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KNOTS WITH ALGEBRAIC
UNKNOTTING NUMBER ONE

MlCAH E. FOGEL

Every knot, K, in *S3 has associated to it an equivalence class of
matrices based on *S-equivalence of Seifert matrices. When the knot
is altered by changing a crossing, the ^-equivalence class of the new
knot is related to that of the original knot in a very specific way. This
change in the Seifert matrices can be studied without regard to the
underlying geometric situation, leading to a theory of algebraic cross-
ing changes. Thus, the algebraic unknotting number may be defined
as the smallest number of these algebraic crossing changes necessary
to convert a Seifert matrix for the knot into a matrix for the unknot.
A straightforward test of some well-known knot invariants will reveal
that the algebraic unknotting number is one.

In [4], Murakami defined an operation on Seifert matrices that he
called an algebraic unknotting operation. He showed that any geomet-
ric crossing change induced an algebraic unknotting operation on a
suitably chosen Seifert matrix. Since any knot could be changed into
any other knot by a sequence of crossing changes, any Seifert matrix
could be transformed into any other Seifert matrix by a sequence of al-
gebraic unknotting operations and ^-equivalences. For knots K\ and
K2 the algebraic Gordian distance from K\ to K2 is the minimum
number of algebraic unknotting operations needed in such a sequence.
The algebraic unknotting number, ua(K), is then the algebraic Gor-
dian distance of K from the unknot, i.e. the minimum number of
algebraic unknotting operations needed to reduce a Seifert matrix for
K to a matrix 5-equivalent to the zero matrix.

Since every crossing change induces an algebraic unknotting opera-
tion, there is the inequality ua(K) < u(K) where u(K) is the regular
geometric unknotting number of the knot. And in many cases ua{K)
is the appropriate object of study rather than u(K) because only the
algebraic information contained in a Seifert matrix is used. Such is the
case in Murasugi's result on signatures [5] and Nakanishi's theorem
about minor indices [6]. Also, results depending only on the abelian
invariants (notably Lickorish [3] as generalized by Cochran and Lick-
orish [1]) apply to ua(K) since all of the homology information about
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the cyclic covers is contained in the Seifert matrix (see, for instance,
[2, §§8 and 9]).

In the case ua(K) = 1, Murakami was able to prove that the Alexan-
der module H\(Cκ) (where CK is the infinite cyclic cover of the knot
exterior and t acts by covering translations) is a cyclic Z[t, t~1]-
module. In addition, there is a generator, g, of this module with
β(§ -> S) — =tl/Δ, where /?(•>•) is the Blanchfield pairing and Δ is
the Alexander polynomial of the knot. This paper contains a proof of
the converse, providing a complete algebraic characterization of knots
with ua(K) = 1:

THEOREM. A knot K with Alexander polynomial AK can be changed
by a single crossing change into a knot K1 with trivial Alexander poly-
nomial if and only if the Alexander module is cyclic and has a generator
g with β(g,g) = ±1/Δ.

In addition, the proof often allows direct calculation of the nec-
essary crossing change. A somewhat unfortunate application of the
theorem will be made to the knot 810 .

1. Some special surgery curves. Crossing changes will be examined
via surgery on a well controlled class of curves in S3. All knots, curves,
and disks will be tame, and oriented when convenient. The orienta-
tions chosen will be noted, but they are only used for calculation and
will be irrelevant to the outcome. The notation z will be used to de-
note t1!1 — Γ"1/2 and for a matrix M, the calligraphic letter Jf will
be used to represent the skew-Hermitianized form tι/2M — t~χ/2Mτ

(t~ι being considered the conjugate of t).
A disk D in S3 will be said to be nice with respect to K if D and

K intersect in two points and \k(dD, K) = 0. A simple closed curve
γ in S3 — K is a nice surgery curve for K if it bounds a nice disk. Any
knot and nice surgery curve pair can be isotoped to look like Figure
1. Clearly ±1 surgery on a nice surgery curve yields a single crossing
change in the knot, and any single crossing change can be effected by
±1 surgery along a suitably chosen curve.

In Figure 1, a Seifert surface can be chosen for the knot so that
the two strands of the knot cobound a band in the surface, and the
surface does not meet the curve γ. Generators for the homology of
this surface can be chosen so that one of them (to be called go) rxxn^
over this band from right to left, and the rest of the generators do not
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go over the band at all. A Seifert matrix for K has the form

M =

\*

*
* xj \*

* \

* xz /

where x = lk(g0 ,? 0

+ ) , g£ being the pushoff of g0 from the Seifert
surface in the (arbitrarily) chosen positive direction. V is the linking
matrix for all the generators that don't go over the shown band, and
their pushoffs.

If instead of the mundane curve shown in Figure 1, a nice surgery
curve which has n full twists is used, the resulting knot has a Seifert
surface which looks like Figure 2 (next page) (for - 1 surgery). Note
that n could be zero. This operation adds two generators to the ho-
mology of the Seifert surface, and the new Seifert matrix is

0 0 \

M' =

M

0
\0

0 0
0 0

0
-1
n
1

0
0
0

0

0

nz

0 \

0
0

rl/20 ••• 0 r1/
\o ••• o o

It is then simple to calculate the Alexander polynomial of the new
knot, which is given by Δ^- = det(.#'), by expanding along the bottom
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FIGURE 2

row of the matrix. The result is (1 ψnz2)det(Jί)ψ zdet(^) . Denote
by L the knot obtained from K when n = 0 in the above, so that
AL = det(Λf) T * det(^). Then noting that det(^f) = Δ^, the result
is

Aκ> = nz2Aκ.

Since n may be any integer, ± 1 surgery along a properly chosen curve
can add any integral multiple of z2Aκ to AL .

The key fact is that with proper choice of (nice) surgery curve, any
polynomial multiple of Δ# can be added to Δ^, as long as the result
satisfies the well known conditions Δ(l) = 1 and A(t) = A(t~ι) for an
Alexander polynomial. This is done by examining curves that wrap
around the knot as in Figure 3. Each αz is a nonzero integer, and
if at < 0 then all the crossings in the magnified view of box / are
reversed.

LEMMA 1. The knot obtained from ±1 surgery on the curve shown
in Figure 3 has Alexander polynomial

(1)

- l) + r ι - 1))]

Proof. Figure 4 shows box / after ±1 surgery is performed along
the curve. The figure shows part of a Seifert surface for the new knot
Kr along with a set of homology generators for the new handles. Note
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that the generators for one box do not interact with those of another

box except that l k ( ^ 2 | β j + 2 , ft+i,i) = - 1 or lk(gi, 2^+2, gi~+iΛ) = 1

depending on whether αz+i is positive or negative.
Thus the Seifert matrix coming from this set of generators has the

form
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M' =

M

0 ••• 0 dχ

0

\
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•

0
Cj 0

Block
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... o
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0 ••• 0

0

0

cr 0

Block

box r

0 •••
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0

0

0
0

0

0
- 1
n

- 1

0
0

where (c, , dt) = (-1,0) if ax > 0, and (0, 1) if a, < 0.
Each block is square of size 2|α, | + 2 and has the form

Mr =

f 1
0

- 1

- 1

0
0

0
0

- 1
1 - 1

o ••.

1
0

- 1
0
0
0

0

•

- 1
0
1

0>

•

0
0

0)

for ar > 0 ? while if ar < 0 then this is replaced with the negative
of its transpose. When this block is skew-Hermitianized in order to
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calculate the Alexander polynomial, it becomes
(2)

z -tιP
r i/2 o _,i/2

ΓχP z -t

χP

o \

Z —I

t~ip o -tιP 0
... rι/2 o -rχP

0 tχP 0
0

0 0

or the negative of the transpose if α, < 0.
Now the calculation of Δ^' is routine. The determinant of Λί' can

be expanded along the bottom row and last column. The result is

0

±zdet

*

\

*

*

* nzl

where Jΐr means Jΐr with the last row and column removed.
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The determinant in the first term can be computed easily by using
the form of the blocks ^ given in formula (2). The determinant can
be expanded repeatedly along the last row and column until all that is
left is det(Λf) = Aκ

The second term is a bit more complex. It can be expanded along
the row and column corresponding to the top row and column of Jίr.
The result is

'Γ) det

det ( j£r with first \
row and column I .

removed /

The large determinant in the first term reduces to Δ# as before.
And the smaller matrix in the second term can be expanded along the
first row and column repeatedly until it reduces to 1. So inductively,
the result is (note that Jf =

(3) nz2)Aκ
det T)

It remains to calculate det(Jtί). This is done by taking the matrix
J?i as given in (2) and deleting its last row and column. This leaves
a matrix whose last row and column have two nonzero entries each.
Expanding along the last row and column gives four terms, as follows
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(assume α;

det

( 0 -ί»/2

r1/2 z
rl/2 0

r1/2 o J

r1/2 o

/r1/2 o -

r * d e t

det

/ z -ί
r1/2 o

rl/2

r1/2 o -

o -
r1/2 z

r1/2 o -

whose values are^O, -ί f l/+ 1/2? t-a-ι/2^ a n ( j Λ . z respectively. If <Z; <
0 then since ^ is of odd size, the determinant of the negative of
its transpose is opposite in sign. Therefore, for any α z, det(J?ϊ) =
atz - sign(αz)(ίKI+1/2 - H**!- 1/ 2). Inserting this in (3) and noting that
ΔL = ΔK =F z det(^) gives the desired result.

COROLLARY 2. For knots, K, appearing as in Figure 3, with Alexan-
der polynomial AK , it is possible to make one crossing change to obtain
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a knot, K1, with

where b(t) is any polynomial subject to the constraint that Aκ> is a
knot polynomial

Proof. Since Δ^ is the Alexander polynomial for some knot, the
requirements on b(t) will be that b{\) = 0 and b(Γι) = b(t). But
looking at formula (1) it is clear that n and a series of α, may be
chosen to give any b of this form. Therefore, there is a nice surgery
curve on which ±1 surgery—which changes exactly one crossing in
the knot—gives a knot with the desired polynomial.

2. How nice are nice surgery curves? In this section some properties
of nice surgery curves are developed to show that they are useful for
more than just making large Seifert matrices.

LEMMA 3. All of the different surgery curves, γ, given by different
choices of n and series of a\ are homotopic in S3 - K.

Proof. Obvious, since homotopy in S3-K allows γ to pass through
itself.

Denote by CK the infinite cyclic cover of the exterior of K. The
Alexander module of K is H\{Cκ) and is presented as a Z[t, t~1]-
module by the matrix tχl2J£. Fix a strand of the knot and consider
a small loop going around this strand. A lift of this loop represents t
in the Alexander module (see Figure 5).

Any nice surgery curve γ can be isotoped to appear as in Figure 5.
The can be seen by sliding the top half of Figure 1 around the knot
to the left until it comes near the bottom half. Since the nice surgery
curve bounds a nice disk, and both intersections of this disk with K

I band links \

with rest of
knot*

•e
FIGURE 5
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pushes off to

FIGURE 6

are clearly visible in Figure 5, the rest of the disk forms a band that
meanders through the knot but never meets it. Let u be a simple
closed curve that starts near the strand of K on the band, follows the
band through the knot back to K, and then loops around the strand
of K enough times so that lk(w, K) = 0. The original surgery curve
is homotopic to the product curve tut~ιu~ι. This procedure works in
reverse as well; any simple closed curve u with lk(w, K) = 0 gives rise
to a nice surgery curve (in fact, a whole family of them) homotopic
to tuΓιu-1.

Both u and γ have linking number zero with the knot K, so both
lift to Cκ. Call these lifts ύ, γ. Homologically there is the rela-
tion [γ] = (t - l)[w]. Now note that t - 1 is invertible mod Δ in
Z[t, t~ι]. Thus for any homology class v in the Alexander module,
(t - l)[ύ] = [ϋ] can be solved for [u]. Choosing a representative of
the class [u] and projecting it down into S3 yields a simple closed u
with \k(u, K) = 0. Using the construction at the end of the previous
paragraph completes the proof of

LEMMA 4. Any class of curves in the Alexander module can be rep-
resented by the lift of a nice surgery curve.

In light of Lemma 3 and the fact that homotopic curves have homo-
topic (hence homologous) lifts, it is possible to choose a nice surgery
curve representing any element of the Alexander module, yet still have
the full power of the previous section available to alter the knot poly-
nomial.

LEMMA 5. Any nice surgery curve can be taken to be the pushoffof
curve on a Seifert surface of the type shown in Figure 6.

Proof. The moves in Figure 7 show how this can be done.
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r\

FIGURE 7

K'

FIGURE 8

3. The main result.

THEOREM. A knot K with polynomial Aκ can be changed into Kf

with AK' = 1 by a single crossing change if and only if the Alexander
module H\{Cκ) is a cyclic Z[t, t~ι]-module of order AK and has a
generator g such that β(g, g) = ±1/Δ.

Proof. Assume that K can be changed into K' with Aκ> = 1 by
a single crossing change and that K, K' are as shown in Figure 8,
where pieces of Seifert surfaces are also shown. This situation can
always be obtained by using Reidemeister moves of type II and III
to get a local picture like Figure 8 near the crossing to be changed
and then moving it to the top or bottom of a knot diagram, finally
using the Seifert circle method to choose the Seifert surface. A simple
calculation yields
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(4)

M =

V
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\0

0 0\

0 0
- 1 0

0 0 0 0
0 0 - 1 1 /

x

M' =

V

0

0 0\

0 0
-1 0

0 0 - 1 1
0 0 0 0/

as the Seifert matrices with skew-Hermitianized forms

0

\0

0

\0

0

0

*
xz

0 r'/2

0 0

*

* xz

rl/2

0

0

0
_/l/2

0

0

0

o \

0

0

z

o \

0

0

0

Taking the determinants of these gives

= det

\ *

* \

*
* XZ J

so that this matrix has determinant one. Thus Aκ = I + z d e t ( ^ ) .
Note also that the Alexander dual to g% in the picture of K is a nice
surgery curve, +1-surgery around which gives the knot K1.

Now t1!1^ is a presentation matrix for the Alexander module of
K. Since the determinant of the upper left corner of the matrix is a
power of t, which is a unit of Z[t, t~ι], the first bunch of generators
can all be expressed in terms of the generator corresponding to # i ,
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and the last column of Jt shows that this can in turn be expressed in
terms of the generator corresponding to gi. The presentation matrix
has determinant Δ#, proving the assertion that the Alexander module
is cyclic of order ΔK. It is generated by the lift g of the Alexander
dual of g2.

The Blanchfield pairing is given by β{a, b) = za^~ιb where <z,
b are vectors in terms of the spanning set used for calculation of «/#
(see, for instance [2, §8]). Since # = (0, . . . , 0, 1) in these coordi-
nates, β(g, g) is simply the bottom right entry in zJί~x. Direct
computation using the cofactor expansion of the inverse of a matrix
gives β(g, g) = zdet(2H/Δjc. Noting that the Blanchfield pairing
takes values in Q(t)/Z[t, Γι] and that Δ^ = 1 + zdet(2^) gives the
desired result β{g, g) = -1/ΔK.

Had a right crossing been made into a left crossing, the calculations
would all be the same by switching all the crossings in Figure 8. Every-
thing is the same except that Δ# is now 1 - z det(3^"), which changes
the end result to β(g, g) = + l/Δχ

(The foregoing is essentially Murakami's proof. It should be noted
that if β(g9 g) = ±1/Δχ then a ι-> Aκβ(g, a) is an epimorphism
from Hγ(Cκ) to Z[t, t~ι]/ΔχZ[t, t~ι], and a simple argument based
on the fact that Q[t, ί"1] is a PID proves the kernel of this map to
be zero. Hence, the Blanchfield pairing condition alone is enough to
imply the generating condition.)

The converse is a matter of applying the lemmas in the correct order.
Assume that the Alexander module for K is cyclic with generator g
such that β(g, g) = ±l/Δχ. Use Lemma 4 to find a nice surgery
curve γ whose lift to CK is in the homology class g. Use Lemma 5 to
arrange the knot and surgery curve to look like Figure 8; if β(g, g) =
+ l/Δχ we first change all the crossings in Figure 8.

Once the knot is in this position, its Seifert matrix is given by
formula (4). From the above calculation, β(g, g) = zdet(2^)/Δ jS :.
Therefore zdet(3H = ±1 + b{t)Δκ (recall that the Blanchfield pair-
ing takes values in the quotient ring Q(t)/Z[t, t~ι] so that values of
the numerator are only determined up to adding a multiple of the
denominator), where if the plus sign is chosen, the crossings are re-
versed in Figure 8. But since this is the case, a quick calculation yields
Aκ> = Δχ±z d e t ( ^ ) , where again the plus sign is taken if the crossings
in Figure 8 have been reversed. Substituting yields

Δ r = l+b(t)Δκ.
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Now since " 1 " is a knot polynomial, the condition on b(t) to make
Δ^' a knot polynomial are exactly those necessary to apply Corollary 2.
And because of Lemma 3, we may alter the surgery curve as necessary
in Corollary 2 and still have a curve that will lift to g. Therefore
surgery on this new nice surgery curve—which changes exactly one
crossing—yields a knot with polynomial 1.

On occasion, the necessary surgery curve can be found explicitly.
Suppose, for instance, that a Seifert surface is chosen and the corre-
sponding Seifert matrix calculated. When this matrix is skew-Hermi-
tianized, it becomes a presentation matrix for the Alexander module,
with generators the lifts of the Alexander duals to generators of the
homology of the Seifert surface.

If this matrix can be column-reduced to a matrix whose only non-
zero entries are on the diagonal and any one row, and the diagonal
elements in the other columns are ±tn, then a single generator for
the Alexander module has been found—namely the generator g cor-
responding to the given row. If the matrix cannot be so reduced, then
some basis change in the homology of the Seifert surface allows it
to be reduced. However, discovering the necessary basis change may
not be a simple problem. But if such a generator can be found then
β(g 9 S) can be easily calculated from the Seifert matrix. The prob-
lem then becomes whether or not a multiple of this generator can be
found with β(f(t)g, f(t)g) = ±1/Δ. This is a problem in Hermitian
residues, which again may be difficult to solve.

Assuming both the difficulties in the previous paragraph can be over-
come, and some multiple of the known generator has been found, it
is now simple to extract the required surgery curve. For tg projects
down to the loop whose lift is g, conjugated by the loop whose lift
represents t. Thus, the projection of f{t)g can be found in S3 - K,
and that will be the needed surgery curve.

4. An application to the knot 8χo. Figure 9 (next page) shows two
pictures of the knot 810, the standard picture that appears in knot
tables and one for which a Seifert surface is more obvious. The second
picture is shown with generators for the homology of the surface. This
knot has proven to be a stumbling block in the determination of the
unknotting numbers of prime knots with small crossing number. This
is because it can easily be unknotted with two crossing changes, yet all
of the lower bounds (four-ball genus, minor index, half the signature)
are one. The knot is thought to have unknotting number two.
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FIGURE 9

A Seifert matrix can be read from Figure 9 as

/ - I 0 0 0
1 - 1 0 0
0 0 1 0
0 0 - 1 1
0 0

V 0 1

0 0 \
0 0
0 0
0 0

0 0 - 1 0
0 1 -1 - 1 /

Thus a presentation matrix for the Alexander module is given by

I -z
,1/2
0
0
0

V o

—z
0
0
0

,1/2

0
0

0
0

0
0
1/
z
0

0
0
0
0

\

0

rl/2

-z I



ALGEBRAIC UNKNOTTING NUMBER 293

With a lot of tedium, this matrix can be column reduced to one
which is upper triangular with ones on the main diagonal except for
the first entry, which is Δ = t3 - 3t2 + 6ί - 7 + 6Γ1 - 3 r 2 + Γ3. So
the homology of the infinite cyclic cover is a cyclic Z[t, t~ι] module,
generated by the first generator in the presentation. Call this generator

g
Now consider β(f(t)g, f(t)g) for some f(t). Using the definition

β(a, b) = zaJί~xb gives

β(f{t)g, f(t)g) =

where Λ\9\ is the cofactor of the (1, 1)-entry of ^ . A little calcula-
tion yields zJ(\ ? 1 = - ( z 6 + 2z 4 + 2z 2 ) . Since the Blanchfield pairing
takes values in Q{t)/Z[t, Γι] and the denominator here is Δ, we can
reduce zJl\ 9 \ modulo Δ to arrive at

β(At)g, f(t)g) = (z4 + z2 + l)f(Γι)f(t)/A.

Choosing f(t) = t3 - t2 + It - 1 and substituting into the above
formula yields β{f{t)g, f(t)g) = 1/Δ. Furthermore, f{t) inverts
modulo Δ (its inverse is t4 - 3t3 + 4t2-2t+l up to multiplication by
units). Therefore, f(t)g also generates the homology of the infinite
cyclic cover of 810, so that applying the theorem proves

COROLLARY 6. The knot 810 has algebraic unknotting number one.

In this case, a further simplification exists in finding explicitly the
crossing change, namely that the lifts of the Alexander duals to the
homology generators of the Seifert surface actually form a Z-basis
for the Alexander module, so that the surgery curve can actually be
calculated in terms of the Alexander duals themselves. When this is
done and the curve is suitably modified by the moves in Lemma 1 to
trivialize the Alexander polynomial, the resulting curve can be sim-
plified by Reidemeister moves to appear as in Figure 10 (next page).
When the surgery is performed, the resulting knot can be reduced to
the (at most) 14-crossing knot shown in Figure 11 (next page), which
is 6** 1 .(3, 2) 1.1.1.2 1.2 in the Conway notation. The Alexander poly-
nomial of this knot can indeed be calculated to be trivial.

In The Introduction this was cited as an unfortunate result. This
is because this corollary shows that abelian methods, or any other
methods dealing with the Seifert matrix, cannot be used to show that
the unknotting number of 810 is not one. More delicated procedures
must be found.
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FIGURE 10

FIGURE 11
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