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EXPLICIT CONSTRUCTION OF
CERTAIN SPLIT EXTENSIONS OF NUMBER FIELDS

AND CONSTRUCTING CYCLIC CLASSFIELDS

S. GURAK

The problem of explicitly constructing classfields (Hubert's Twelfth
problem) is largely unresolved, except when a classfield is absolutely
abelian or abelian over an imaginary quadratic number field. Here
an explicit construction of certain split extensions of number fields is
given, which maintains control over the primes which ramify. This
naturally leads to the construction of cyclic classifields over a given
number field. An algorithm is provided to obtain the minimal polyno-
mials for the generating elements of the extension constructed. The
methods employed here rely heavily on classfield theory and the prop-
erties of Lagrange resolvents and group determinants.

1. Introduction. The principal goal of this research is to obtain an
explicit construction of certain split algebraic extension fields over a
given number field F . The characterization of such fields is given for
dihedral extensions of degree 6, 8 and 12 over Q in a previous work
[6]. Those constructions rely on the arithmetic of quadratic fields and
explicit formulas such as Cardano's. The constructions given here rely
on classfield theory and the properties of Lagrange resolvents. There
is a natural extension of the construction for similar extensions over
function fields which will be treated in a subsequent paper.

To be more precise about the extensions we seek to construct, let Zn

denote the ring of residues modulo n , for some integer n > 1, with
unit group Z * . Consider a polynomial p(x) = xn + a\Xn~λ H ha^ ,
irreducible over F, with Galois group G of the form V T, where T
is cyclic of order n with T < G and V is isomorphic to a subgroup
of Z* (that is, G is a semi-direct product of Γ by F ) . Let K be
the splitting field of p(x) so G{K/F) = G, and let k and R be the
subfields fixed by T and V respectively. We wish to give an explicit
general construction for the extension K/F (or K/k) in terms of
the arithmetic of k(ζ), where ζ = exp(2π//rc). Since K = k R,
the problem of determining K primarily is one of finding explicit
generators for the field R (or a conjugate field). Of course, R is
generated by some root of p(x), but actually finding roots of p(x)
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in terms of radicals is generally quite tedious. The strategy here is
to replace p(x) by a collection of irreducible polynomials of prime
power degrees, each of whose roots are explicitly found in terms of
radicals. The collection is so chosen that R is generated by a certain
choice of roots, one from each polynomial in the collection.

To carry out this approach, first note that the multiplication in G
is explicitly given in terms of a generator σ of T via

(1) τστ~ι = σeW (τeV),

for some homomorphism 0: V -* Z * . (The map 0 is independent of
the choice of generator σ, and in fact, a monomorphism since K is
the splitting field of R.) Write n = n\n2-nt as a product of distinct
prime powers, and let π, denote the natural projection of Z* onto
Z* (1 < i < t). Set θi = %i o θ with

(2) ker0, = { T G V\θ(τ) = 1 (mod m)} (1 < i < t).

and put Tt = (σnή for 1 < i < t. The subgroups (ker0/) Γ/ (1 <
/ < t) are easily seen to be normal in G. Let J£, , i?/ and fc, be the
subfieldsof A: fixed by (ker0|)7/, K 7/ and (ker0/)Γ respectively
(1 < z < t). Then one has the following correspondence from Galois
theory

(3)

where Vt = F/(ker0;) and G, = Vt T/(Ti) (1 < / < t). Since
Πker0/ = 1, and Π ^ = 1, we find that K =
and A: = Π^/ I n particular, deg(i?//JF) = /i/ and deg(/c//i7) =
[ F : ker 0Z]. We have shown

PROPOSITION 1. To construct the splitting field K, it suffices to find
generating elements α, for the fields JR/ and y/ ./or /Λ̂  abelian exten-
sions ki over F.

We note that the subfields fc/ can be exhibited explicitly from the
arithmetic of k in a straightforward manner using Galois theory (for
instance, by taking appropriate norms or traces). Thus the above result
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reduces the construction of R to that of finding explicit generators for
each of the subfields i?/ of prime power degree over F. Our strategy
to construct such a given subfield is to exhibit a particular generator,
which is explicitly given in terms of radicals over a suitable resolvent
field, together with its minimal polynomial of prime power degree.
A general algorithm for this construction is given in §3 with explicit
examples appearing later in §4.

2. Characterization of the resolvent field. Recall the situation just
described with n = n\---nt as a product of distinct prime powers.
The extension K is the splitting field of some irreducible polynomial
of degree n over F whose Galois group G = V T is a semi-direct
product of a cyclic group T of order n by a group V isomorphic to a
subgroup of Z * . The subfields k and R are those fixed by T and V
respectively in the Galois correspondence. The mapping θ: V —• Z*
in (1) can be determined from classfield theory, without explicitly de-
termining K, using only arithmetic in the abelian extension k/F.
Indeed, K/k is classfield to a certain ideal group J defined for a suit-
able ^-modulus Jf. So if I is the group of fractional λ -ideals prime
to Jΐ, the quotient I/J = G(K/k) = T through Artin reciprocity.
We shall indicate the Artin map of K/k by

(4) [σ] —> σ for σ in T,

where [σ] represents the coset of I/J which maps to σ in Γ. Since
T < G we have τ(J) = J , so τ([σ]) = [τστ~ι] = [σθ^] from proper-
ties of the Artin map. To actually determine θ one needs only to find
a prime ideal /ι in the coset [σ], then compute the coset to which
τ(/z) belongs for each τ in V. For a given generator a for R/F of
zero trace and fixed generator σ of T, form the Lagrange resolvents

(5) ωv = ωv{a) = a + ζ~uσ{a) + + ζ~^-ι>σn~\a) (y e Zn).

Set

(6) % = ̂ Σ r ω , (μeZn)
v—\

where ζ = ζn = exρ(2π//n), so that for 0 < λ < n,

(7) σ

λ(aμ) = aμ+λ (μ e Zn).

The elements aμ is (6) are the distinct zeros of an irreducible poly-
nomial

(8) p(x)-xn
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of degree n , with a\ — 0, whose splitting field is K. By replacing a
by a suitable conjugate, we may assume that a>\ Φ 0.

It is known that the elements βv = ω* (y e Zn) lie in k(ζ). (This
follows readily from the proof of Lemma 1 below.) The βv actually
lie in some subfield k! called the resolvent field for p(x) over F,
which can be described in terms of Galois theory in the following
manner.

Label each element φ of G(k(ζ)/F) by φ = φTiS, where τ is the
unique map in V which coincides with φ on k, and 5 in Z* is
determined by the action φ(ζ) = ζs. The resolvent field kι is that
which is fixed by the subgroup W = {φτ,s\s = θ(τ) mod n}. Since
0 i i is the only map in W that fixes k, one finds that &'(£) = /c(ζ) =
k'k. That A:' contains the βv (0 < v < ή) is immediate from the
next lemma.

LEMMA 1. For each φ = φτ,s in G{k{ζ)/F) and integer v, φτ^s{βv)

Proof. Let φ be any extension of φ to K(ζ), say with φ\κ = τσ^
in G for some integer t, 0 < ί < n . First note that from (1) and (7),

φ(aμ) = τσ\aμ) = τ

Thus, from (4), we have

φ(ωv) = Σ ζ-^a{t+μ)θ{τ) =

_ rtsv \ Λ >—vsμθ(τ~')^ _ rtsvr

upon replacing μ by μθ(τ~x)-t in the first summation. In particular,

The resolvent field kf has a convenient characterization in terms
of class field theory. Suppose k/F has conductor / and put m- —
LCM(«<9/r, /), where Op is the ring of integers of F. Let ^ denote
the group of fractional F-ideals prime to ^ and J / be the subgroup
of Ή which corresponds to the classfield k over i 7 . The Artin map
of k/F induces an isomorphism of W/sf with V, which we shall
indicate by

(9) [τ]-+τ.
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(Here [τ] represents the coset of *% jsf which maps to τ\k in G(k/F)
via the Artin map.) In a similar way, let [φ] represent the coset of
fractional F-ideals in Ψ which are sent to φ in G(k(ζ)/F) by the
Artin map of k(ζ)/F. In addition, let JV = J^/Q denote the absolute
ideal norm mapping from F to Q. It follows from the properties of
the Artin map that for φ = φτ^s in G(k(ζ)/F),

(10) [φτiS] = {*e \τ\\JVa = s (mod n)}.

The resolvent field k1 /F corresponds through classfield theory to the
group

(11) ^ =

φew

To aid in the computation of k1, we mention the following result.

PROPOSITION 1. Let h{x) be any irreducible polynomial of degree
[k : F] over F with splitting field k. Select a zero λ of h(x) and
label its conjugates

(12) τ(λ)=λθ{τ) (τeV).

Then the elements Eμ = Στev ζ~μθ{τ)λθ(τ) (0 < μ < n) all lie in the
resolvent field kf.

Proof. Since Eμ = k(ζ), it suffices to show that each map in W
fixes Eμ . But, for any φ = φτ< ^ ^ in W and 0 < μ < n,

φ(Eμ) = j ; ζ-^τ)θ{τ>)λΘ{τ)θ{τΊ = ^ from (12).

If AΓnβ(f) = β then

G(k(ζ)/F) = {0τ,5|τ € F , j € Zπ*} and

In particular, we have

PROPOSITION2. Suppose KnQ{ζ) = Q. Then G(k(ζ)/k) = G(kf/F)
and knkf = F.

Proof. The action φ\tS—* Φ\ sW (s e Z*) yields a monomorphism
of G(k(ζ)/k) into G(fc;/F) since Z:7/: = k(ζ). Also 0 T f J = ΦUsθ{τ-if
φτjθ(τ) here for any τ eV and 5 e Z * , so the map is clearly surjective.
Hence G(k(ζ)/k) = G(kf/F) and k n fc; = F .
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EXAMPLE 1. To illustrate the preceding theory with n = 5 and F =
Q, consider the complex quartic abelian field k — β(Λ), where Λ =
Ci6+ί?6' of conductor / = 16 and class number h = 1 [13]. The ring
of integers of k has fundamental unit E = 1 + \/2 and integral basis
{1, y/2, A, \/2Λ}. The field fc over <2 corresponds through classfield
theory to the subgroup sf = {(x)\x = 1, 7, 17, 23, 33, 39, 49, 71
(mod 80), x > 0} defined with ^ = 80. It admits an ideal group /
defined modulo Jt = (52) consisting of principal ideals generated by
elements γ prime to Jt and of the form γ = a-β for some a e (kx)5

and β = 1 + 5(<5 + α(l + 2\/2)Λ) m o d ^ with α e Z , δ e Q(y/Ϊ).
The ideal group / corresponds to a classfield K which is normal
over Q with [ # : k] = 5. The Galois group G = G(K/Q) is a semi-
direct product of the form V T as we have been discussing, say with
T — G(K/k) generated by an element σ for which [σ] = (l + 5\/2Λ)/
in (4). Incidentally, we find [σJ] = (1 + 5;'\/2Λ)/_(0 < < 4).
Also, if τ G F = G(k/Q) is given by the action A -+ A = ζ[\ + ζ* | =
~(v / 2+ 1)Λ, then τ[σ] = (1 - 5\/2A)J = (1 + 5(2 + >/5)Λ)7 =
(1 + 10Λ/2Λ)/. Thus θ{τ) = 2 in (1). Further, we find 0(τ2) = 4,
0(τ3) = 3 and β(l) = 1.

Suppose a is a generator for the field R fixed by V, so chosen
that the Lagrange resolvents (5) satisfy ωv = 0 for (z/, 5) > 1. To
determine the resolvent field k1 for its minimal polynomial p(x) in
(8), we find the corresponding subgroup 33 of Ψ from (11). Noting
that

[τ] = {(x) | jc>0, J C Ξ I I , 1 3 , 2 7 , 2 9 , 4 3 , 59 ,61, 77 (mod 80)},

[τ

2] = {(jc) |x>0, A: = 9, 31, 41, 47, 57 ,63,73, 79 (mod 80)}

and

[τ3] = {(jc)|;c>0, x = 3, 19,21, 37, 51, 53,67,69 (mod 80)}

in (9), we find the sets [φ] in (11) are

Wi,i] = { ( * ) l * > 0 , x = l , 7 1 (mod 80)},

[Φτ,i] = ( W k > 0, x ΞΞ 27, 77 (mod 80)},
[0τ2 4] = {(x)|x > 0, x = 9, 79 (mod 80)}, and

[0τ3 3] = { ( χ ) | χ > 0 , x = 3,53 (mod 80)}.

Thus, we have 33 = {(JC)|JC > 0 , x = 1, 3, 9, 27, 53, 71, 77, 79
(mod 80)} with corresponding field k1 = Q(\/l0 + 3vTθ) from class-
field theory.
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Alternatively, we could use Proposition 1, choosing λ = Λ, to find
that

E2_x = [ζA + C2Λ + C3(-Λ) + C4(-Λ)]2 = l(ζ - C4)Λ + (C2 - C3)Λ]2

= £(-5 - Λ/5)(-2 + Λ/2)[1 + £(1 - \/5)(l + Λ/2)]2

= 10-3vT6.

Hence k' = β ( v 10 + 3>/Ϊ0).

EXAMPLE 2. Now consider F = Q(γ) of narrow class number h+ =
1, where γ = γ\ is the positive zero of r(x) = x 3 — x — 1 and 72 a n d
y3 denote the complex ones. The group t/^ of totally positive units is
seen to be generated by γ. Choose square roots y^2

 9 Y^2 > Y^2 w ^ h
yψ . yψ = y-1/2 > 0. The extension K = Q(γ\/2, γ\'2, y\12) has
dihedral Galois group G = D4 over F generated by automorphisms
σ and τ in (1) satisfying

σ: yί/ 2--j4/ 2, yi/2-yJ/2, yJ/2--yl/2 and

The field fixed by (τ) is R = F(yJ / 2

? y] / 2 + yj/2) that by (σ) is

/: = F(y\l2(y2-y?>)). The element a = Y^2+Y^2 satisfies the minimal

polynomial p(x) = x4 + 2γx2 + (4 - 3γ2) in (8) with splitting field

K over F. Choosing A = y^2(y2 ~ 73) i n Proposition 1, we deduce

that the resolvent field for p(x) is k' = /Γ(zy1

1^2(y2 - 73)) Direct

computation of β\ and β-\ from the Lagrange resolvents co\(a) and

ω_i(α) in (5) yields

The extension /c/i7 is of conductor / = 4(y2 - Yi)2 = 4(4 - 3y2),
where 4 - 3y2 generates the unique unramified prime above 23 in F.
To determine the resolvent field k' from classfield theory using (11),
let χ and ψ be the quadratic numerical characters of F realized
modulo 4(4 - 3γ2) which are induced by extending the Kronecker

symbols (-£•) and (^Z1^-), and setting

={ά) and

Since χ and ^ annihilate Up and A+ = 1, it follows from classfield
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theory (chiefly Theorem 3 [4]) that

l,η>0} and

in (9) where m = (4(4 - 3γ2)). Let p be the quadratic numerical
character of F, realized modulo 4, satisfying p(η) = NF/gη (mod 4).
Then we find the sets [φ] in (11) are

= l , Pin) = l and η > 0} and

[Φτ,-ι] = {(if)|* o yfft) ^ 1, p(η) φ 1 and η > 0}.

In particular, we have ^ = {(η)\χ o ^ o ρ(^) = 1, η > 0} with
corresponding classfield fc' = ^(/y j^ ί^ — 73)) since />(?/) = (—l/(f/))
for n > 0.

The resolvent field A:; for /?(x) over F can be expressed as a
compositum of resolvent fields (one for each of the splitting fields
Ki (1 < / < t) in (3)) in a manner consistent with the decomposi-
tion k = f[ki. To see this, let W[ = {^^l^ = 0(τ) mod Πi} with
fixed field k\ (1 < / < t). Now each fc? c ^ ( C 1 ^ ) since ^(C 2 7 ^)
corresponds through Galois theory to the subgroup {φτyι\θ(τ) = 1
(mod Hi)} (1 < i < t). Suppose α(/) is a generator for Jf?f-/JF (and
thus for Ki/ki) of zero trace in (5), and form the resolvents

(13) ωψ = α « + ζ-vnln*σ{aW) + ... + ζ-Hn-i)n/nt ^ , - 1 ) ^ ( 0 )

(i/GZ).

Set ^ ° = (ωL0)11! for ι/ G Z , and

1 w'

z z / = l

for 1 < / < ί. Using an argument analogous to that in the proof
of Lemma 1, one finds the βft are fixed by each φΊiS in Wt and
thus lie in k\ (1 < / < t)). The minimal polynomial Pi{x) over F
for αW has splitting field Kt and resolvent field k\ over F. Since
W — [\Wi, the resolvent field A:; is the compositum Π/=i^/ I n

addition, a = Π α^^ is a generator for jR/i7 of zero trace.

In the next section we take up the construction of the fields i?/, de-
termining suitable generators αW and computing their minimal poly-
nomial Pi(x) over F.
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3. Construction of K = k R when [R : F] is a prime power. Here
we retain the notation and setup of the previous sections, but with
n = lu a prime power. In this section we shall describe how to con-
struct arbitrary extensions K = k -R with Kn Q(ζ) = Q and Galois
group G satisfying (1). (The methods can be adapted to construct
such extensions K where K n Q(ζ) φ Q, but require more delicate
treatment.) Under the assumption K n Q(ζ) = Q, one recalls that
G(k(ζ)/F) = {φτjτ e F , s e Z*}, so that the values Σ ^ z ; C μ i / ^
(0 < // < ή) are readily seen to all lie in k. In addition, we have

(15) σλ(ωu) = ζuλωu iyeZ)

in (5). We may further assume that ωv — 0 for {y, n) > 1 by
replacing a with α - j(αo + α^-i H h α ( / _ 1 ) r i ) if necessary in (5),
since

i-i

ωv[a-\

equals ωv(a) if / f v else zero when /|z/ from (6) and (15). We shall
henceforth assume that this normalization has been made. Finally we
note that if φ is any extension of φTiS to K(ζ) which fixes R, then
φ(ωv) = <oVSQ(τ-i\ from the proof of Lemma 1. Thus we find that

n

We now describe how to construct arbitrary extensions K — k R as
above with KΓ)Q(ζ) = Q and Galois group G satisfying (1). Explicit
examples will be constructed later in §4.

First choose an irreducible polynomial q{x) of degree φ(n) over
F with Galois group isomorphic to H = Z* and splitting field kf.
Consider an explicit isomorphism

(16) ψ:G(k'/F) = Hy

and label the element pr of G{k'/F) so that φ{ρr) = r. Choose a
zero ε of #(x), and label its conjugates

(17) εr = pr(ε) (reH).
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Assume the εr satisfy the condition

TT et

ι is an nth power in k! only if the rt are
(18) teH

all congruent modulo n,

or Y2 trt = 0 (mod ή) when ft = /.
teH

Finally, fix an ordering for the elements of H — Z * . Select a func-
tion f:H->Z which sends a given residue class to some specified
integer representing that class, and for which the group matrix

(19) A = (as,t) (s,teH),

with aS}t = f(st~ι), has an inverse, say i?. (We note that it is easy
to find such functions / . ) Set

(20) Λ

For this choice, note that pr{βv) = βvr for ι/ and r in H, since

MAO = Π ^^) α - ( = Π ε«' - Π <r " = Π ε>' •
teH teH teH teH

With the above choices we have

PROPOSITION 3. Suppose the elements βv {y e if) are selected
as in (20), where the εt satisfy condition (18). Then the extension
£'(£, βVn\v € H) is cyclic of degree n over k'(ζ).

Proof. Note that ΓLe/f βvv ^s a n n^ power in k'

if and only if \[veH HteH
 εtv'* ^s a n Λ t ^ power in k'

if and only if ΓLe//^ €" "''" ^s a n n1ί^ power in k'.
S i n c e ΣveHaVJrv = Y,v^Hvt*rv = Γ ^ i / r , ( m o d ή) forteH
from (19), it follows from (18) and (20) that \[veH βίv is an nth
power in k' if and only if

(21) J I / Γ , Ξ O (mod/i).

It follows from (21) that for a given v e H,

(22) βv = fiΐ-γn

for some y in A7. Also jSj"1 lies in {k')n if and only if r{ = 0

(mod/i). In particular, fc;(C, ^ / n | i / e H) = k'(ζ, β\ln), and the
conclusion of the proposition follows.
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To proceed with the construction, fix a generator a for

k'(ζ9 βXJn\v e H) over k'(ζ). It follows from the proposition above

that β\ln generates kf(ζ9 βl'n\v e H) over k'(ζ) for any t in H.

Choose particular nth roots β\'n so that σ(β}/n) = ζ*β\ln (teH),

and set

(23) a^7t

The values α^ in (23) are distinct and comprise a complete set of
conjugates over F. In particular a = αo generates an extension i?
over F of degree rc with Lagrange resolvents (5) satisfying

(24) v..!** *'»"•
[ 0 if l\v .

The minimal polynomial p(x) for α has splitting field K, which we
assert is the compositum /: i? for a certain abelian extension k/F.
We shall determine the abelian extension k from classfield theory.
Suppose k'/F has conductor /' and /^ = LCM(/f, /iQp). If ^ is
the group of fractional F-ideals prime to ^ , then kf/F corresponds
through classfield theory to a subgroup 3S of index φ(ή) in ^ . In
particular, ^fSB = G(k'/F) via the Artin map

(25) [r]^/7 r (reH),

where [r] denotes the coset of ^I3S set to ρr in G(kf/F). We
assume that the isomorphism ^ in (16) is chosen so that the sets

(26) 3§r = {a € [ r ] | ^ ΞΞ r mod ή) ψ 0

for each r in H. (Note that this can always be arranged; in the ex-
treme case k! = F(ζ), the map ^ is the inverse of the Artin map of
F(ζ)/F). The following result specifies how to obtain k and deter-
mine G = G(K/F).

THEOREM 1. The set sf = Urejy^ ^ α subgroup of & with cor-
responding classfield k/F. The splitting field K = k i? wzϊA Galois
group Gy a semi-direct product of T by V, where T = {̂ |̂ ) Λα̂
fixed field k and V = G(K/R) is isomorphic to a subgroup of Z*.
Furthermore, the group G satisfies (1), where for any τ in V, the
value θ(τ) is the unique s in H for which [φτ,s]c B in (11)

Proof. Evidently sf is a subgroup of 9% and thus corresponds
through classfield theory to an abelian extension k/F. In addition,
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s# <c\£% —3S\ — [φι 91] so the corresponding classfields k kf = k'{ζ) =
fc(C). Since s&$ = ^ we have the following diagram of subfields of
k(ζ) and corresponding subgroups of if:

(3)

In particular, [fc(ζ) : fc] = [sf : ^ ] = φ(n) so fc n F(ζ) = F and
(?(fc/F) = G{kr(ζ)/kf) ^ ^ / ^ . Since ^ r ^ 0 and [r] -* />r via the
Artin map of kr/F, there exists an extension ~pγ of ρr to k'(ζ) =

, in fact to K(ζ), which maps

(27) C -* ζ r and ωv -> ω^r {reH).

Now jfiΓ is the field fixed by the ypr (reH). But since the ~pr fix k, it
follows that fc c ^ , in fact, with G(K/k) = (σ |^) . Also ϋ: n F(ζ) =
F . In particular, we have the following correspondence from Galois
theory

K

(3)
T={σ\κ)

Since no σ\κ φ 1 fixes i?, we find that K = fc i? and K =
G(k/F). It follows that G is a semi-direct product of Γ by V, so
that the relation

τσkτ-^σP (τ € V)
defines a homomorphism θ: V -» Z* as in (1). The map 0 is in-
jective since K is the splitting field for R thus V is isomorphic to
some subgroup of Z * .

To complete the proof of the theorem it remains to specify the range
of θ. Recall from (11) how 3S is constructed from certain cosets [φ]
in f . It follows from (10) that for a given t i n F , the set [τ] Γ\3§
coincides with exactly one of the cosets [< τ̂,.s] (s EH); namely, that
for which s = 0(τ).
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To aid in the computation of k, we introduce the following corol-
lary.

COROLLARY 1. Let h(x) be any irreducible polynomial of degree
φ(n) over F with splitting field kf. Select a zero δ of h(x) and label
its conjugates

(28) δr = pr(δ) (reH)

as in (17). Then the elements Nv = ΈμeH^δμ iv e H) al1 l i e i n

the classfield k.

Proof. Since Nv € k(ζ) it suffices to show that each map ~pr

(reH), described by (27), fixes Nv . But pr(Nv) =
,v inH.

To compute the minimal polynomial

(29) p(x) = xn + a2x
n~2 + -" + an

for a = αo in (6), we introduce a counting function

(30)

for non-negative integers X\, . . . , xt. The primed sum is taken over
all ^-tuples (u\9 . . . , ut) with integral components M, (1 < / < t)
pairwise mutually distinct and in the range [0, ή). The counting
function (30) has the following iterative property.

PROPOSITION 4.

(31)
0 ifxi ψ 0 (mod ή).

For t > 1,

({n-t+\)N{xl9...9xt-X)

ifxt = 0 (mod n),
(32) N ( x l 9 . . . , x t ) = {

k N(xχ, ... , xt-ι + xt) otherwise.

Proof. Formula (31) is obvious. To verify (32) when ^ = 0 (mod n)9

we first note that there are n - t + 1 choices for the value ut in any
tuple (u\, U2, . . . , ut) in the primed sum, once the first t- 1 compo-
nents have been selected. Since £*iwi+-+ V-Λ-i = ^ M ^ +^M, j n this
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case, evidently N(x\ 9 ... 9xt) = {n — t + \)N{x\ 9 ... 9 Xt-\) Now if
xtφQ (mod n) then Σn

uZ
ι

0 ζ
ux< = 0. Since Σ'C«i*i+-+MΛ equals

y*' ζuιχι+-"+ut-ιχt-ι ( y ^ c M Λ ) - V)/cM»(^+x')+'"+w'-»jc'-»

V"' ζ«i^+-+Wί-i(^_i+^)

we find that (32) holds when xt ψ 0 (mod /i).

COROLLARY 2. (i) //* xi H h x ^ 0 (mod ή) then N(x\ 9... ,xt)
= 0.

(ii) If X\ H hX; Λ wmi1 to zero (mod n) Z?wί «o smaller subset sums
to zero (mod n) then N(xx, . . . , *,) = ( - l ) ^ 1 ^ ~ l)!/i for t>\.

We shall omit the proof of the corollary since both (i) and (ii) follow
easily from (31) and (32) by using induction on t.

We are ready to determine the coefficient of p(x).

THEOREM 2. The coefficient am (2<m<n) for the term xn~m is
a sum of all terms of the form

(33) ^ t f / Λ - ^
Cj times ^ times

where t\ e H, \ < ct < m for \ < i < e with Yfi==ι cf = m and

Yfi=ϊ Cfti = 0 (mod Λ) . £αcA ί^rm βp'n jβ/ which appears is a

product of the elements εr.

Proof. Now

p(x) = Π(x - aμ) =

where the sum is over t in H. Expanding the product, we find

that each term that appears in the expressions for am is of the form

βt '''βt 9 where C\ Λ \-ce = m, with multiplier

(34) ( - l ) m w fo ι +...+M | ju+...+(u0 λ+...+U0ey^

Here the primed sum is over m-tuples (u\9\9 . . . , ue^e) in [0, n)m

with mutually distinct components and ordered so

« 1 , 1 < « 1 , 2 < ••• < W i , C i , . . . , U e Λ <Uej2 < < Ue,ce
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But (34) equals the multiplier of βc

t

χln βc

t

e/n in (33) above, and the
terms for which Yfi=ϊ C[ti ψ 0 (mod ή) have multiplier equal zero by
Corollary 2. The terms with Σe

i=ϊ crfi = 0 (mod ή) satisfy

(35)

where

(36)

1=1

But atι,v = Uv* (mod n) so Yfi=x atίVCi = v* Yfi=x Uci = 0 (mod «)
hence the rv are integers in (35). (Here v* is the multiplicative
inverse of v (mod «)).

For n = 3, 4, 5, 7 and 8 and indicated choice of matrix A in (19),
we obtain the following expressions for the coefficients of p(x). (Here
iV and Tr denote the norm and trace from k' to F respectively.)

(37) ιi =

A =
1 2
2 1

= -(Nε)β,

a - I T " 1 2

3 2 -1
e)/27

(38) « = 4

a2 =

1 3'
3 1.

-(Nε)/4, a, = 0,

-1 3
3 - 1 .

= (2Nε2-Ίrβ)/64;

(39) /i = 5 :
' 1 3 - 1 2

2 1 3 - 1
- 1 2 1 3
3 - 1 2 1

,4 =

1 0 - 1 1
1 1 0 - 1

- 1 1 1 0
0 - 1 1 1

α 2 = -

a4 = - (Tr(βiβ|β3) + Nε - {ε\e\ + β|e|))/125,

α5 = - (Ύτ(β - Seiefef) + 5(iVε) Tr β)/3125
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(40) n = 7 :

A

A —

• l

3
2

u- 1
4

_2

- 1
B = Ί

• o
- 1
0
0
1
1

s.

- 2
1
3
2

_ γ

4
1
0

- 1
0
0
1

GURAK

4
- 2
1
3
2

_ J

1
1
0

- 1
0
0

- 1
4

- 2
1
3
2

0
1
1
0

- 1
0

2
- 1
4

- 2
1
3
0
0
1
1
0

- 1

3
2

- 1
4

- 2
1

- 1
0
0
1
1
0

a2 = - (6{66 + 6265 + ε3ε4)/7,

a3 = - [2(εiε2ε4 + β3ε5ε6) + Tr(ε2ε4ε5)]/49,

| ε |a5 = - [Tr(ε 1ε4ε|ε|/ε3 4-

εjε

5(7Vε)Tr(ε~1)]/2401

ε4ε - 61626564

ε ε

aΊ = 7~7[Ύr(-β + 7ε 1ε|ε 4ε|/ε 3 +

- 161626465/66 - 7εfε2ε4ε5ε6/ε3 - 76J626465/63

- 7626463 - 76162646566 + 216^626465 + 2I62656463

76^62646566

14(iVε)Trε];
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1 1 1

9 3 - 1
3 9 - 3

- 1 - 3 9

+ ε 3ε 5)/8,

1

64

9
3

- 1
- 3

3
9

- 3
- 1

- 1
- 3
9
3

- 3
- 1
3
9

= α 5 = aΊ - 0 ,

β|β|)

(41) n = 8:

9

a2 = -

α6 = 8-5[Tr(-εfε|/εfε7 + 3ε1ε5ε7

t - 2ε2ε7εf + 2ε?ε|/ε5)

- 2{Nz){εxεΊ + ε3ε5) - 2(εJ

as = 8~8[Tr(-/? - 20ε?ε7ε|/ε5 - 8ε^ε^ε3 - 8 ε ^ / ε 5 ε 7 +

+SεJεl/ε2

5 + 4ε\ε])

4- 2{ε\ ε$ + εjε4

5) + 2{ε\ εf lε\ε2

Ί + βf εf /β? βf)

- 56(iVε2) + 32(7Vε)(ε?ε^ + efβf)

+ 32(Nε)(ε3

ιεl/ε5ε7 + ε|ε |/εiε 3) - 8(iVε)Tr

It is natural to ask how general is the above construction. In partic-
ular, suppose we are given an extension K = k R of the kind under
consideration and a generator a for R over F normalized so that
the Lagrange resolvents (5) satisfy ωv = 0 for (u, n) > 1. Does the
construction actually yield the generator a = £ ΣΊ=\ {v,n)=\ ω» f°Γ a

suitable choice of elements εr in (17)? If not, to what extent can this
be done?

We assert that a generator a = ^ Σ ίLi ^ n)=ι(ωΛa))r f° r -R o v e r

F is obtainable provided the inverse 5 for the matrix A in (19) has

(42) den B = r>n w i th (r, n) = 1.

(Here den B denotes the least common denominator of the entries of
B when written in reduced form.)

Indeed, suppose / is chosen so that the inverse matrix B — {bsj)
has den B = rn with (r, n) = 1. Set

(43)
rnb

(μeH).
teH

It follows from the proof of Lemma 1 and (15), (19) and (42) that the
eμ are fixed by σ and W, so lie in kf. Now, using (43) to obtain
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values βv from (20);

(44)

we find

A

that

- TT TT m

» - 1 1 1 1 ω >
teHueH

that is

rnav μbμ t

t

S. GURAK

¥* CL
1 ** v, μ

H

TT rn

teH

for any v in H. Thus the construction yields a generator a = £ X) o?v

as claimed. In particular, the original generator a is obtained if the
inverse matrix B had den B = n. For these cases, the construction
yields all generators a for R normalized so ωv — 0 for {y, n) Φ 1
in (5).

The author has shown that condition (42) can be achieved if and
only if n = lu is odd; moreover, that den B — n can be obtained
at least for n = 3, 5, 7, 9 and 11, but not for n = 13. The proofs
of these results involve long, tedious computations with group deter-
minants and will appear elsewhere. (We note that the matrices A in
(37), (39) and (40) are so chosen that den B = n holds.)

Before concluding this section, some remarks on constructing exten-
sions with prescribed ramification, e.g., classfields, are in order. For
this purpose we require some results from local classfield theory. Let
L be any finite abelian extension of a number field M. Fix a prime
ideal / of M , and choose a prime 3S lying above ^ in L. Let
L^ and MA be the local extensions at 38 and /* respectively, and
denote the corresponding unit groups by \Jg$ and UΛ . It is known [1,
10,11] from local classfield theory that the Galois group G(L^/MΛ)
is isomorphic to M^/NL^/M (L^), where NL^jM is the local norm
map from L^ to MΛ . In addition, the inertia group I(L^/MΛ) is
isomorphic to UA/NL j M (U^), say of order e(3S : /ι).

The construction detailed at the beginning of this section yields a
generator a for a cyclic extension K over k of degree n which is
normal over F and linearly disjoint from Q(ζ). Any nth root β]Jn

generates K(ζ) over k(ζ). The idea here is to relate the ramification
in K/k to that in the Kummer extension K(ζ)/k(ζ) where it is easy
to determine. For convenience we state the relevant result of Kummer
[10].

PROPOSITION 5 (Kummer's criteria). Let L = M(βιln) for some
number field M which contains ζ. Suppose /ι is a prime ideal of M,
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say with uniformizing parameter π in MΛ. Write β = γ πv with
(γ, π) = 1 in MΛ .

(i) If {/ι, β) — {/ι, ή) — 1, then /ι is unramified in L.
(ii) If (/*, β)> 1 but (/t, n) = 1, then /ι ramifies in L if and

only if n\v.
(iii) If fa, n) > 1 but (/*,/?) = 1, /Λen /^ ramifies in L if and

onlyifβ φ U«.

(Note that determining whether β lies in U^ in statement (iii) amounts
to checking whether β is an nth power modulo a suitable power of /z.)

Now fix a rational prime p and choose a prime ideal 33 lying above
p in ΛΓ(C). Consider the following Hasse diagram of local extensions.

Here ^ = ^ Π j R : ? / ί = ^ n fc(ζ) and /^ = 38 Π A:. Consider the

homomorphism Ψ from unit quotient groups U/*INκ(ζ)~ik{ζ)Vig t 0

kJJ<g given by

(45) x ->

The map Ψ is injective. Indeed, iVt̂ n /̂  x € Nκ ,k UΦ if and only

if Λ: G Nr\Λ ,, (Λ^ /Λ: C/^). But, since Knk(ζ) = k, this last group

^kiCi ik WK Ik U&) i s readily seen, using the translation theorem

of local classfield theory [11], to be norm group Nκ{ζ)~ik(ζ)U&- I n

particular, the ramification index e{38 : /I) divides e{38 : /*) I n

order for Ψ to be onto, it is necessary that

(46) Nmλ/kΛ UA . NKJ

In any case,

(47) e{3B:Λ) = eiβ \/ϊ) [UΛ

For the situation at hand we have
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PROPOSITION 6. // p\ I or p = n = I, then UA/(Nκ{ζ)^/k{ζ) _ U~) s

Proof. If p\l then Nk^ fk U^ = UΛ since k(ζ)/k is unramified

at /ι. If p = n = I then ( [ * j fc], [£(£) :jfc]) = 1 so e(<^: /*) =

e{3& : /*)£(/* : /*)• But ^ ( ^ : /*) = e ( ^ : /?)<?(/£ : /ι)\ hence

e ( ^ : /5) = e(β : /*) so (46) holds. In either case, Ψ is an isomor-

phism.

It is clear from the above proposition that the problem to construct
K/k with specific ramification at /z is more one of finding βv in
(20) (actually the εr in (17)) so that k(ζ, βlln)/k{ζ) has the same
ramification at /ί by virtue of Kummer's criteria. Specifying the
ramification at /ι> in the exceptional case p — I and n = lu for
u > 1, requires more careful selection of β. We shall apply these
ideas to construct some specific classfields among the examples given
in the next section.

4. Some examples. Several examples are given now to exhibit the
construction detailed in the previous section.

EXAMPLE 3. Next we wish to apply the construction to find a gener-
ator a and minimal polynomial for the unique cyclic field K, which
is totally ramified at 7, unramified elsewhere, and of degree 7 over
Q. Here k' = Q(ζ) from Proposition 2 since k = Q. Selecting
e = β l = ζ-i in (17) yields βv = ζv in (20). The element β = βx = ζ
is a unit of Q(ζ), but not a seventh power in the completion of Q(ζ)
at (1 - C). Thus the extension β ( £ , βι/Ί)/Q(ζ) is totally ramified
at (1 — C) a n d unramified elsewhere by Kummer's criteria. Since
e{βS : /£) = e ( ^ : /*) = 7 here, it follows that jfiΓ is generated by

la = C49 + C499 + C4918 + Cίl + C49 + C4-91, where ζ = exp(2π//49),

with minimal polynomial /?(x) = x1 - 2\x5 - 21x4 + 91x3 + 112x2 -

84x - 97 from (40). Here the particular choice of 7th roots βl^1

in (23) is determined by the automorphism a of K(ζ) which sends

C49 -* C49

EXAMPLE 4. Here we wish to construct the classfield K/k, where
k = <2(Ci6 + C7ό) > l ^ a t w a s described in Example 1 of the previous
section. Since K/k is ramified only at 5, we seek an element β in

k' = β(\/lO + 3VTθ) for which fc(£, βιl5)/k{ζ) is ramified only at
the prime (1 - £).



SPLIT EXTENSIONS OF NUMBER FIELDS 289

Let p be the element of G{kf/Q) sending λ = \/lO + 3vTθ to
J — \ Λ θ - 3vTθ. Choose ψ in (16) so that p\ = 1, p2 = p, P3 = P3

and p4 = p2 . (One can check that this choice yields the correct field
A: here from Theorem 1 or its corollary.) Select e = λ + 2 a zero of
the polynomial q{x) = x4 + 8x3 + 4x2 - 48x - 54. A straightforward
calculation shows that the ideal (λ + 2) = /ι\/ί\? as a product of
primes in k', where (3) = /*I/*2/*3/M

 a n d (2) = ^ 4 . The primes
above 3 are labelled so that ~ρr{/^i) = /&„ (mod5) > consistent with that
of the εr in (17). The element

β = βx = -148 + 32VTU + λ(-686 + 214v^Ϊ0),

obtained in (20), generates the ideal <f /ι\/^\/^\, but is not a fifth
power in a completion of k(ζ) at (1 - ζ). It follows from Kummer's
criteria that β may be a suitable choice. By Theorem 1, we find
that a = \{β\15 + βψ + βψ + βψ) generates some classfield of
k of degree 5, and has minimal polynomial p(x) = x5 + 12x3/5 +
48x2/25 + 282x/125 + 7792/3125 from (39). Moreover, the Galois
group G = G(k/Q) satisfies (1) with θ(τ) = 2. (Here τ is that
generator of V mapping £1 6 + ζΊ

l6 to ζ\\ + ζ\\ as in Example 1.)

It remains to verify that k{a) = K, the desired classfield. However,
a straightforward, albeit tedious, computation shows that there are
only three admissible ideal groups of k which have conductor divisi-
ble only by 5, are invariant under G(k/Q), and have corresponding
classfields of degree 5. They are

Jλ = {{y)\y = a-β where 5\aβ9 a e (kx)5 and

β = 1 + 5(δ + a{\ + \/2)Λ) (mod 52)

for some integer δ e Q(Vl) with α G Z},

h = {(Y)\V = ® β w h e r e 5 f aβ, α G (A:x)5 and

β = 1 + 5(αv^ + <5Λ) (mod 52)

for some integer δ G Q(>/2) with aeZ} and

J3 = J = {(γ)\γ = a-β where 5 f α£ , a G (/:x)5 and

£ Ξ 1 + 5(J + α(l + 2Λ/2)Λ) (mod 52)

for some integer δ G Q{V2) with α G Z}.

The classfield corresponding to J^ is seen to be ^ ( ^ s + C ^ + C ^ + C ^ 1 ) ?

which is actually abelian over Q.

Now the norm η = Nκ/k(A - 5α) = Λ5 + 60Λ2 + 240Λ2 + 1410Λ +

7792 Ξ 12 - 10Λ/2 + Λ(-4 + 6Λ/2) mod 25 . Multiplying by the fifth
power μ = [-1 - Ίy/2 + Λ(-9 + 6Λ/2)]5 = -7 + 7\/2 + 9Λ mod 25,
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yields ημ == 1 + 5[1 + 2\/2 - (1 + 2Λ/2)Λ] mod 25 . Since (η) lies in
/ , it follows that k(a) = K.

EXAMPLE 5. The quadratic field k — Q(\/-47) has class number
h = 5, and hence admits an unramified extension K of degree 5
which is normal over Q, with dihedral Galois group D$. It is easy to

determine that kf is generated by (ζ - ζA)\f-AΊ = y 47τ/>/5, where

η = (1 + \/5)/2, upon choosing λ = >/—47 in Proposition 1. To
construct K/k we seek, in view of Proposition 5, an element β =
/?i in A:' for which k(ζ, β1/5) is unramified everywhere over k(ζ).

Select ε = εi = - | [ 4 7 - 5>/5 + (-5 + \β)y47φ/5], a unit in &'. The

element ε has minimal polynomial q{x) = x 4 + 4 7 x 3 + 519x 2 -47x+l

and conjugates

e2= - J [47 + 5\/5 - (5

(5 + Λ/5)v/~

β4 = - i[47 - 5>/5 - (-5

in (17). The corresponding /? from (20) and (39) are

βι = |[9353 + 4225V^5 - (715 +

/?2 = |[9353 - 4225Λ/5 + (715 -

^3 = |[9353 - 4225\/5 - (715 -

A = |[9353 + 4225\/5 + (715 +

Since )ff is a unit in k(ζ), and also a fifth power in the completion
at (1 - C), we find that k(ζ, βι/s) is unramified over k(ζ). Thus
the element a = i ( ^ J / 5 + βψ + ^ 3

1 / 5 + βψ) generates K/k and
has minimal polynomial p(x) = x 5 + 2x3/5 - 47x2/25 + 522x/125 -
9353/3125 from (39). (This is essentially the construction of H.
Hasse [9] for the Hubert classfield of Q(\/^47).)

EXAMPLE 6. Here we wish to use the construction to find a generator
a and its minimal polynomial for the unique cyclic field K, which is
totally ramified at 11, unramified elsewhere, and of degree 5 over Q.

Here k' = Q(ζ) as in Example 5. Set λ = ζ - ζ4 = y/~V5η and λ =

ζ2-ζ3 = -ηJ-\βη in Q(ζ), where η = ( l+\/5)/2. Selecting ψ in
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(16) to be the inverse of the Artin map of Q(ζ)/Q and e = (5 + ηλ)l2
in (17), yields β = β{ = ^(90 _ 17Λ/5)(50 + λ(-5 + 19Λ/5)) in (20).
The element β is a fifth power in the completion of Q(ζ) at (1 - ζ) ,
but not a global fifth power, and has norm 55 5 . Using Kummer's
criteria, Q(ζ, βι/5)/Q(ζ) is found to be totally ramified at each prime
lying above 11, but unramified elsewhere. Hence it follows that K is
generated by a = \(β\l5+β\l5+βll5+βl15) with minimal polynomial
p(x) = x5 - 3x3 -3x2 - x - 1/11 from (29). The zeros of p{x) can
be expressed solely in terms of real numbers. It is easy to check that
the zeros are just the conjugates of (£n + Cfj1 - l)/(2 - ζ\\ - ζ^).

EXAMPLE 7. To illustrate the construction of classfields for which
F φQ, consider the extension k = Q{\fϊ) of F = Q(y/2). One finds
that k has narrow class number one (so does F) , that {l+\/2, 1—v̂ 2}
is a fundamental system for the units of k and that {1, \fl9 y/2, \/8}
is an integral basis. The totally positive units of k are generated by
l+λ/2 and ( 1 + v ^ ) 2 . In addition, k/F is seen to correspond through
classfield theory to the congruence group

(48) { (JC) | JC>0, J C Ξ I , 3, ±1 - Λ / 2 , ± 3 + Λ/2,

1 + 2\f2 mod

of conductor / = (4>/2). (The set (48) contains precisely those ideals
for which the extended Kronecker symbol (y/2/a) = 1.)

The field k admits an ideal group / defined modulo «/# = (52)
consisting of principal ideals generated by elements γ prime to ^f
and of the form γ = a β for some a e (kx)5 and jff = 1 +
5(α 4- b\[2 + c\fH) mod Jί with a, b, c e Z . The ideal group /
corresponds to a classfield JRΓ which is normal over F with [K : /:]
= 5. The Galois group G = G(K/F) is a semi-direct product of
the form (1), say with generator σfor T = G(K/k) for which
[σj] = (1 + 5jy/2)J (0 < j < 4) in (4). Also, since τ{</ϊ) = -Λ/2 , we
have τ[σ7] = [σ~j] so G is dihedral. (A straightforward, but tedious,
computation shows that / is the only admissible ideal group of k
which has conductor divisible only by 5, is invariant under G(k/F)
and has corresponding classified K with G{K/F) = D5.)

To determine the resolvent field k', we choose λ = \fϊ in Proposi-
tion 1 to find E2_χ = [(ζ - C4)>/2]2 = -J/Λ/ΪO where η = (1 + >/5)/2.

Hence A:' = F(iJ>/Ϊ0η). Realizing (48) modulo m, = 20Λ/2 , we find
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the sets [φ] in (11) are

lΦι,ι] = {(x)\x>0, JCΞΞ1,9, 11, 19,±l-5\/2, 1 + 10\/2,

3 ± 2>/2, ±3 - 3 ^ , ±3 - 7\/2, 3 ± 8\/2,

± 7 + 3 \ Z 2 , ± 7 + 7Λ/2, - 7 ± 8 \ / 2 , 7 ± 2 V / 2 , 9 + 1 0 \ / 2 ,

± 9 - 5 v / 2 , ± l l + 5v/2, 11 + 1 0 \ / 2 , - 1 3 ± 2 V / 2 ,

, -13±8\/2,

, Π±S\/2, ±17 + 7\/2,

± 19 + 5Λ/2 , 19 + 10\/2 mod 20\/2}

and

[0τ,-i] = {{x)\x > 0, x = - 3 , 7, 13, -17, -1 ±4Λ/2,

- 1 ± 6\/2, ±1 + 9Λ/2, ±1 + Λ/2, ±3 - 5\/2,-3 - 10\/2,

db 7 + 5\/2, 7 - 1(V2, ±9 + Λ/2, -9 ± 4\/2, ±9 4- 9\/2,

- 9 ± 6Λ/2, ±11 - Λ/2, ±11 + 4y/l, -11 + 6\ίl,

± 11 - 9Λ/2, 13-10Λ/2, ± 1 3 - 5 ^ ,

- 17- 10\/2, ± 1 9 - 6 Λ / 2 , -\9±6y/l

±19-9\/2mod20\/2}.

The classfield corresponding to 3t = [φι,\] U [φτ,~\] must be k' =

[
Now to construct K/k we seek a suitable element β in A:' for

which k(ζ, βι/5)/k(ζ) is ramified only at the prime (1 - ζ) lying

above 5. Let p be the element of G(k'/F) sending Λ = iyy/ΪOη

to Λ = j:y\/Tθη and choose ψ in (16) so that p\ = 1, P2 = P,
Pi = p3 and P4 = p2. (This choice of ι̂  yields the correct field
k in Theorem 1 or its corollary.) Select ε = εi = \fϊ - Λ/5?/ + 2Λ,
a unit of fc' and zero of the irreducible polynomial q{x) = x4 +
(10 - 4Λ/2)X3 + (47 + lOv^)*2 + (30 + 2\/2> + (99 + 7 0 ^ ) . Its
conjugates in (17) are t.2 = \f2-\f5η-\-2hlη, ε^ = VΪ-\/5η-2A/η,
and 84 = \fϊ - \/5η - 2Λ. The corresponding β = β\, from (20) and
(39) is

^((-89325 + 64303\/2) + ̂ (40007 - 28715\/2))

+ Λ((32737 - 22440\/2) + \/5(-14651 + 10028Λ/2)).

Since β is not a fifth power in the completion of k(ζ) at (1 - ζ), we

find from Theorem 1 that a = \(β\ls + βψ + β\15 + β\ιs) generates
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some classfield of k of degree 5. This classfield must be K in view of
the parenthetical remark made about / . From (39), a has minimal
polynomial

p(x) = χ5 - (19 + l O V ^ x 3 + (30 + 2V^)/25x2

+ (38 + 20>/2)/125JC + (179900 - 127256Λ/2)/3125 .

EXAMPLE 8. In this final illustration, we wish to apply the con-
struction to find a generator a and minimal polynomial for the real
subfield K of Q(ζπ). Again kf = Q{ζ) since k = Q. Selecting
er = 2 + ζr in (41) yields

β = β{ = (4+ z)2(3 + 2zV2)4(4 + i + 2y/2 + 2iy/2)4/Π3,

β2 = (4 - z)2(3 + 2/\/2)4(4 - / - 2y/2 + 2iV2)4/Π3,

β3 = (4 + /)2(3 - 2zV2)4(4 + / - 2Λ/2 - 2iy/2)4/Π3 ,

jff4 = (4 — z)2(3 - 2/Λ/2)4(4 - / + 2Λ/2 - 2/\/2)4/173

in (20). Now it follows from Proposition 5 that Q(ζ, βι/*)/Q(ζ) is
totally ramified at each <2(ζ)-prime lying above 17, and unramified at
other primes except possibly at (1 + C) lying above 2. However, it
can be checked that β is an eighth power in the completion of Q(ζ)
at (1 + C). For any <2(C)-prime /ι lying above 17, we have e(/i : /ι)
= 8, so (46) holds. As K is the unique cyclic field with such ramifi-
cation, it is generated by a = | ( ^ 1 / 8 + #J / 8 + β5

1/8 + βl

Ί

/S) for our con-
struction. The minimal polynomial for a is p(x) = x 8 — 20x6/(24)
+ 1986x4/(28.17)-50256x2/(21 2 172) + 300304/(216 173) from (41),
and has zeros

: Y (85 ± VT7) ψ \JAΊΊΊ + 409VΓJ
4vT7

expressed solely in terms of real numbers.
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