a critical point of f. In fact, for such a ky (it exists
since K is compact) and any U € # the function of t € R, fy(t) =
f(exp tUkgp) has a critical point at ¢ = 0. Hence,

0= f;(¢1) =B(H, [U, Ad(ko)X1) = B([H, U], Ad(ko)X)
(for any Z € £, adz is skew symmetric relative to B). Note that
[H, Ad(ko)X] € £ since [z, ] C # and . is Ad(K)-invariant.
Moreover, the result above is true for all U € # . Now, from the fact

that B is negative definite on £ , it follows that [H, Ad(ky)X]=0.
Hence, Ad(ko)X €z or X € Ad(ky')(=).
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(2) = (3) Note that under our hypothesis K # id; otherwise,
z = and M is Euclidean (K(X,Y) =0 forall X and Y € «).
Given X €  choose k € K and H € z so that X = Ad(k)H . Then
exp tH(p) isageodesic of M and hencesois ky(t)=k(exp tHk~!)(p)
=exp tX(p).

(3) = (4) Assume first that M is irreducible. Let yy be the
geodesic of M defined by yy(t) = exp tH(p). We choose H a unit
vector in «z such that x = yy(oo) is a fixed point of S (see Theorem
3.4 of [5]) and we will show that if y = yy(—o0) then G(y) = K(y) for
K = Gy, . It will then follow from Theorem 1 that A is a symmetric
space of noncompact type since G(y) is closed in M (c0).

Let g be any element in G and set g, = exp nHg~!. Since y =
limexp—nH(p) as n — oo, we have that g(y) =limgexp—nH(p) =
limg,;!(p) as n — oco. Suppose that g,(p) = expf, X,(p) with
Xyn a unit vector in . Therefore, there exists {k,} C K so that
g lexp th X, =k, and g;' = k, exp —1,X, . By assuming that k, —
k , choosing a subsequence if necessary, we get g(y) = lim g, !(p) =
k(y) as n — oo since X, — H (gn(p) — X).

In the general case, assume that M = M; x M, where M; and
M, are irreducible. Since G = G; x G, (direct product) with G; =
Iy(M;), if p = (p1, py) and K; is the stability subgroup of G; at p;
(i=1,2), we have that K = K; x K, and hence # = £, ® £, , where
#; is the Lie algebra of K; (i =1, 2). Thus, if ; is the orthogonal
complement of #; with respect to the Killing form B; on g;, the
Lie algebra of G;, it follows that » = »; @ », since B = B & B;
(note that 2z = 2| @ £, is a direct sum of ideals). Then the geodesics
through the points p; are orbits exp tX; with X, € »; for i=1, 2,
and hence M; is a symmetric space of noncompact type. Therefore
M is symmetric.

(4) = (1) We note that £ is semisimple (M has no flat de Rham
factor) and z = £@ . is the canonical decomposition of ,~ associated
to M =G/K. Hence, [, ~] C # and (1) follows since = C ,-.
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