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PRIMITIVE IDEALS AND DERIVATIONS
ON NON-COMMUTATIVE BANACH ALGEBRAS

MARC P. THOMAS

The Singer-Wermer Conjecture states that if D is a (possibly un-
bounded) derivation on a commutative Banach algebra then the range
of D is contained in the (Jacobson) radical of the algebra. This
conjecture is now known to be true. However, it is still not currently
known whether or not the Singer-Wermer Conjecture on derivations
extends to non-commutative Banach algebras in the following sense:
if D is a (possibly unbounded) derivation then is D(P) C P for
all primitive ideals P of the algebra? This has become known as
the non-commutative version of the Singer-Wermer Conjecture. We
first correct an automatic continuity result in the literature concern-
ing which (and how many) primitive ideals can fail to be invariant.
Using this result together with some representation theory we prove
a theorem about derivations whose second iteration annihilates some
element (specifically, D2a = 0 implies that Da is quasinilpotent).
This theorem does not require commutativity of the algebra and it is
easily seen to imply the Singer-Wermer Conjecture. The proof itself
is done by contradiction in which the remaining case leads to a new
derivation on a commutative subalgebra, and this case can be con-
tradicted by the arguments used in the proof of the Singer-Wermer
Conjecture.

1. Automatic continuity preliminaries. The fundamental work which
started investigation into the ranges of derivations on Banach algebras
is due to Singer and Wermer [8] in 1955. In this paper, the authors
proved that every bounded derivation on a commutative Banach alge-
bra mapped into the (Jacobson) radical. They also made a very in-
sightful conjecture, namely that the assumption of boundedness was
unnecessary. This became known as the Singer-Wermer Conjecture
and was proved in 1987 by the author [9]. The arguments used in [9]
are rather dependent on the commutativity of the Banach algebra.

In this paper we seek a proof of a result (Theorem 2.9) about deriva-
tions on (possibly non-commutative) Banach algebras which implies
the Singer-Wermer Conjecture. In results of this type, a major obsta-
cle is the discontinuity of the derivation. This was shown very early
on in the reductions (which were needed for [9]) of the problem by
Johnson [2] and Johnson and Sinclair [3] who also established a num-
ber of fundamental principles in what is now known as the theory
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of Automatic Continuity. In contrast, the case where the derivation
is bounded is much better known. See the paper [5] by Mathieu and
Murphy for a thorough and elegant discussion of related results (in-
cluding the bounded version [5, Theorem 2.1] of our Theorem 2.9) in
this case.

Hence, in our situation, it is not surprising that in order to prove
our main result, Theorem 2.9, we first require a number of results
from Automatic Continuity. These results will be applied (in a non-
commutative setting) in order to establish Proposition 1.10 which is
fundamental to our argument in §2. Although this proposition appears
in the literature in a paper of Jiang [1, Theorem 3.6], there is an error
in both the statement and proof of the first step [1, Theorem 2.1] of
his argument. We therefore believe that it is important to establish a
correct proof of Proposition 1.10 and our approach in §1 will follow
Jiang's strategy, which is certainly sound. It should also be noted
that several important and supporting lemmas are essentially results
of Johnson, Sinclair, and Laursen [2], [3], [7], [4] and we have noted
their contributions below. In essence, Proposition 1.10 is very much a
group accomplishment due to the work of Johnson, Sinclair, Laursen,
and Jiang.

After Proposition 1.10 has been proved we will use representation
theory and proof by contradiction to establish our main result (The-
orem 2.9) in §2. In the remaining case of the proof we will see that
it is possible to construct a new derivation on a commutative subal-
gebra, and it is then easy to finish off the proof. A real problem, at
least for us, with attempting a proof of the so-called non-commutative
Singer-Wermer conjecture (which states that there are actually no ex-
ceptional primitive ideals in the statement of Proposition 1.10 and
which remains unproven) is that the assumption of a non-invariant
primitive ideal seems too weak to enable one to do the type of reduc-
tions of the problem which we do in §2.

We will adhere to the following notation. We let sf be a fixed
Banach algebra over the complex field. It is not assumed to be com-
mutative nor to have an identity element. We will let & denote the
Jacobson radical of J / so that & is the intersection of the kernels P
of all strictly irreducible representations π of sf . Such ideals P are
denoted primitive ideals and it is well known that they can equiva-
lently be defined in several other ways (see Rickart's book [6, Chapter
2] for the general representation theory of Banach algebras). Primi-
tive ideals are necessarily closed. Results of Johnson [2] show that any
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associated strictly irreducible representation π can be assumed to be
continuous. For our purposes, a derivation D will be a C-linear map
from si to itself satisfying

D(xy) = xDy + (Dx)y,

for all x, y e J / , and we will suppose that D is fixed for the duration
of this discussion. If / is any closed (2-sided) ideal of si we will
let Qj denote the canonical quotient map from si onto si/I. The
derivation D itself is, of course, not assumed to be continuous, and we
can measure its discontinuity by considering the so-called separating
spaces of its powers:

f(Dk) = {xes/\ there exists xn -• 0 and Dk{xn) -> x},

for each k e N . It is routine that each S^(Dk) is a closed subspace
of si and that if R is any continuous linear operator with domain
si then RDk is continuous if and only if R(S^(Dk)) = {0}.

The following lemma is due to Johnson and Sinclair and Jiang [1,
Lemma 3.5].

LEMMA 1.1. Let I be any closed ideal of si such that QiDn is
continuous for all n e N. Then there exists a positive real constant C
such that

\\QiDn\\<C\

for all neN.

Proof. Note that the hypothesis is equivalent to stating that S?(J)n)
C / for all « G N . Define the linear subspace

J = {x eJi\Qrx = 0 and QiDnx = 0 for all n e N}.

Certainly J Q I and / is closed as a consequence of the continuity
of Qι and each QiDn , n e N. Let x e J and y e si and note that

k~ι ίk\
Dk{yx) = {Dky)x + J ^ ί )(Dιy)Dk-ιx.

i=o ̂  '
If we apply Qj to the above, we see that QjDn(yx) = 0 for all « G N .
This shows that / is a left ideal. A similar argument shows that it is
a right ideal, and we can then conclude that / is a closed (2-sided)
ideal of si . Let y e <9*(D). There is then xk -> 0 with D(xk) -> y.
But, for every « G N ,

Q!Dn(y)= limQID
n+l(xk) = 0,
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since each QjDn+ι is continuous. Therefore, S^{D) C / , from which
it follows that QjD is continuous. Since it is clear that D(J) c / ,
QjD factors through sf /J as DQj where D is continuous and is,
as usual, defined by D[y + /) = Dy + / . This shows that we can also
factor QiDn as ΦDnQj where Φ is the canonical inclusion from
sf/J onto sf/I (which exists since / C / ) . We therefore conclude
that

\\QiDn\\ < \\D\\"

for all / I G N , since the other maps are norm depressing.

The next lemma is due to Johnson and Sinclair.

LEMMA 1.2. Let P be a primitive ideal of stf . If there exists a
positive real constant C such that

\\QpDn\\ < Cn

for all n eft, then D(P) C P.

Proof. Note that the quotient algebra s/ /P is a primitive algebra
(it has one unique, up to isomorphism, faithful strictly irreducible
representation) and is hence semi-simple. Let y GS/ and x G P and
observe that

yDx = D(yx) - {Dy)x e D{P) + P.

This shows that (D(P) + P)/P is a left ideal of s//P (and a right
ideal by analogous reasoning). Let n e N and x e P and observe
that

Dn(xn)en\(Dx)n +P,

and hence

(n\γln\\{{QpDx)n)\\χln = | |Q/>Z)Π(JCΠ)| |1/Π < C\\xn\\ι'n.

Since CH^H1/" is bounded and since (n\)χln —• +00, this shows that
QpDx is quasinilpotent. Since x was an arbitrary element of P it
follows that (D(P) + P)/P is a quasinilpotent left (and right) ideal of
sf IP. Semi-simplicity forces D(P) c P. D

The next important proposition is incorrectly stated in [1, Theorem
2.1] (the 9th line from the bottom of the page is unjustified; it is nec-
essary to use the products TιT2 Tm rather than just the individual
Tm 's) but the basic principle was noted earlier and proved in a slightly
different but equivalent formulation by Laursen [4, Proposition 2.1].
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PROPOSITION 1.3. Let {7/}?^ be a sequence of continuous linear
operators defined from stf to itself and let {Ri}^ be a sequence of
continuous linear operators whose domain is s/ {but which may map
onto other Banach spaces). Let S be a {possibly discontinuous) linear
map from stf to itself If

RnST\ is continuous for m > n,

then
RnST\ T2'"Tn is continuous for sufficiently large n.

Proof. Without loss of generality, we may suppose that the norms
of all the Tn 's and Rn 's are bounded by 1. Let Un = Tx T2 Tn and
suppose that the result fails. It is then possible to choose a strictly
increasing sequence {«/} c N and elements {tf/}^ C j / such that
||0;|| < 2"1' satisfies

and

INI < 2-ίmin{||JRn/1St/rt/|r
1| for all j

WRnfUnCuWZl + i-
I I

i - l

for all I ' e N . Now let a = ΣJtx Un cij e srf and note that for each
/ (ΞN

||5α|| > HΛ^βll

Ί /

7=1

RnS ^ UHaj
7=1+1

i - l

7=1

>i+l-\\RnSUnJ \\aj\\>i9

which, of course contradicts the fact that the norm is finite. This ends
the proof of the proposition. D

We now require a definition.
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DEFINITION 1.4. Let & denote the set of all primitive ideals P of
stf for which QpDn is continuous for all « G N ,

From Lemma 1.1 and Lemma 1.2 it is clear that P e 3° implies
that D(P) c P. We will first show that & contains all primitive
ideals of infinite codimension.

LEMMA 1.5 {Johnson and Sinclair). Let π be a strictly irreducible
representation of stf on an infinite dimensional normed complex linear
space X. Let {x{\^ be a linearly independent {over C) subset of X.
Then there exists a sequence {cti}^ in srf such that

O, and {π{ax)xx, π{a{)x2, ...}

is linearly independent,

π{a2aι)x0 = 0, π{a2ax)xx = 0, and {π{a2ax)x2, π{a2ax)x3, ...}

is linearly independent, and so on; in general

π{an •--a2a\)xm = 0, for m <n, and

{π{an- a2aι)xn, π{an -a2aι)xn+ι, ...}

is linearly independent for all « E N .

Proof. Note that since $/ is a complex Banach algebra, the central-
izer of J / on X is C. Then apply the construction in [3, Theorem
2.2] (which is itself dependent upon induction on [3, Lemma 2.1]).
This yields the desired sequence {tf/}^ . o

The next result is essentially [1, Lemma 3.1] with a corrected proof
(it is necessary to use the products T\T2-Tm rather than just the
individual Γm 's).

LEMMA 1.6. Let π be an irreducible representation of sf on an
infinite dimensional normed complex linear space X. Then, for all
n e N and x e X the map

is continuous on stf .

Proof. Denote the above map by φn,x- If Ψn9x is continuous for
some x / 0 , x e X, then, given y e X choose (using the strict
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irreducibility of π) an element c e stf satisfying π(c)x = y. Then
note that

π(Dn(b))y = π(Dn(b)c)x

= π{Dnφc))x - "JΓ (nλπ(Dι{b))π{Dn-ι{c))x.
ι=o v '

This means that if the result fails it is possible to find a minimal
index k EN such that ψ\x is continuous for all x e X with / < k,
and ψkiX is discontinuous for every non-zero x E X. Since X is
infinite dimensional we can find a linearly independent subset {x/}^0 .
Now apply Lemma 1.5 in order to obtain the sequence {cij}^ C S/ .
Define, for / = 1, 2, . . . , the continuous linear operators Tiφ) =
baiy b G J / , and define, for / = 0, 1, . . . , the continuous linear
operators Rt(b) = π(Dk-ι(b))Xi, besf . Then note that

RnDTλ T2 Tm(b) = π(Dk-\D(bam a2a{)))xn

= π(Dk(bam'-a2ai))xn

k - l , i χ

= π(Dk(b))π(am a1ax)xn + ̂  ( / ) <Pι,v(i,n,m)(b),

where v(l,n9m) = π(Dk~ι(am -a2a\))xn, a vector in X which
does not depend on b. Since π(am a2a\)xn is the zero vector if
m > n but is non-zero if m = n, it follows that RnDT\T2' Tm

is a continuous function if m > n, but a discontinuous function if
m — n. This contradicts the automatic continuity result of Lemma
1.3, and the result follows. D

COROLLARY 1.7. If P is a primitive ideal in stf of infinite codimen-
sion then P G ^ and D(P) c P .

Proof. Let P be a primitive ideal of infinite codimension in sf
and let π be a corresponding strictly irreducible representation with
kernel P on a normed linear space X. It is clear that X mws£ be
infinite dimensional; otherwise π(j/) would be isomorphic to a finite
dimensional matrix ring. Lemma 1.6 implies that the map

b -> π(Dn(b))x

is c o n t i n u o u s for every n e N a n d x 6 l . H e n c e , we see t h a t for
neN

xex
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Therefore, it follows that S*(Dn) c P for all n G N and the result
follows. D

We next work on primitive ideals P with finite codimension. Of
course, this means that if π is a corresponding strictly irreducible
representation on a (complex finite dimensional) vector space X with
kernel P then sf /P = L(X), the full matrix ring of operators over
C. Hence the codimension of P is the dimension of L(X) which is
the square of the dimension of the vector space X.

LEMMA 1.8 (Johnson and Sinclair). Let {π,-}^ be non-equivalent
strictly irreducible representations of stf on finite dimensional vector
spaces Xj, i G N. Then there exists a sequence {tf/}^ Q stf such
that

πn{am) = 0,

whenever m> n, but

πn(am) is regular in L(Xn),

if m < n.

Proof. This is precisely the statement of [3, Lemma 3.2]. D

The next result is essentially [1, Theorem 3.4], again with a corrected
proof (it is necessary here as well to use the products TιT2-Tm rather
than just the individual Tm 's).

LEMMA 1.9. 3? contains all but possibly finitely many primitive ide-
als of finite codimension.

Proof. We suppose that the result fails. As a consequence of Corol-
lary 1.7, it is then possible to find a sequence of distinct primitive
ideals {Pi}^ of finite codimension in si which are not in & . Fur-
thermore, it must be the case that for each P/ there is k\ e N such that
QP Dk is discontinuous if k = k[ but continuous if k < k[. If, for
each / G N, π; is an associated strictly irreducible representation of
si on a vector space Xi with kernel Pz then it is clear that the { π / } ^
are non-equivalent. Apply the previous lemma to obtain the sequence
{α,-}^! Also note that s//Pi = L(X{). Define, for / = 1 ,2 , . . . ,
the continuous linear operators Tj(b) = bai, b esf , and define, for
/ = 0, 1, . . . , the continuous linear operators Ri(b) = QpDk~ι(b),
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b e sf . Then note that

RnDTx T2. > Tm(b) = QpnD
knφam a2a{)

ίlc
+ Σ ϊ

1=0

Since Qpn{am a2a{) = 0 for m > n (as nn(am) = 0) and since

n ' a2aι) = Qpn(an) QPn{a2)QPn(a{),

which is regular (as πΛ(α/) is regular for / = 1, 2, . . . , ή), it follows
that RnDTχT2"Tm is continuous for rn > n and discontinuous for
m = n. Again, this contradicts Lemma 1.3. Therefore & must be
a finite set and its only elements can be primitive ideals with finite
codimension. D

The next result is immediate.

PROPOSITION 1.10. It must be the case that QpDn is continuous for
all n G N and D(P) c P for all primitive ideals P of srf except pos-
sibly finitely many exceptional primitive ideals P\, P2, . . . , Pn which
must necessarily be of finite codimension. u

2. Proof of the Main Theorem, Now that we have established Propo-
sition 1.10, we continue to assume that J / is a (possibly non-commu-
tative) Banach algebra, D is an (unbounded) derivation from sf to
itself, and we let a be any element of s/ satisfying D2a = 0. We
first note that the following proposition is an immediate consequence
of the well-known result [6, Theorem 2.2.9, page 54] that π(r) quasi-
regular for all strictly irreducible representations π of si implies that
r itself is quasi-regular.

PROPOSITION 2.1. If S? is a set representing all non-isomorphic
strictly irreducible representations π of sf then for any element b e

σ(b)c I U σ(π(b)))u{0}.
J

Let P be one of the non-exceptional primitive ideals which sat-
isfy the conclusions of Proposition 1.10 and let π be an associated
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strictly irreducible representation with kernel P. Then D drops to a
continuous derivation D on the quotient si jP via

Dx ΞΞ φx),

where the dot denotes the coset in sf /P. Note that Dk{a) = 0 for
all keN, k>2 and therefore

= {n\yιln\\Dn{άn)\\χln

and this latter term tends to 0 as n —• oo. Hence, Da + P is
quasinilpotent in sf /P and therefore the spectrum σ(π(Da)) = {0}.
Since only finitely many primitive ideals may be exceptional in not
satisfying the conclusions of Proposition 1.10, and since, for these
ideals, the codimension is finite, Proposition 2.1 immediately implies
the following corollary.

COROLLARY 2.2. If D2a = 0 then the spectrum σ(Dά) is a finite
set D

For the next lemma, we first require a definition.

DEFINITION 2.3. Let S be any subset of sf . Define the commutant
of S as follows.

C(S) = {x e sf\xs = sx for all s e 5}.

LEMMA 2.4. Let S be any subset of sf satisfying D(S) CS. Then
D(C(S))CC(S).

Proof. Let x e C{S), so that xs = sx for all s e S. Then D(xs) =
D(sx) for all s e S, from which it follows that

xDs + (Dx)s = sDx + (Ds)x,

for all s e S. Since Ds eS for all 5 G 5 , the above equation reduces
to (Dx)s = sDx, for all s e S. Therefore we see that Z>JC G C(S)
also. D

LEMMA 2.5. Let S be any subset of sf . Then C(S) is a closed
subalgebra of sf . If furthermore S itself is a commutative subset of
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si then C(S) Π C(C(S)) is a closed commutative subalgebra of si
containing S.

Proof. It is routine to check the above assertions. D

Returning to σ(Da), suppose that there exists λφQ, λe σ(Da).
We fix such a λ for the following discussion and we seek a contra-
diction. Since σ(Da) is a finite set there is a function / analytic
on a neighborhood of σ(Da) which is identically 1 on a neighbor-
hood of {λ} but identically 0 on a neighborhood of σ(Da) ~ {λ}
(e.g. we could explicitly take / to be the uniform limit of the ana-
lytic functions fm(ζ) where fm(ζ) = (1 - Km(ζ - λ)m)~ι for a suffi-
ciently small choice of K on a suitable disconnected neighborhood of
σ{Da)). Hence, e = f(Dά) is an idempotent which commutes with
Da. Since e is an analytic function of Da, e also commutes with
any element of si which commutes with Da. Furthermore, esrf e
is a closed subalgebra of si with identity element e and with an
element e(Da)e = eDa which satisfies

<*ej*e{β{Pa)e) = σe^e(eDa) = {λ}.

Since e is the identity element of es/e it is also clear that

σe^e(e(Da)e-λe) = {0}.

We are now ready to prove the following lemma.

LEMMA 2.6. Let λφQ be an element of σ{Da). Then there is an
idempotent e e si which commutes with Da and which commutes
with anything that commutes with Da and satisfies the following:

(i) The element s = (e(Da)e - λe) is quasinilpotent and satisfies
Ds = 0.

(ii) D(eae) =λe + a and D2(eae) = 0.

Proof Let e = f(Da) as above. We have noted that

There is thus a quasinilpotent element s of esrf e such that e(Da)e =
λe + s (certainly s is quasinilpotent in si also, although si need
not have an identity element). Let S be the (non-closed) commutative
subalgebra generated by Da. Since D2a = 0 it is clear that D(S) =
{0} so that D(S) C S. Next note that since De = eDe + (De)e and
since e e C(S)ΠC(C(S)), Lemma 2.4 implies that De is in the closed
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commutative subalgebra C(S)Γ\C(C(S)) also. Since e isidempotent
and since e and De commute, it follows that

e(De) = e(eDe + (De)e) = e(2eDe) = 2e(De),

so that eDe = 0. Therefore we see that

De = eDe + (De)e = 2eDe = 0,

as well. It is then routine to compute the following:

D(eae) = (De)ae + e{Da)e + eaDe

= 0 + e(Da)e + 0 = λe + s,

and

D2(eae) = D(e{Da)e)

= De{Da)e + e(D2a)e + eDaDe = 0.

Since De = 0, it is also the case that Ds = 0, and this completes the
proof of the lemma. D

We now focus our attention on the closed subalgebra es/e and we
define a new derivation D\ on this unital Banach algebra as follows:

D\(exe) = eD(exe)e,

for x e stf . It is routine to check that D\ is a derivation. Since
De = 0 it is also routine to establish that

D\{exe) = e(Dx)e.

We have the following lemma concerning D\.

LEMMA 2.7. Let λ, e, and s be as in Lemma 2.6, and define D\
on es/e via D\(exe) = e(Dx)e, for x G i . Then there exists an
element t in estfe satisfying

Dxt = e and Djt = θ.

Proof. First note that

Dχ(eae) = eD(eae)e = e(λe + s)e = λe + s.

Since Dx(e) = eD(e)e = 0 and Dχ(s) = eD{s)e = 0 it is clear that
D\{eae) = 0. Since λ Φ 0, since e is an identity element for esrfe,
and since s is quasinilpotent, it follows that (λe+s)~ι exists in es/e.
Applying D\ to the equation (λe + s)(λe + s)" 1 = e, we see that

(Dχ(λe + s))(λe + s)-1 + (λe + s)Dx((λe + s)~ι) = 0,
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from which it follows that

(λe + s)Dx((λe + s)~x) = 0,

and, since (λe + s) is invertible,

Now define t = (eae)(λe + s)~ι, which is certainly an element of
es/e, and note that

Dι(t) = e,

since Dχ((λe + s)~ι) = 0. This forces

and ends the proof of the lemma.

LEMMA 2.8. Let e and t e esfe be as in Lemma 2.7. Define T
to be the commutative (non-closed) unital subalgebra generated by e
and t in estfe. Also define

where the commutant is taken in estfe. Then srft is a commutative
unital Banach algebra containing e and t which is invariant under the
derivation D\ and this derivation maps t to the identity element e.

Proof. Since T is a commutative subalgebra it is clear upon apply-
ing Lemma 2.5 that srft is a closed commutative subalgebra of esrfe.
It is unital and contains t since Γ C ^ , Since T is clearly invariant
under D\, it is clear that sft is invariant under D\ as a consequence
of Lemma 2.4. Finally, D\(t) = e by our above computation. D

We have now contradicted the traditional Singer-Wermer Conjec-
ture [9] since we have a commutative Banach algebra stft with a deriva-
tion D\ and an element t such that D\(t) £ radial ($/t) as the iden-
tity element e is surely not in the radial of stft. This means that our
original hypothesis of λ Φ 0, λ e σ(Da) must be false. We have
therefore proved

THEOREM 2.9. Let stf be a (possibly non-commutative) Banach al-
gebra and let D bea (possibly unbounded) derivation from sf to itself.
Ifaesf and

D2a = 0.

Then σ(Da) = {0}. D
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We note in passing that it is easy to show that the truthfulness of
Theorem 2.9 implies the truthfulness of the Singer-Wermer Conjec-
ture since the assumption of commutatίvity and a derivation which
doesn't map into the radical together with Johnson's reduction of the
Conjecture [2] produces a derivation on a commutative radical Banach
algebra with identity adjoined which does not leave the radical itself
invariant. Since we are in a commutative situation, it is then easy to
modify this derivation (multiplying by a suitable invertible element)
and produce a new derivation which maps an element r of the radical
to the identity element. Again, using commutativity, D2r = 0 since
Dr is the identity element, and this, of course, would violate Theorem
2.9.
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