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TANGENTIAL AND NORMAL EULER NUMBERS,
COMPLEX POINTS, AND SINGULARITIES
OF PROJECTIONS FOR ORIENTED SURFACES
IN FOUR-SPACE

THoMAS BANCHOFF AND FRANK FARRIS

For a compact oriented smooth surface immersed in Euclidean
four-space (thought of as complex two-space), the sum of the tan-
gential and normal Euler numbers is equal to the algebraic number of
points where the tangent plane is a complex line. This follows from
the construction of an explicit homology between the zero-chains of
complex points and the zero-chains of singular points of projections
to lines and hyperplanes representing the tangential and normal Euler
classes.

1. Introduction. For a compact two-dimensional surface smoothly
immersed in Euclidean four-dimensional space R*, also thought of as
complex two-dimensional space C2, the sum of the Euler number of
M and the Euler number of its normal bundle is the negative of the
algebraic number of (isolated) complex points where its tangent plane
is the graph of a complex linear function. Our aim in this article is
to present a geometric proof of this theorem. This theorem, already
implicit in the fundamental paper of Chern and Spanier [C-S], has
been developed and generalized in papers of Webster [W1], [W2],
and employed as a lemma in a number of other investigations, for
example the work of Hoffman and Osserman [H-O] and Fiedler [F].
These papers rely on a variety of abstract techniques from algebraic
topology and differential geometry, and it is frequently not easy to
see the underlying geometric content of the theorem. In this paper,
we present a concrete proof of the theorem for oriented surfaces, by
interpreting the Euler numbers as singularities of projections in order
to obtain O-chains representing the Poincaré duals of the tangential
and normal Euler classes, and by using the Gauss map of the surface
to exhibit an explicit homology between these chains and the O-chain
of (indexed) complex points.

Consider briefly the Euler numbers involved in the theorem. The
(tangential) Euler number of M is the most well-known topological
invariant of an oriented surface, characterized by a theorem of Heinz
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Hopf as the algebraic sum of the zeros of a field of vectors tangent
to M. In terms of singularities of projections, the Euler number is
the number of maxima plus the number of minima minus the number
of ordinary saddle points for a generic real-valued function on the
surface, i.e. a projection of the surface into a line.

Similarly the normal Euler number of an immersion of a surface
into R* can be defined as the algebraic sum of the zeros of a field of
vectors normal to A/ . If at each point of M, we construct a normal
vector field by taking the normal component of the fixed unit vector
v, then this normal vector field is zero precisely at the points of AM:
where v is contained in the tangent plane, so the projection into the
three-dimensional hyperplane perpendicular to v has a singularity at
p. Thus in terms of singularities of projections, we may express the
normal Euler number as the algebraic number of singularities of a
projection of M into a hyperplane.

What is the relationship between these two Euler numbers? It is
surprising that the sum of the tangential and the normal Euler numbers
has anything to do with the algebraic number of points at which the
tangent plane to M is a complex line, but that is precisely the content
of the theorem.

To help to understand this relationship, we turn to the Gauss map
of the immersion. If X: M? — R* is a smooth immersion of an
oriented two-dimensional manifold into Euclidean four-space, then
translating the tangent plane of M? to the origin induces a map, GX ,
from M2 to G(2, 4), the Grassmann manifold of oriented two-planes
in four-space, also called the Grassmannian. We will show that the
three terms in the theorem count the algebraic number of intersections
of the image of the Gauss map of M with certain surfaces in the
Grassmannian. We will show that these surfaces form the boundary
of a three-dimensional chain in G(2, 4), and the intersection of this
chain with the Gauss map of the surface provides an explicit homology
among the 0-chains that represent the three terms in the equation.

We begin with an expanded discussion of the Euler numbers in
question, interpreting them for curves and surfaces in Euclidean two-
and three-dimensional space to indicate the geometric nature of the
approach we take to prove the theorem. We then present a detailed
tour of the Grassmann manifold G(2, 4). With this background, we
present several examples illustrating the various concepts, leading up
to our proof of the theorem.

2. Euler numbers and singularities of projections. In general, the
concept of a characteristic class of a vector bundle is quite abstract;
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the most common approaches are axiomatic, covering the most gen-
eral situation [M-S]. But in the case of a submanifold immersed in a
Euclidean space, these abstract concepts can be viewed concretely in
terms of the singularities of projections into lower-dimensional sub-
spaces. (See [C] and [B-McC] for examples of this approach.)

2A. A simple closed curve. Our most elementary example is a
smooth embedding of the circle as a simple closed curve in the Eu-
clidean plane with a finite number of inflection points. Associated
with any unit vector v is the height function obtained by projecting
the curve into the line along v. The critical points of this height
function are the points where the vector tangent to the curve is per-
pendicular to v. For almost any v, this height function has finitely
many critical points on the curve, an even number of them, alternately
maxima and minima as we proceed around the circle. (If this is not
true for a particular v, we may rotate the curve slightly and obtain a
curve that does have the property with respect to v.)

We can interpret these properties by using the Gauss map GX of
the embedding X, which sends each point of the (counterclockwise
oriented) circle to the unit tangent vector to the curve at the point,
translated to the origin. Thus the Gauss map GX goes from the
circle to the circle. If we project, for instance, to the line along the
second standard basis vector e, , then the critical points are the points
with unit tangent vector +e;. We can index a critical point by —1
if the Gauss map crosses from below the e;-axis to above and +1 if
it crosses from above to below. The points with their Gauss image in
the upper semi-circle form a collection of curves on the original circle,
each one beginning with a —1 critical point and ending with a critical
point indexed +1. This collection of arcs on the circle provides an
explicit homology between the positive and negative points.

Next suppose we consider another direction, v, on the unit circle.
As in the case of e, , we may index the points where the tangent vector
is perpendicular to v to obtain another 0-chain. We claim that this 0-
chain is homologous to the one obtained for e,. To obtain an explicit
homology, we consider an arc of vectors v(z) on the unit circle going
from v(0) = e; to v(1) =v. As ¢ changes from 0 to 1, the critical
points for the projection to v(¢) trace out a collection of curves on
the original circle. As we pass a vector parallel to the tangent line at
an inflection point of the curve, two critical points will coalesce into
one, or a pair of critical points will arise spontaneously from a single
point. In any case, the critical points at the beginning together with
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those at the end form the boundary of a collection of oriented curves;
these arcs traced on the circle exhibit an explicit homology between
the two sets of critical points. (See Figures la, 1b, 1c, and 1d.)

In this rather elementary example, we see that the signs of the crit-
ical points sum to zero for almost any projection to a line along a
unit vector, and that the O-chains corresponding to projections to two
different directions are homologous by an explicit homology obtained
from the Gauss mapping. The same results are true for a curve im-
mersed in the plane, or for that matter in n-dimensional space R”.

2B. The Euler number of a compact surface in R3. For a more
complicated example, consider a generic immersion of an oriented
smooth surface without boundary into Euclidean three-space
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X: M? - R3. As above, we wish to show how to determine its (tan-
gential) Euler number by using the Gauss map GX which sends each
point p of M to the oriented plane through the origin parallel to the
tangent plane to the surface of the point. Following the usual practice,
we identify an oriented plane with the unit normal perpendicular to
the oriented tangent plane to X (M) at X(p), so the image of GX
lies on the unit sphere in R3. The direction of the unit normal is
chosen such that the orientation of the tangent plane followed by the
unit normal gives the orientation of all of R3.

To calculate the tangential Euler number, we consider the zeros of
a tangential vector field, for example the field that assigns to p the
projection to the third coordinate vector e; into the tangent plane
at X(p). This vector field is zero exactly when the projection to the
line of e3 is singular, that is, when the tangent plane at X(p) is
perpendicular to e;. This happens when the image of the Gauss map
at p iseither e; or —ej3, the north or south pole of the unit sphere S2.
We assume that for the surface X(M), each point p in the preimage
of +e3 under GX will have a disc neighborhood on which the Gauss
map is one-to-one. (If this is not true, then we may rotate the surface
slightly in almost any direction and this property will hold.)

Following Gauss’s original definition, we assign the index 1 to p if
the Gauss map in a neighborhood of p is orientation-preserving and
—1 if it is orientation-reversing. The plus sign identifies the points
which are maxima or minima of the projection of the surface to the
third coordinate axis, and the minus sign identifies the ordinary saddle
points. The nature of the critical points can be determined by express-
ing the surface in the neighborhood of a critical point as the graph of
a function (x,y, f(x,»)). Then the index of the critical point is 1
or —1 depending on the algebraic sign of the Hessian fxx f,) — f,?y .
The sum of the indices of these points is called the (tangential) Euler
number of M . More formally, this indexed set of critical points is
defined to be the Poincaré dual of the tangential Euler class of M .

To see that the Euler number and the Euler class are well-defined,
we choose another unit vector v and consider the 0-chain of indexed
critical points for the projection of the surface to the line along v. For
most directions v, the minor arc v(¢) of unit vectors on the sphere
from v(0) = e3 to v(1) = v will meet the image of the Gauss map
of the surface “transversely” so that as we move from v(0) to v(1),
the indexed critical points of the projection to v(z) trace curves on
M , with a finite number of exceptional positions where a maximum
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or minimum coalesces with a saddle, or where a saddle and a local
extremum arise instantaneously. In any case, the O-chain at the end
minus the O-chain at the beginning is the boundary of an explicitly
constructed oriented 1-chain, so these O-chains represent the same O-
dimensional homology class, the tangential Euler class, and the sum of
their indices is a well-defined integer, the (tangential) Euler number,
denoted by x(M). A similar argument shows that these same results
are true for a surface immersed in n-dimensional space, although the
nature of the Gauss map is more complicated in higher dimensions
(see below). :

The process used in this example illustrates the kind of argument
we will use in the proof of the theorem.

2C. The normal Euler number of an immersed surface in R*. For
an immersion X: M — R*, a theorem of Whitney [Wh] states that
the sum of the indices of the zeros of any generic normal vector field
will be independent of the field used to define it, and this common
value is defined to be the normal Euler number of the immersion. As
in the case of the tangential Euler number, we may approach the nor-
mal Euler number in terms of singularities of projections. One way to
obtain a normal vector field on an immersed surface is to start with
a fixed unit vector v and consider the projection N,v of v into the
normal space to M at p. The zeros of this vector field will occur pre-
cisely at the points p where the vector v lies in the tangent space at
p, and for almost all v, there will be a finite number of such singular
points p. If we project down v into the three-dimensional subspace
perpendicular to v, then the zeros of N,v are characterized by the
fact that the image of the tangent space at X(p) has dimension less
than two. In the generic situation, this will happen only at a finite
number of points, and the rank at each of these singular points is one.
In three-dimensional space, we can recognize such singularities by the
fact that the image of the surface has a “pinch point” or “Whitney
umbrella point”, where the image of the tangent plane to the surface
in R* is just a line in R3. It is possible to assign to each of these
pinch points an index 1 or —1 to obtain a O-chain Z(v). For almost
any other unit vector w, all but a finite number of points on the arc
v(?) from v(0) =v tov(l) = w will have generic pinch points as their
singularities, and the pinch points of v(¢) will trace out a collection of
arcs on M . At the singular positions, two pinch points coalesce and
disappear or two new pinch points arise instantaneously. This collec-
tion of arcs gives an explicit homology between the 0-chains for v(0)
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and v(1), so the homology class of the O-chain Z(v) is independent
of the direction v used to define it. This integral homology class is
called the normal Euler class, and the sum of the indices of the pinch
points will be a well-defined number, n(X), the normal Euler number
of the immersion.

Although the tangential Euler number can be determined using any
immersion whatsoever, the normal Euler number depends on the im-
mersion into R*. In particular, if F: R* — R* is reflection in any
hyperplane, then n(FoX) = —n(X). We will use this fact in our later
constructions.

We also mention a theorem of Whitney [Wh] which we will not use
in the proof but which will play a role in the analysis of the examples:
If X is a smooth embedding of an orientable surface into R*, with
no self-intersection points, then n(X) = 0. In the case that X is an
immersion with a finite number of transverse intersections, then n(.X)
is given by the algebraic number of intersection points. In particular,
if there is only one such self-intersection point, then n(X) = £2.

2D. Elementary examples. A surface immersed in X: M2 — R3
is automatically immersed in R*, and the projection into the hyper-
plane R? is just X itself so it has no singularities. Thus the normal
Euler number is 0, even though the tangential Euler number will not
be zero for any orientable surface other than the torus. Thus in general
x(M) # n(X).

To measure the difference between the tangential and normal Euler
numbers, we appeal to the “complex points” of X (M) in R3 thought
of as a hyperplane in C2. A complex line is the graph of a com-
plex linear mapping, z = x +yi — w = (a + bi)z + (c + di) =
(a+bi)(x+yi)+ (c+di)=(ax —by +c)+ (bx +ay +d)i. In real
coordinates, this graph is given by (x,y,ax —-by+c,bx+ay+d).
The only plane in R3? that can be represented in this way must have
bx+ay+d =0 forall x, y so a=>b=d = 0. Thus the only complex
lines in R3 are the horizontal planes (x, y, ¢, 0). We already know
that the tangential Euler number of M can be expressed as the sum of
indices associated to the points where the tangent plane is horizontal,
perpendicular to e3, and in the case of an immersion to R3, these are
exactly the complex points, where the tangent plane is a complex line.
We shall see that this relationship holds even when an immersion of
M into R* is not contained in a hyperplane.

To see when the tangent plane at a point is a complex line, it is
convenient to use the properties of a linear transformation of R*
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known as the J homomorphism. Multiplication by i in C? sends
the vector (x + yi, u +vi) to (—y + xi, —v + ui). This motivates
the definition J(x,y,u,v) = (-y, x, —v, u). We observe that if
a two-dimensional plane through the origin is given by the graph of
a linear function (x, y, mx + ny, px + qy), then this plane will be
preserved under the action of J if and only if

J(x,y,mx+ny,px+qy)=(-y,x, —px —qy, mx +ny)

satisfies the same linear equations, namely —px — qy = m(—y) + nx
and mx + ny = p(—y) + gx for all x and y. This will happen only
when n = —p and m = g, so the mappingis (x,y, mx+ny, —nx+
my) . This map corresponds in complex notation to the graph of the
complex linear function z — z(m — ni).

Another important example of an orientable surface in 4-space is the
flat torus T?, obtained by mapping the point (s, f) in the square do-
main (0 <s <2m, 0<t<2n) tothe point X(s, t) = (cos(s), sin(s),
cos(?), sin(¢)). The plane through the origin parallel to the tangent
plane at a point X (s, ¢) is given by linear combinations of the partial
derivative vectors X(s, t) = (—sin(s), cos(s), 0, 0) and X(s, t) =
(0, 0, —sin(?), cos(¢)). But then JX,(s, t) = (- cos(s), —sin(s), 0, 0),
which is perpendicular to both X;(s, ) and X,(s, t), so the tangent
plane is not preserved under the homomorphism J at any point of
the flat torus. It follows that there are no complex points on this sur-
face. On the other hand, the Euler number x(72) is zero and so is
the normal Euler number, by Whitney’s theorem.

2E. An abstract approach to the theorem. We consider briefly how
the complex structure of R* = C? is involved in relating the normal
and tangential Euler classes. Following an argument of Webster [W2],
we compute the normal Euler number of an immersion of a surface M
by finding the algebraic number of zeros of a particular normal vector
field. We start with a constant vector v. By taking the tangential
part of v at each point p, we obtain a tangential vector field 7,(v)
along M . We then move this vector by the linear transformation J
to get JT,(v), and then take the normal part of the result to obtain
Ny(J(Tp(v))). This normal vector field will have a zero when either
T,(v) =0, or when T,(v) # 0 and J(T,(v)) is also a tangent vector.
But the homomorphism J has a special property, namely, that if the
image of one non-zero vector of a plane lies in the plane, so does
the image of every vector in the plane. Thus the set of zeros of the
normal vector field N,(J(7,(v))) consists exactly of the zeros of 7,(v)
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together with the complex points of the immersion.

It follows then that a set of points used to count the normal Euler
class is identical with a union of the set of complex points and a
set used to count the tangential Euler class. Formalizing this as a
proof of the theorem amounts to finding the correct way to assign
indices to these points. To see that this may be non-trivial, observe
that composing the maps in the other order and counting the zeros
of T,(J(N,(v))) switches the complex points to the other side of the
equation. How do we account for this difference in indexing? Rather
than address this difficulty directly, we present a very different proof,
where the geometric content is more apparent.

A difficulty with the argument given above is that while the zeros
of the vector fields 7,(v) and N,(v) are exactly the singularities of
projections of a vector v into the tangent planes or normal planes of an
immersed surface, it is not so easy to interpret the geometric meaning
of the zeros of the vector fields N,J7,(v) and 7,JN,(v). To find
a proof of the theorem which relates to singularities of projections,
we turn to the Gauss map of the immersion and therefore, first, to a
Grassmannian manifold.

3. The Grassmannian manifold of oriented two-planes in Euclidean
four-space. For an immersion X of an oriented two-dimensional sur-
face in R*, the Gauss map takes a point of the surface to the oriented
plane through the origin which is parallel to the tangent plane at X(p).
The image of this map then is the set of oriented two-planes in R*,
which we call G(2, 4) or simply G when there is no danger of con-
fusion. In this section, we coordinatize G, and analyze the structure
it inherits through an identification R* = C2. We then examine some
structures associated with the proof to follow.

3A. Pliicker coordinates. In R* with oriented basis given by e;,
e, €3, €4, we can completely determine an oriented plane by giving
the (algebraic) areas of the projections of a unit square in that plane
into the six coordinate planes. If the edges of the unit square are given
by the ordered pair of perpendicular unit vectors c;e;+ce;+c3e3+C4e4
and d,e, +d,e; +dse3+dse4, then the projection of this square to the
1-2-plane is the parallelogram with edges c;e; +c,e; and die; +dse;.
This has algebraic area c;d, — cpd;, which we define to be the 1-
2-Pliicker coordinate p;,. Similarly we find the six Pliicker coordi-
nates p;;.
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In terms of exterior algebra, we may write the 2-plane as
W = ppejAey+przerAe3+p3jesAe;+p3ezAes+praei Aeg+praerNey.

The Plucker coordinates are independent of the choice of basis used
to define them—any other oriented pair of perpendicular unit vectors
gives the same six coordinates p;; .

The set of two-planes in four-space is not six-dimensional since
there are some relations among these Pliicker coordinates. Since we
started with an orthonormal basis for the plane, by direct calculation
we may show that ) pl-zj = 1. This expresses an extension of the
Pythagorean theorem, saying that the square of the area of a parallel-
ogram is the sum of the squares of the areas of its projections to the
six coordinate planes. This makes it possible to obtain the Pliicker
coordinates of an oriented two-plane by taking the wedge product of
any pair of oriented basis vectors and then dividing by the square root
of the sum of the squares of the six components. We will use this in
our later computations concerning the tangent spaces of surfaces in
R*.

Similarly we may show by direct calculation that 2pyp34+2p31D24+
2p14023 = 0. This relation is somewhat less intuitive geometrically. In
terms of exterior algebra, this relation follows immediately from the
fact that if the 2-form w represents a plane, then the exterior power
w A w must be 0. (Some readers may recall that a 2-vector can fail to
be decomposable, as in the case of the dual of a symplectic form.)

As in [C-S], we will reorganize the six coefficients which determine
a two-plane in R* in such a way that it becomes possible to view
G(2, 4) as the product of two 2-spheres. Just as the locus 2xy =0 in
the plane can be rotated to the hyperbola x2 — y2 = 0, we may rotate
(modulo a factor of the square root of 2) in three 2-planes in 6-space
to obtain new coordinates

ay =pia+p3, a=p3+pi4, a3 =p31+Dxu,
by =pi2—Dp3a, by=py3—p1a, b3=p31 —Du.

The two algebraic conditions on the Pliicker coordinates then imply
that

a?+a3+al=1=b?+b3+b3.
Thus the vectors a = (a;, ay, a3) and b = (by, b, b3) are unit vec-
tors in three-space, and the product of two two-dimensional spheres is
therefore in one-to-one correspondence with G(2, 4). We call these
the sphere parameters for a plane in G(2, 4), and from here on, we
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will identify a plane with its sphere parameters. For reasons explained
below, it will be convenient to think of the ;- and b;-axes as the
polar axes of the spheres, so when we refer to the equators of these
spheres we mean the great circles in the a;-a3- and b,-b3-planes.

By the orthogonal complement of an oriented plane w in R*, we
mean the plane of all vectors orthogonal to the given plane, suitably
oriented so that the exterior product of an oriented orthonormal basis
of w with an oriented orthonormal basis of its orthogonal comple-
ment gives the standard orientation on R*. As in [C-S], we will use
the easily-proved fact that if (a, b) are the sphere coordinates of a
plane, then (a, —b) are the sphere coordinates of its orthogonal com-
plement.

We also note here that if (a, b) represents a given oriented two-
plane, then (—a, —b) represents the same plane with the opposite
orientation. If we reflect an oriented plane through the hyperplane
e4 = 0, then the new oriented 2-plane has sphere coordinates (b, a).

3B. Complex structures. The usual identification of R* with C2
leads to the complex structure homomorphism J mentioned earlier,
which corresponds to scalar multiplication by i. Formally, J is iden-
tified by the property J? = —I, where I represents the identity trans-
formation. Other complex structures, corresponding to other identi-
fications of R* with CZ?, are in one-to-one correspondence with the
various possible choices of a homomorphism with this property. We
will mostly be satisfied with one complex structure map, given in co-
ordinates by

Jei=e, Jey=-e;, Jes=e4, and Jes= —e3.

We note that this complex structure map is compatible with the Eu-
clidean structure on R*, in that (X, Y) = (JX, JY) for vectors X
and Y, where (X, Y) stands for the ordinary inner product.

It is easy to verify that J induces a well-defined map from G(2, 4)
to itself; if w = X AY then Jw = JX A JY is independent of the
choice of X and Y. A simple computation in sphere coordinates
shows that if @ = (a, b) in sphere coordinates, then the sphere coor-
dinates of Jw are ((ay, —ay, —as), (by, by, b3)). Thus the action
of J on G(2, 4), is a rotation of n radians about the a;-axis in the
first factor while the second factor is fixed.

This enables us to identify the complex lines of C?, or equiva-
lently, the complex planes in G(2, 4) as the planes invariant under
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J . The set of complex planes, C, consists of two spheres C =
{((£1,0,0),b)}.

The sphere with a; = 1 corresponds to the complex planes oriented
by a wedge product of the form XAJ X , while the planes parametrized
by the other sphere have the opposite orientation.

Note that rotating the first factor sphere about any of its other axes
corresponds to the action of a different complex structure on R*.
Since this is not crucial for our results, we merely mention here that
the first factor sphere can be identified with the unit pure quaternions
in a natural way: for each pure unit quaternion, g, there is a com-
plex structure on R* corresponding to multiplication by ¢ . For the
standard complex structure we use g = i.

There is another family of complex structures on R* corresponding
to rotations of the second factor sphere. The simplest one is given in
coordinates by

Ke =e,, Ke)=-e;, Ke3=—-e4, Kes=ej.

It rotates in the same direction J does in the plane e; A e, while
rotating the opposite way from J in the plane e3; Aey.

This complex structure map acts on G(2, 4) in sphere parameters
by fixing the first factor sphere while rotating the other about the b;-
axis through 7 radians. Other complex structure maps correspond
to rotating the second factor sphere about its various axes. We state
without proof that these complex structures are the only ones compat-
ible with the Euclidean structure of R*, in the sense defined above.
(In the sense of Gromov [G], the complex structures in the component
connected to J are those tamed by the standard symplectic form.)

3C. Subsets related to projections. When we compute the normal
or tangential Euler number of a surface in R*, we can choose any
normal or tangential vector field to do so. Now we once and for all
choose the normal and tangential parts of the constant e4 vector field
to use in the computation. In this way the question of the vanishing
of the normal or tangential vector field can be viewed in a simple way
in terms of the image of the Gauss map of the surface.

With this in mind, we identify the subsets of G(2, 4) in which ey
has vanishing normal part or vanishing tangential part. Call N =
{w|e4 is contained in w} and T = {w|es L w}. Thus if T,M be-
longs to N, the normal part of e4 is zero, while if it belongs to T, the
tangential part is zero. To coordinatize both N and 7 with one com-
putation, we compute the effect on 2-vectors of p;,3, the orthogonal
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projection onto the 3-space perpendicular to ey4.

D123(a, b) = p1oe; A€y + przes Aes+piesAe;
= ((a; +bi)e; Aey + (ar + br)ex Aes+ (a3 + biles Ney)/2.

Therefore T = {(a, a)}, the diagonal of the product, while N =
{(a, —a)}, the twisted diagonal. Thus the sets N and 7 are each
diffeomorphic to the two-sphere. They do not intersect one another,
but each intersects C, the set of complex planes, in two points.

4. Examples. We now present a set of examples to show the rela-
tionship of the Gauss map of surfaces to the sets N, T and C in the
Grassmannian.

4A. An ordinary sphere. We construct a family of embeddings of
the 2-sphere into R*, all congruent to the usual two-sphere in R3.
X(u,v) = (cosu, sinucosv, sinusinv, 0), where 0 < u € = and
0 < v < 27. We tilt this sphere into R* by defining

Xb(u, v) = (cosbcosu, sinucosv, sinusinv, sin b cosu)

where the parameter b represents the angle between the standard R3
and the three-dimensional subspace in which the sphere lies; when b
is 0, the sphere sits in the standard R3.

The sphere coordinates of the tangent plane are then

X8 A XP = ((sinusin(v + b), cosu, sinucos(v + b)),
(sinusin(v — b), cosu, sinucos(v — b))).

There are exactly two points where GX meets T, the two poles u =0
and z#. The index of each of these is 1, so we obtain tangential
Euler number 2. There are exactly two complex points: u = n/2,
v=m/2-b, 3n/2—b and at each point, the sign of the intersection
with C is 1, as can be computed using the techniques of 5D below.
The theorem in this case gives the equation 2 +0=2.

4B. A sphere that intersects itself in exactly one point. In this sec-
tion, we will consider two immersions of the sphere, and one closely
related embedding. Consider first the immersion of the sphere into
R* defined over the domain 0 <u <2n, -n/2<v < 7m/2:

X(u, v) = (cos(u) cos(v), — cos(u) sin(v) cos(v),
sin(u) cos(v), — sin(u) cos(v) sin(v)).

Here we are thinking of v as giving the latitude angle of the sphere and
u as given the longitude. The only double points occur when cos(v) =
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FIGURE 2

0 i.e. at v = £m/2, at the “poles” of the parametrization of the sphere,
which are both mapped to the origin in R*. The immersion X is thus
analogous to the “figure eight” immersion of the circle into the plane.

We can now appeal to Whitney’s theorem to calculate the normal
Euler number by computing the index of the double point. Although
the parametrization is singular at the poles, the surface has a well-
defined tangent plane at each of these points. Near v = /2 the
surface is approximately x = —y, z = —w while near v = —n/2,
the surface is approximated by the plane x =y, z = w. In terms of
Plicker coordinates, the tangent plane at (0, ©/2) is (e; —ey) A(e3 —
es) = —(e;Aeq)—(exAes)+(e;Aes)+(exAeq) while the tangent plane at
(0, —m/2) is (e;+ey)A(e3+ey) = (ejAeq)+(exAe3)+(ejAe3)+(exAey) .
Taking the wedge product of these two two-vectors gives —4 times the
four-vector e; A ey Aes Aes so we may give to this double point the
index —1. By Whitney’s theorem, the normal Euler number of this
immersion will be —2. The projection into 3-space will have a pinch
point when sin(v) = 0 and cos(#) = 0, s0o v =0 and u = £7/2.
The images of these pinch points will be the points (0, 0, +1). (See
Figure 2.)

A straightforward computation shows that the Gauss mapping in
sphere coordinates is given by normalizing the following vectors:

a; =0, by =sin(2u) cos*(v),
ay = cos’(v) — 2 sin(v), b, =cos(2u) cos?(v),
a3z =2sin(v) cos(v), by =— 2 sin’(v).
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FIGURE 3

Therefore there are no complex points. The normal Euler number of
the immersion is the negative of the tangential Euler number and the
theorem reads 2+ (—2) =0.

If we negate the fourth coordinate of X to obtain a surface

Y(u, v) = (cos(u) cos(v), — cos(u) sin(v) cos(v),
sin(u) cos(v), sin(u«) cos(v) sin(v)),

then the normal Euler number of the immersion Y is the negative of
that of X, namely 2. The Gauss map of the surface Y is obtained by
interchanging the a and b vectors above. We obtain complex points
when a; = 0 = a3, so sinv = 0 and cos(2u) = 0, leading to four
complex points, with v =0 and u = n/4, 3n/4, 5n/4, and /4.
In order to balance the contribution of the tangential and normal Euler
numbers, the index of each of these complex points should be 1 as can
be found by using the local methods in the next section. (See Figure
3)
It is instructive to compare the above example with the surface

W(u, v) = (cos(u) cos(v), — cos(u) sin(v) cos(v),
sin(u) cos(v), —sin(v)).

This surface differs from X and Y only in the last coordinate, so it
has the same projection into three-space, with two pinch points. In
this case however, the mapping is an embedding, since the first, third,
and fourth coordinates describe a standard two-dimensional sphere,
already embedded in a hyperplane. Thus by Whitney’s theorem, the
normal Euler number will be zero. The illustration indicates that the
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FIGURE 4

two pinch points will have opposite indices, corroborating this fact.
(See Figure 4.)

The first set of sphere coordinates for the tangent plane are obtained
by normalizing the vectors

a; = cosucosv(—1+sinucosv),

2 2

a, = sinucosv — sin® v + cos? u cos2 v,

a3 = —sinv(l +sinucosv).

The points with complex tangent planes will have a, = 0 = a3, so
sinv =0, cos(v) =1, and sinu+cos?u =0=—sinu+sinu+1 so
there are two solutions for # with sinu = (1 —+/5)/2. (See Figure
5.) These two complex points give a total contribution of 2 to balance
the equation in the theorem, since the tangential Euler number is 2
and the normal Euler number of any embedding is 0.

4C. Gauss maps for function graphs. To motivate our definitions
of the indices of intersections of the image of the Gauss map with
thesets 7, N, and C, we present examples that demonstrate typical
behavior. This gallery of Gauss maps consists of function graphs of
quadratic surfaces that intersect the various sets in each of the possible
typical ways. After presenting the examples, we will be more precise
about orientations; for intuitive purposes we indicate here that we will
always orient the set 7 using the “outward” unit normals, while N
will be oriented using the inward unit normal in the first factor and the
outward unit normal in the second. C is oriented using the inward
unit normal.
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FIGURE 5

For typical intersections of a surface with the set 7', consider the

functions
Xu,v)=0,u,v, W +v?)2).

It will turn out that the choice of sign in the fourth coordinate is
exactly what determines the sign of the associated intersection with
T . This is not surprising, as the plus sign corresponds to a minimum
of the fourth coordinate function, while the minus sign is a saddle.
This matches the discussion of the tangential Euler class in §2.

In sphere coordinates, the Gauss map is given by

GX(u,v)=((-u, 1, +v), (u, 1, F0))/(1 + u® + v?)!/?

so that ¥ = v = 0 gives an isolated intersection of the image of G
with the set 7. This Gauss map may be pictured, in the case of the
plus sign, as preserving the orientation of the u-v plane as it maps to
each factor sphere, and reversing the orientation in each in the case
of the minus sign.

Our definition of index will involve the relative orientations of the
image of the differential of the Gauss map and the plane tangent to
the set in question, whether 7, N, or C. To make this explicit, in
the case of the plus sign, we compute

GX*(f1)=—e1+e4, GX*(f2)=e3—e6

(where f; and f, the vectors in the # and v directions), while the
tangent space to 7 at the point of intersection is spanned by v; =
e; + e and v, = e; + e4. The wedge product of the four vectors in
the order given is 4e; Ae; Aeg Aes, which we will agree later to be the
positive orientation of the tangent space of G(2, 4).
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FIGURE 6

Selecting the minus sign in the definition of X reverses the sign
of the final wedge product. To summarize what we have seen in this
example, a positive intersection is one for which the wedge product of
the two-vector GX * (f;) A GX « (f;) with the two-vector representing
a positive orientation of the tangent space to 7', gives the previously-
chosen orientation of the tangent space of G(2, 4).

The other examples are similar. For a typical intersection with N,
we offer
2

X(u,v)=(u,uv, v°,v),

which projects down to R3 as the Whitney umbrella (Figure 6). The
Gauss map, before normalization,

GX(u,v)=((u,1+20v%, —v), (u, -1 +2v%, =3v))

shows that the origin ¥ = v = 0 gives an isolated intersection with
the set N, corresponding to the isolated pinch point of the Whitney
umbrella.

This time the orientation of N at the point of intersection is given
by (e; —e4)A(e3—eg) (picture the inward orientation in the first factor
and therefore the outward one on the second). When we wedge with
GX = (f;)) AGX % (f;) the result is negative. This is a typical example
of a negative pinch point.

When the sign of the second coordinate is switched, the sign of the
intersection is reversed in this sense.

In choosing an example to illustrate the indexing of complex points,
it was necessary to avoid the complex points belonging also to 7" and
N . Our example is as follows:

Xu,v)=w, v+ w+v2)/2, —u, —v+ w?+v?)/2),
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with Gauss map
GX(u,v)=((1, v, —u), (v, 1, w)/(1 +u* +v?)'/2.

The origin u# = v = 0 is again an isolated intersection, this time with
C . The tangent space to C in G(2, 4) is oriented by e4 Aeg and the
sign of the wedge of this orientation with GX * (f;) A GX * (f,) is the
opposite of the sign of v.

5. Constructing the explicit homology. We construct our explicit
homology in the Grassmannian in several steps. We first describe the
“normal sweeps” leading to the construction of the three-dimensional
chain with boundary given by 7, N, and C. We then describe the
indexing of critical points and complete the proof of the theorem.

5A. Normal sweeps. In our attempt to relate the normal and tan-
gential Euler classes, we considered the extent to which 77 and N
failed to be homologous in G(2, 4). Of course, since T can be viewed
as the graph of the identity map of the sphere to itself, and N is the
graph of the antipodal map of the sphere, 7" and N are simply not
homologous. However, further investigation led to the construction
of a three-cell in G(2, 4) which narrowly misses being a homotopy
from T to N. In fact, it is a homotopy of 7" minus two points to N
minus two points, the two points in each case being the two complex
planes in the respective sets. We view this construction as explaining
the presence of the term in the formula that counts complex points in
the theorem.

We first note that whenever a plane belongs to 7', its normal plane
belongs to N . It turns out that the complex structure map J gives
a reasonably natural way to rotate any plane into its normal plane,
unless the plane is a complex one. This rotation can be carried out
smoothly, resulting in a one-parameter family of planes beginning with
any given non-complex plane, passing through its normal plane, and
returning to the original one. We call these normal sweeps, since they
sweep from a given plane to its normal plane.

The first relevant definition is that of a quantity we call the reality
angle of a plane. Suppose we have a plane and wish to discover the
extent to which it fails to be complex. If X is in the plane, then
certainly JX will be perpendicular to X, but the angle between JX
and other vectors in the plane can vary greatly. At the two extremes
are planes for which JX belongs to the normal plane, and planes for
which JX belongs to the original plane. If w = XAY ,with X and Y
orthonormal, then it is easily checked that (JX,Y) and (-JY, X)
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are independent of the particular choice of X and Y, depending only
on the plane w. Since this inner product is between 1 and —1, we
can call it cosa, noting that a is zero if and only if @ is a complex
plane oriented by X AJX , while a is n for complex planes oriented
the other way. It is easy to show that in sphere coordinates, we have
cosa = a; . (Planes with reality angle intermediate between these two
have been called totally real by some analysts, while others restrict
this term to the planes with reality angle n/2. The reality angle has
also been called the “angle of holomorphy™.)

Now we use the reality angle to tilt a non-complex plane into its
normal plane. If a plane has reality angle 7/2, the complex structure
map carries it into its normal plane; for other non-complex planes we
simply modify J to accomplish this. If w = X AY, with X and Y
orthonormal, a straightforward computation shows that

nX =(JX —cosaY)/sina

is well-defined as a map from w to its normal plane, as long as sina
is different from zero. The effect of this mapping on Y, as the second
vector in the orthonormal pair, is easily computed:

nY = (JY +cosaX)/sina.

With this choice of definition of the map n, the plane with the desired
orientation orthonormal to w is nY A nX . In effect, this is because
the standard orientation of R* is X AJXAY AJY if X and Y
belong to disjoint complex planes. Note that X AY AnX AnY is the
negative of X AnX AY AnY.

We now simply fill in the gap between a plane and its normal by a
rotation: if w = X AY, then we define

new = (cos fX +sin fnX) A (cos fY —sin fnY).

Note that this starts at X A Y, passes through nY A nX when f is
/2, and returns to X AY when f is 7.

The 3-cell described above consists mostly of the collection of planes
sweeping from the non-complex points of 7 through an angle of 7/2,
thus arriving at N. However, the set of complex planes actually be-
longs to the boundary of this set of normal sweeps, as will be made
clear in the following analytic definition.

5B. An analytic definition of the 3-cell. Let f(a, b) = —a;a-b+b;.
After motivating the choice of the function f, we will show that the
set H = {f = 0} islocally a 3-manifold except at four singular points.
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Then we will introduce a second function g, so that the sign of g
divides H into three parts, H*, H~, and H?. Here H° consists
exactly of C, T, and N, while H* is an open 3-manifold with H°
as its boundary.

We designed f to vanish on the normal sweeps beginning in T .
Computation shows that these all look essentially like the example de-
scribed below: the point in the first factor remains fixed while the point
in the second factor travels around the great circle passing through
the starting vector a and the point on the equator given by the cross-
product of a with (1, 0, 0). Thus everywhere on the normal sweep,
b belongs to the plane determined by these two vectors. The function
f is simply the dot product of b and the normal vector of this plane.

PROPOSITION. On theset H = {f = 0} the differential of f vanishes
only at the poles {((£1,0,0), (1,0, 0))}. Therefore H is locally
a 3-manifold except at these four points.

Proof. Consider f as a function of six variables and compute
df = a-bda1+a1(b1da1 +byday,+b, daz+a,db+a,dby+azdbs)—db, .

We examine the differential on two parts of H . First assume a3-+a}
is non-zero and consider a point of the form (a, (b, by, 0)) that
belongs to H. We exhibit a curve in G starting at this point and
show that df gives a non-zero result when evaluated on its initial
tangent vector. Let g(¢) = (a, (costb; —sintbh,, costh, + sintbhy, 0)).
Then

df(g)|i=0 = a1a2b; + (a3 + a?)b;.

But if f(a,b) = 0, we have —(a3 + a})b; + aja,b, = 0, and these
two quantities cannot both vanish. That b; was assumed to be zero
is immaterial.

Now if a; = +1, df reduces to b,da, + b3daz, since da; is
identically zero at such points. This vanishes only if b, = b3 = 0.
Hence, we obtain four singular points. This completes the proof.

Finally we introduce g(a, b) = ayb3 — asb, = sins, where s is the
angle between the projections of a and b into the equatorial plane.
Simple computation shows that {g = 0} N {f = 0} consists precisely
of C, T,and N, so g partitions H as claimed.
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5C. Indexing the critical points.

DerFINITION. If S and S, are local two-dimensional oriented sub-
manifolds of an oriented four-manifold which intersect in exactly one
point p, then the index of p is plus or minus one, depending on
whether the wedge product of the orientations of S; and S, at p is
the same as the orientation of the ambient manifold or the opposite.

Note that since the wedge of two two-vectors is independent of the
order of wedging, the roles of S; and S, may be interchanged without
changing the index of the intersection.

To apply this definition, we must assign orientations to 7', N, and
C. On the one hand, these orientations are induced by the fact that
they form the boundary of an oriented three-cell. Orienting H* as the
boundary of the set {f > 0} induces the outward orientation on 7,
the inward orientation on C, and an orientation on N that is inward
on the first factor and outward on the second. On the other hand, it
can be checked that the indices given by these orientations coincide
with the classical indexing procedures used to compute the Euler num-
bers. For example, for the tangential Euler class, it is straightforward
to compute the tangential component of e4; in the neighborhood of a
critical point of a surface presented as a graph. The quantity used to
compute the index is similar to the Hessian determinant mentioned
in §2C. Explicit computations for the normal Euler number follow the
same pattern.

5D. The proof of theorem. We now offer our constructive proof of
the theorem:

THEOREM. If X: M? — R* is an immersion of an oriented two-
surface in R*, denote the normal Euler number by n and the tangential
Euler number by t. Let C denote the set of points at which the tangent
plane is a complex line and for each p in C, let i(p) denote the index
of p. Then

n+t+Y i(p)=0,

where the sum is taken over all p in C.

Note that our indexing of complex points is the negative of the
choice made in [W1] and [W2] so they appear on the other side of the
equation.
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This proof assumes various genericity hypotheses, to insure that
intersections look simple. These are not necessary for the truth of the
theorem; only for our illustration of it.

We now proceed to define the homology. First, recall from above the
sets 7, N and C in G(2, 4): T is the set of planes perpendicular
to e4, N is the set of planes containing e;, and C is the set of
complex planes. The points where the image of the Gauss map, GX ,
meets 7 are those where the tangential component of e4 vanishes,
and are hence those used to count the tangential Euler number. Those
where this image meets N are those used to count the normal Euler
number, while the points where the image meets C are the complex
points. Thus we define

Sr={peM|GX(p)eT}, Sn={peM|GX(p)e N},

and
Sc={peM|GX(p) e C}.

We assume, as is generically the case, that these three sets are disjoint.
This amounts to assuming that the image of the Gauss map avoids the
points where the three-cell H is singular.

Because the image of the Gauss map is generically two-dimensional,
while our cell H* is three-dimensional, GX (M) will meet H* in a
finite collection of curves, whose endpoints consist exactly of the union
of St, Sy, and S¢c. Symbolically,

{peM|fGX(p)=0and gGX(p) 20} =CLUCU---UC,

where the C;’s are disjoint curves on M with | Jbd C; = SUSyUSc .

This already shows that the O-chain consisting of the points in
ST USN USc is homologous to 0 mod 2. For instance, it would be
impossible to embed the sphere in R* with only one complex point,
for an odd number of points cannot be homologous to 0 mod 2.

But more is true. With appropriate orientation, the curves begin at
points with index 1 and end at points with index —1, so the sum of
all the indices is zero. Recall however that we reverse the orientation
of C, so the index of complex points will appear on the other side of
the equation. Thus [S7]+ [Sy] = [Sc] where the brackets indicate
the sums of the indices of points in the 0-chain.

To orient the curves, we say that a vector Z tangent to the image
of C; goes in the direction of C; if Z AY orients X(M), where
Yf > 0. It is easy to check that with these conventions, when a
curve enters H*, the index of the intersection is 1, while when it
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exits, the index is —1. Using this indexing procedure for the 0-chain
and the corresponding orientation for the 1-chain, we have an explicit
homology relating the O-chains that give the tangential Euler class, the
normal Euler class, and the complex points of the immersion, and
thus we have our constructive proof of the theorem.

The computer generated illustrations for this article were produced
by David Kaplan on a Sun workstation using the program Fnord de-
veloped at Brown University.
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