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DETERMINING MULTIPLICITIES OF
HALF-INTEGRAL WEIGHT NEWFORMS

THOMAS R. SHEMANSKE AND LYNNE H. WALLING

We decompose the space of newforms of half-integral
weight into a direct sum of spaces of newforms of in-
tegral weight which occur with multiplicity one or two.
This not only demonstrates in a precise way the fail-
ure of a multiplicity-one result to hold for half-integral
weight newforms, but moreover indicates which spaces
occur with a given multiplicity. The spaces occuring with
multiplicity two are shown to be in one-to-one correspon-
dence with a collection of Kohnen subspaces. As a con-
sequence, it is shown that under the Shimura correspon-
dence, the level a newform of half-integral weight is not
determined by the level of the integral weight newform
to which it corresponds.

Since a knowledge of the Hecke eigenvalues is insuffi-
cient to charectesize half-integral weight newforms up to a
scalar, we develop sufficient conditions on the squarefree
coefficients, augmenting the information on the eigenval-
ues, which allow such a characterization. In the last sec-
tion, these later results are carried over to the Hubert
modular setting.

Introduction. It is well-known that newforms of half-integral
weight do not satisfy a multiplicity-one theorem, that is in general,
they cannot be characterized solely by their Hecke eigenvalues ([5]).
In one attempt to deal with this difficulty, Kohnen [6] defines a
subspace of the space of half-integral weight cusp forms which does
have a newform theory in which the newforms satisfy a multiplicity-
one theorem. On the other hand, he develops this theory only for
cusp forms having restricted Fourier expansions as well as squarefree
level and quadratic character.

In [16, 17], Ueda significantly extends Kohnen's theory by estab-
lishing trace identities which relate the trace of Hecke operators on
various spaces of cusp forms of integral and half-integral weight. By
using these trace identities, Ueda is able to give a decomposition
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of the Kohnen subspace for general levels as a direct sum of spaces
of newforms of integral weight. Using similar techniques, one could
also use Ueda's theorem to get a decomposition of the full space of
cusp forms of half-integral weight.

In this paper we go in a somewhat different direction. We con-
sider the subspace of half-integral weight newforms, but in the full
space of cusp forms and not in the Kohnen subspace. We first use
Ueda's theorem to obtain precise information about the failure of
multiplicity-one by explicitly decomposing certain spaces of half-
integral weight newforms (as modules for appropriate Hecke alge-
bras) in such a way as to demonstrate that the multiplicities which
occur are either one or two, and by identifying those spaces which
occur with a given multiplicity. We also observe that the spaces
which occur with multiplicity two are in one-to-one correspondence
with a certain (complete) collection of Kohnen subspaces.

Given that the Hecke operators commute with the Shimura lift,
one is naturally led to consider all cusp forms of a given level and
character which have the same eigenvalues for almost all the Hecke
operators as a given integral weight newform F, typically denoted
Sk/2(4N, ψ, F). We show that, in contrast to possible expectations,
the levels TV for which the subspace of newforms S£/2(4N,φ,F) Φ
{0} are not determined by the level of F; in fact we show the exis-
tence of half-integral weight newforms of arbitrarily high level which
have the same Hecke eigenvalues as F.

We also show that the Kohnen subspace of newforms is contained
in the full space of newforms whenever the Kohnen space is defined.
This is not obvious since the space of oldforms for the Kohnen sub-
space and the space of oldforms for the full space of cusp forms
are given by different definitions, and the spaces of newforms are
defined relative to the subspaces generated by the oldforms.

Finally we turn to the problem of determining sufficient condi-
tions to characterize up to constant multiple newforms in the full
space of cusp forms with arbitrary level and character. Let N be a
positive integer, φ an even Dirichlet character defined modulo 47V,
and let / £ 5̂ /2 (4iV, φ) be a cusp form of weight Λ /2, level 4/V, and
character φ with Fourier expansion / = Σa(n)qn. An immediate
problem which one confronts is that unlike the integral weight case,
a newform of half-integeral weight need not be a simultaneous eigen-
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form for all the Hecke operators. However, if / is a simultaneous
eigenform for all of the Hecke operators Tp2, then a knowledge of
the Hecke eigenvalues for these operators is sufficient to characterize
the Fourier coefficients a(tn2) for any integer n given the value of
α(ί) for a squarefree positive integer t. It is therefore completely
elementary to see that if / is a simultaneous eigenform for all the
Hecke operators Tvi and all of the coefficients α(ί) for squarefree t
are known, then / is characterized completely. So the question is,
how much can we weaken these assumptions and still characterize
a cusp form /?

In a remarkable work, Waldspurger [20] showed (under mild re-
strictions) that for / = Σa(n)qn E Sfc/2(4JV, ψ,F), the value of
α(ί)2 (ί squarefree) is proportional to the "central" value of twists
of the L-series attached to the integral weight newform F. However,
the sign of the coefficient is undetermined. Thus while the absolute
value of the coefficient is known, the actual value is not, and by
a theorem of Vigneras, we know that (except for two exceptional
cases) there are always an infinite number of squarefree integers t
for which the sign of the a(tn2) must be determined. Our results
represent a first attempt at dealing with this uncertainty.

We show that if / is a simultaneous eigenform (not necessarily a
newform) for all of the Hecke operators Tp2 and the coefficients a{t)
are known for all but a finite number of squarefree positive integers
ί, then / is characterized completely. This is a straightforward con-
sequence of a result of Vigneras. Next, we assume that / is newform
and require a knowledge of the values of the coefficients a(t) for all
but a finite number of squarefree positive integers ί, but assume
only that / is a simultaneous eigenform for all but a finite number
of the Hecke operators Tp2. Once again, we can characterize /, but
the proof requires a good deal more work, including an investigation
of a half-integral weight analog of the Atkin-Lehner involution Wq.
In the final section of the paper we carry over these last results to
the Hubert modular case.

1. Preliminaries. In general, the notation will be as in [14],
but for convenience we remind the reader of few conventions. We
let Q denote the group extension of GL^R) consisting of pairs

[A,φ(τ)] where A = ( α ,1 e GL^(R) and where φ is a holo-
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morphic function on the upper half-plane Ή, satisfying φ2(r) =
t(ad — bc)~ιt2(cτ + d) with \t\ = 1. We refer to the function φ
as a factor of automorphy for the matrix A. The group law in
G is given by [A,φ(τ)][B,ψ(τ)] = [AB,φ(Bτ)φ(τ)]. For A =

) G Γ0(4) and 0(τ) = Σ n e z ^ 7 , M r ) = θ(Aτ)/θ(r) is

a well-defined factor of automorphy; we put A* — [A,j(A, r)] G (?.
For any subgroup Γ C Γ0(4), we define a subgroup Γ* of Q by
Γ* = {A* I A G Γ}. We shall also have occasion to use the group

Γ0(7V,M) - IA = (a

c

b\ G Γ0(N) \b = 0 (mod M)\.

For M a positive integer, ψ a Dirichlet character defined modulo
M, and £ a positive integer or half-integer, we let Si(M,ψ) denote
the space of cusp forms of weight t for Γ0(M) with character ψ
(see [7], [14]). For half-integral weight forms we will always assume
that M is divisible by 4. We make one exception to this notation:
we let S3/2(4JV, ψ) denote the orthogonal complement (in the full
space of cusp forms) of the space generated by the theta series hψ
(see [14]). Henceforth let TV be a positive integer, ψ a Dirichlet
character defined modulo 47V and A: = 2λ + l > 3 a positive odd
integer.

For a prime p, the Hecke operators Tp2 are defined as in [14]. For
/ G Sk/2(^N, Ψ) and q a prime dividing TV, we define the Hecke
operator (see [4]) Tq by

where ξ = I j ,q*\ G Q and where {A*} is a complete set of

coset representatives for (ξ^T^Nyξ Π Γx(4iV)*) \ ΓX(4Λ^)*. For a

positive integer m we define the shift operator Bm by

The action of these two operators in terms of Fourier coefficients
is easily described (see [10]): if / G S>

fc/2(4ΛΓ, ψ) with f(τ) =
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Σn>i a(n)xn (x = e2πιτ), then

f\Tg(τ) = Σa{nq)xn and f\Bm(r) =

Elementary properties of these operators can be found in Proposi-
tion 4.2.

As in [10], for a positive integer ί, we let χt denote the primitive
character of order < 2 corresponding to the quadratic extension

Q(Vt)/Q.

2. The Correspondence Between Newforms of Integral
and Half-Integral Weight. For an integer £ > 2, a positive inte-
ger M and a Dirichlet character φ defined modulo M, let S^(M, φ)
(resp. Sl(M,φ)) denote the subspace of Sι(M,φ) generated by
the oldforms (resp. newforms) (e.g. see [7]). With the notation
as in §1, let S^,2(AN^φ) (resp. S^,2(4:N,φ)) denote the subspace of
Sk/2(^N,φ) generated by the oldforms (resp. newforms) (e.g. see
[11]). In addition, when TV is odd and squarefree and φ is an even
quadratic character we have the Kohnen subspaces of oldforms and
newforms which we shall denote by S^,2(4:N, φ)χ and SΪ,2(4iV, ̂ >)ir-
respectively (see [6]).

Let F be a newform of integral weight with eigenvalues λp for all
the Hecke operators Γ p , p a prime. Denote by

— {/ € Sk/2{^N, φ): / I Tp2 — Xpf for almost all primes p}.

In Lemma 7 of [13], Shimura shows that

where the sum is over a finite number of newforms F of weight k — 1
and level dividing 2iV, and that these summands are orthogonal with
respect to the Petersson inner product. Actually, Shimura proves
this for k > 5, but the result remains valid (see [16]) given our
definition of S3/2 (4N,φ) (see §1).

The spaces Sk/2{4:N,φ,F) are of great interest. Flicker [2] (cf.
[20]) gives conditions in terms of an automorphic representation of
F for the existence of an integer N for which S^^TV, ψ, F) φ {0},
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but gives no indication of the value of N. Vigneras [19] remarks that
Flicker's conditions always hold when F is a newform with trivial
character. Waldspurger [20] gives a rather complex description of
a basis for 5fc/2(4/V, Ϊ/>,JF) when it is nonzero, but he too does not
determine for which values of N, Sk/2{^N, φ, F) φ {0}.

We begin this section by determining some conditions relating the
level of F to the value of N under which Sk/2(4:N, φ, F) φ {0}. In
fact, we give conditions under which there are nonzero newforms in
Sk/2(^N,φ,F). We first require some elementary properties of the
Shimura lift.

2.1. Properties of the Shimura Lift. Let / e Sk/2(4N,φ) with

Fourier expansion f(τ) = Σn>χ a(n)xn (x = e2πιτ). Let ί be a

squarefree positive integer and let φ\ be the character defined

modulo 4Nt given by φ\λ\m) = φ(rn)(—l/rn)χ(t/m). Recall the

ί-Shimura lift of / is defined by

where the Fourier coefficients At(n) are determined by the product
of two Dirichlet series:

Σ At{n)n's = L{s - λ + 1, φ\X)) ]Γ a(tm2)m-s.
n>\ m>\

For future reference we note that

(1) At(n) =
d\n

From [14], [9], [1], we know that the Shimura lift has the property
that S^{f)eSk^{2N,φ2).

LEMMA 2.1. Let f = Σn>ιa(n)χn e Sk/2(4:N,φ), and let t be
a squarefree positive integer. If Sht(f) — Σn>i At(n)xn = 0 ; then
a(tn2) =0 for alln>l.

Proof Sht(f) = 0 if and only if At{n) = 0 for all n > 1. From
equation (1) above we have that a(t) = At(l) = 0. Now suppose
that a(tn2) = 0 for all positive integers n such that n is the product
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of fewer than r primes (counting multiplicities). We have established
this result with r = 1. For p a prime, equation (1) implies that

0 - At{np) - a{tn2p2) + ]Γ φ[x\d)dχ-ιa{tn2p2/d2)
d\np
d>\

which completes the proof by induction. D

PROPOSITION 2.2. Let f be a nonzero element of Sk/2{AN,φ).
Then there exist an infinite number of squarefree positive integers t
such that Sht(f) φ 0.

Proof. If Sht(f) — 0 for all but a finite number of squarefree pos-
itive integers ί, then by Lemma 2.1, the Fourier coefficients of / are
supported on only a finite number of square classes. By Theorem
3 of [18] the weight of / must be 1/2 of 3/2, and at weight 3/2,
/ must be in the span of the theta series hψ, contrary to assump-
tion. D

2.2. Odd squarefree levels and connections to the Kohnen
subspace. Since the definitions of the spaces of oldforms and new-
forms in the Kohnen subspace differ from those in the full space of
half-integral weight cusp forms, it is apriori unclear what connec-
tions, if any, exist between newforms of these two types. We begin
with a comparison of these spaces of newforms.

In Theorem 2 of [6], Kohnen defines a lifting which (for N odd
and squarefree and φ even quadratic) maps S^2(47V, Έ / ^ isomor-
phically onto S'̂ _1(iV, 1) and which commutes with the action of the
respective Hecke operators. As an immediate consequence, we have

PROPOSITION 2.3. Let N be a squarefree odd positive integer, φ
an even quadratic character defined modulo 47V. Then 5^2(4iV, φ)κ
C ®Sk/2(^N,φ,F) where the sum is over all the normalized new-
forms FeS^N.l).

For notational convenience, we set

5f/2(4M, φ, F) = Sk/2(4M, φ, F) Π S?/2(4M, φ).

THEOREM 2.4. Suppose that N is an odd positive integer and
φ is an even Dirichlet character defined modulo AN. Let F G
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Sk'-i(N,ip2) U S^^ftNjψ2) be a normalized newform, and suppose
that Sk/2(W, φ, F) φ {0} for some D \ N. Then
(1) D = N;
(2) S;/2(4N, φ, F) = {0}, and so Sk/2(4N, ψ, F) C S+/2{4N, φ);

(3) IfN is squarefree andφ2 = 1, then S£/2(4N, φ)κ C S£/2(4N, φ).

REMARKS. Loosely put, part (1) of the theorem says that
Sk/2(4D, φ, F) = {0} if Z) is small relative to the level of the new-
form F. Alternatively, it says that if a half-integral weight cusp
form lifts to a newform, then its level can't be too small relative
to the level of the newform. Moreover, the result holds for any
even "square root" of φ2, i.e., with φ replaced by φχ for any even
quadratic χ. Part (2) says that any simultaneous eigenform of level
4N which has almost all the same Hecke eigenvalues as a newform
of level N or 2N must be a newform itself. Part (3) concerns the
fact that newforms in the Kohnen subspace are defined differently
(since oldforms are) than newforms for the full space of cusp forms.
The results says that despite this difference, the spaces of newforms
are still related.

Proof. (1) Let / G Sk/2(4D,φ)nSk/2(4N,φ,F) = Sk/2(W,φ,F),
/ / 0. We may assume that AD is the exact level of /. By
Proposition 2.2, we can choose a positive squarefree integer t such
that Sh t(/) Φ 0. From [14], [9], and [1] we know that Sh t(/) G
Sk/2(2D,φ2), and since the Shimura lift commutes with the action
of the Hecke operators for primes not dividing the level, we have
that Shί(/) and F have the same eigenvalues for all Hecke opera-
tors Tp for p a prime p \ 2N. Since F is a newform, the level of F
divides that of Sh t(/). Thus N \ 2D or 2N \ 2Ό which, since iV is
odd, implies in either case that N \ D, and hence the result.

(2) Let / G Sζ/2(4N,ψ,F). Then f = Σ9i where the g{ are old-
forms, that is each ^ is a simultaneous eigenform for almost all of the
Hecke operators Tp2 with gi = hi\ B^ for some hi G Sk/2(4Ni, φx^)
where Ni < N and £{Ni \ N (see [11]). Now each gz is an ele-
ment of Sk/2(4N,φ,H) for some integral weight newform iϊ, and
Sk/2{4N,φ) = ®Sk/2(4:N,φ,H), the (orthogonal) sum over new-
forms H ([13, Lemma 7]). Thus given that / G Sk/2(4N,ψ,F), we
may assume that each gι G Sk/2(4N,φ,F). It follows from Lemma
3 of [10], that the hi are also simultaneous eigenforms for almost
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all of the Hecke operators Tp2 having the same eignevalues as the

Qi. Thus each Λ, G Sk^Ni.φxi^F). Since Ni < N we have that

hi = 0 by part (1) of this theorem. Thus S~/2(4N, ψ9 F) = {0} and

hence Sk/2(4N,ψ,F) C S+/2(4N,ψ).
(3) From Proposition 2.3 and part (2) of this theorem, we have

that S+2(47V,φ)κ c ®Sk/2(4N,ψ,F) C 5+/2(4iV,φ). D

COROLLARY 2.5. Let N be an odd squarefree positive integer, and
F G S^_λ(N^ 1) a newform. Then for any even quadratic character
ψ defined modulo AN, we have:
(1) Sk/2(W, ψ, F) = {0} for allD\N,D< N;

(2) Sί/2(4N^F)φ{0};

(3) Sk/2(4NM, ψ> F) φ {0} for allM>l.

Proof The first item is a restatement of part (1) of Theorem
2.4. For (2), we observe that by Theorem 2 of [6], 5 ^ ( ^ , 1 ) =
S£,2(4:N,ψ)κ C 5^/2(4^,^), where the isomorphism is as modules
for the respective Hecke algebras. It follows that Sk/2(4N,ψ,F) φ
{0}, and hence by part (3) of Theorem 2.4, S£/2(4N,ψ)κ

C 5j 2(4iV,^), whence S+/2(4N,<ψ,F) φ {0}. The third part of
the corollary is immediate since 5^/2(4iV,^, F) C Sk/2(4NM,ψ,F)
for all M > 1. D

REMARK. The more interesting question suggested by the corol-
lary is whether the subspace of newforms, Sφ(4NM, ψ, F) , is non-
zero for any M > 1. Rather suprisingly, the answer is yes, and for
arbitrarily large M, as we shall see in §2.5.

We conclude this section with a simple result concerning eigen-
values of newforms corresponding to Hecke operators Tq2 for primes
q dividing the level N. We recall that since we cannot characterize
newforms up to scalar multiples by their Hecke eigenvalues, it is not
clear that a newform is an eigenform for any of the Hecke operators
Tq2 for primes q dividing the level N. A result in this direction (cf.
Theorem 3 of Li [7]) is

COROLLARY 2.6. Let f be a newform in Sfc/2(4iV, -0) and suppose
that q is a prime such that q2 | N and ψχq is defined modulo AN/q.
(1) If f is an eigenform for Tq2, then f\Tq2 = 0 .
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(2) IfN is odd, and f £ 5̂ /2 (4iV, φ, F) for a newform F of weight
k — 1 and (exact) level N or 2N, then f is an eigenform for
Tq2 andf\Tq2=0.

REMARK. Regarding the hypotheses of (2), we know that / cor-
responds to a newform of level dividing 27V, but not that the exact
level is divisible by N.

Proof. In either case f\Tq2 G Sk/2{4N/q,φ) (see Proposition 3.2
below). If / is an eigenform for the Hecke operator Tq2, then f\Tq2 =
Xqf. If λg φ 0, we have a contradiction to the exact level of / being
4/V. In the second case, we see that f\Tq2 £ 5fc/2(47V/g,φ, F), since
Tq2 and Tp2 commute for primes p φ q ([10, Lemma 1]). By part (1)
of Theorem 2.4, Sk/2(4N/q, φ, F) = {0}, hence the result. D

2.3. More general levels. In this section let TV = 2μN0 where Λ̂ o

is odd and squarefree, and 0 < μ < 2. Let φ be any even quadratic
Dirichlet character defined modulo 4iV, with the conductor of φ
divisible by 8 if μ — 2. The corollary in §3 of [16] may be stated as

THEOREM 2.7. (Ueda).
(1) Sk/2(4N,φ)^Sk-l(2N,l);

(2) Sk/2(4N,φ)κ 9i Sk-!(N, 1) ifμ = 0
where the isomorphisms are as modules for the respective Hecke al-
gebras.

We use this to show

THEOREM 2.8. With N and φ as above, let F be a newform in
Sib-i(2JV,l). Then
(1) Sk/2(4D, ψ, F) = {0} for allD\N,D< N;

(2) S+2(4N^F)φ{0};

(3) Sk/2(4NM,φ, F) φ {0} for allM>\.

Proof. First observe that by the definition of the space of oldforms
(see [11]) and by Theorem 2.7 above, we have

)= £ Sk/2(W/q,φ)
q\N

cond(ψ)\4N/q

+ Σ Sk/2(4N/q,φχq)\Bq
q\N

cond(iPXq)\4N/q
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q\N
cond(ψ)\4N/q

q\N
cond{φχq)\AN/q

where the sums are over primes q dividing J?V and where we observe
that the shift operator Bq induces an isomorphism as modules for
the Hecke algebra (see Lemma 3d of [10]) between Sfc/2(47V/#, ψχq)
and Sfc/2(4iV/g', ψχq) \ Bq. Thus any form in 5Γ/2(4Λ ,̂ ψ, F) is equiv-
alent to (has the same Hecke eigenvalues as) a cusp form of level
2N/q and trivial character for some prime q \ N. On the other
hand, such a cusp form is equivalent to the newform F of level 2iV,
hence S£/2(4iV, ^, F) = {0}. Since for any D \ JV, D < JV, we have
Sk/2(4:D,φ) C Sφ(4:N,ψ), the first assertion follows.

Since F € Sfc_i(27V, 1), Theorem 2.7 implies that 5^/2(4^, ψ, F) φ

{0}, and since SM2(4N,Ψ,F) — {0}, we must have that

J > F) φ {0}, hence (2). The third part is clear. D

2.4. Explicit decomposition of newform spaces. Newforms of
half-integral weight cannot be characterized by their Hecke eigen-
values ([5]), which means that a multiplicity-one theorem does not
hold for the space of half-integral weight newforms. In the results
below, we give more precise information about the multiplicities
with which newforms occur, by giving an isomorphism which ex-
plicitly decomposes a given space of half-integral weight newforms
into a direct sum of spaces of integral weight newforms. This not
only demonstrates explicitly that the multiplicities are either one
or two, but also suggests that the mutliplicity two occurrences are
related to the Kohnen subspaces.

We first consider two special cases.

PROPOSITION 2.9. Letp be an odd prime andψ an even quadratic
Dirichlet character defined modulo 4p. Then
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Proof. It is easy to check that the only possibilities for φ are φ = 1
or χp, and that

\Sk/2(4,l)\Bp, i

= Sk/2(4,l)

where the first isomorphism is given by Bp, the second isomorphism
is given by Theorem 2.7, and the third by the theory of integral
weight newforms (see Li [7]).

Also from Theorem 2.7 and newform theory for integral weight
forms, we have that

) φ 2 5 t i ( p , 1) θ 2S2li(2,1) θ 4S+_1(1,1).

Moreover, by definition and the characterization of the oldform
space above, we have that

Sk/2(4p, φ) = S+2(4p, φ) θ Sζ/2(4p, φ)

Si 5+2(4p, V) θ 5+^(2,1) φ 25fc

+_x(l, 1).

Comparing the two expressions for Sk^i^P^Φ) a n d cancelling like
terms (semisimplicity of the Hecke algebras) yields the result. D

REMARKS. (1) Note that by Theorem 2.4, S~£/2{Ap,φ)κ c

S£,2(4p,φ), and from Kohnen's Theorem 2 [6] that S£/2(4;p,φ)κ

— S'fcL-iCp, 1), thus the Kohnen subspace contributes one of the two

copies of S^ip, 1) in 5j 2 (4p, #

(2) If fe < 13 or fc = 15 then 5 f c_i(l,l) = {0}, so that the
nonKohnen newforms all occur with multiplicity one.

We next consider a slightly more general level, but restrict to
trivial character. For notational ease, we write Sι(M) for S^(M, 1).

PROPOSITION 2.10. Let p and q be distinct odd primes. Then

θ
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REMARK. AS in Proposition 2.9, we note that one of the fac-

tors, S£_λ(pq), contributing to a multiplicity two occurrence in the

decomposition of S£,2(4pq) i s expected as it corresponds to the

subspace of Kohnen newforms of level 4pq (i.e. to S£,2(4pq)κ c

Sφ(4pq)). In Theorem 2.12, we offer a possible explanation for the

other factors which occur with multiplicity 2.

Before proceeding with the proof of the proposition, it is conve-

nient to first characterize the space of oldforms in

LEMMA 2.11. With the notation as above,

S;/2(4pq) = St/^P) θ S+2(4q) φ S+ 2(4).

Proof. By definition,

= Sk/2(4p) + Sk/2(4q)

= S+2(4p) + S+2(4q) + S+2(4)

where the last equality follows from the characterization of S^

in the proof Proposition 2.9 (£ an odd prime). Since S^2(4) =

£fc/2(4) C S7/2(4p) ΓΊ Sφ(4:q), it is orthogonal to the corresponding

spaces of newforms, hence in particular,

Sς/2{4pq) = [S+/2{4p) + S+/2{4q)] Φ Sfc+/2(4).

To see that the bracketed sum is direct, we first note that in a
manner exactly as in the integral weight case (see e.g. Lemma 7 of
[7]), we have that

5fc/2(4iV, φ) n 5, / 2(4M, φ) C Sk/2{4D, φ)

where D = gcd(M, TV). Thus if / G 5^/2(4p) n S£/2(4q), we must

have / e 5fc/2(4) = S£/2(4p) = S^/2{Aq), hence / = 0, and the

lemma is established. D

Proof of the Proposition. By Theorem 2.7 and the theory of new-
forms, we have that

Sk/2(4pq) ^ Sk

ί* Sί_i(2pg) θ 2(Sί_1(2p) θ SU

θ 4(5^i(p) θ StM θ ̂ _ x
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On the other hand, by definition and Lemma 2.11, we have

Skβ^pq) = S+/2(4pq) φ Sς/2(4pq)

= S+/2(Apq) Φ 5+/2(4p) Φ S+/2(4q) φ S+ 2(4).

From Theorem 2.7 and newform theory, we have S^,2(4) = 5^/2(4)

** SΆ;-i(2) 9i 5^_1(2) 0 2 5 ^ ( 1 ) . Finally, applying Proposition 2.9

twice in the above expression yields

=S+/2(4pq) φ S2"_1(2p) Φ 2S+_I(P) φ S£i(2) φ

φ Stχ{Ίq) θ 2Sί_i(ff) Φ Sί_i(2) θ

φ 5ί_i

Comparing the two expressions for Sk/2(^PQ) a n d cancelling like
terms (semisimplicity of the Hecke algebras) yields the result. D

For the case of trivial character, we summarize these two proposi-
tions and offer an interpretation of the extra terms which contribute
the extra multiplicity to the newform decomposition.

THEOREM 2.12. Let N be an odd prime or the product of two
distinct odd primes. Then

-i(d) θ

Proof. The first statement is just a reformulation of Propositions
2.9 and 2.10. The third statement is immediate from Theorem 2 of
[6] since 5+/2(4e, 1)* = #_i(β, 1). D

REMARKS. (1) The first two decompositions make clear that new-
forms occur with multiplicity one or two and clearly identifies which
newforms occur with a given multiplicity.

(2) The third decomposition is meant to be suggestive. It seems
far too remarkable to be coincidence that the spaces contributing
to the multiplicity two part of the decomposition of the space of
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newforms S^2(AN) should correspond precisely to the direct sum
of all possible Kohnen subpaces of newforms of levels dividing 47V,
but we can offer no explanation for this phenomenon at present.
Moreover, we note that excluding the "Kohnen" contribution, the
remaining forms satisfy a multiplicity-one theorem. It also seems
appropriate to make the following conjecture:

CONJECTURE 2.13. Theorem 2.12 is true for N any odd square-
free positive integerJ

REMARKS. The conjecture will follow from the lemma that
Sfr/2(4:N) = φ d\N 5λ 2(4d). It follows easily from the definition and

' d<N '

induction on the number of prime divisors of N that S^,2(4N) =

Σ d\N S£/2(4d). From here, it suffices to show that ΣdS^/2(4d) —
d<N ' '

®dS^ι2{4d) where the sums are over divisors d \ N having a fixed
number of prime divisors.

2.5. Conditions when 5+/2(47V, ψ, F) φ {0}. In Corollary 2.5 and
Theorem 2.8, we have given conditions which force
S£/2(4N,ψ,F) = {0} when the level of F is large relative to N.
The far more interesting situation is when the level of F is small
relative to N.

As an immediate consequence of Propositions 2.9 and 2.10, we are
able to give conditions under which S^(47V, ψ,F) Φ 0 for values of
N which are arbitrarily large. In particular, this says that the levels
N for which 5ίr2(4iV, ψ, F) φ {0} are not determined by the level of
the newform F. Thus in general, the level of a half-integral weight
newform is not characterized either by the level of the newform to
which it corresponds, or by the eigenvalues of that newform. This
of course is in striking contrast to those newforms in the Kohnen
subspace.

THEOREM 2.14.

(1) If F e S£_λ(2) U S ^ ί l ) is a newform, then S+/2{4p,ψ,F) φ
{0} for all odd primes p and for any even quadratic Dirichlet
character ψ defined modulo Ap.

tAdded in proof: This conjecture has recently been established by the first
author, and its proof will appear elsewhere.
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(2) // p is an odd prime and F is a newform of weight k — 1
and any level dividing 2p, then for any odd prime q φ p,

Proof. The decompositions given in Propositions 2.9 and 2.10 say
that to each nonzero integral weight newform appearing on the right
hand side of the decomposition, there exists a nonzero half-integral
weight newform appearing on the left hand side of the decomposition
which has the same Hecke eigenvalues at almost all primes. This
establishes the result. D

This result is rather surprising since the newforms which arise in
this way do not seem to be produced by any "natural" operations
on cusp forms. For example, an obvious way in which to attempt
to produce a newform of arbitrarily high level, with almost all the
same Hecke eigenvalues as a given newform, is by means of character
twists. While character twists do not explain the results of the
theorem above, we briefly discuss their properties to justify this
assertion and to indicate their significance.

Recall that if f(r) = Σ a(n)xn G Sk/2(4N, φ) and if χ is a Dirich-
let character with conductor r, then the twist of / by χ is the cusp
form fx{τ) = Σx{n)a{n)xn G Sk/2(4Nr2,φχ2) (see §6 of [11]).
Moreover, if / G Sk/2 (4N,φ) is an eigenform for the Hecke opera-
tor Tp2 (p \ 4iV) with eigenvalue λp, then fχ is an eigenform with
eigenvalue χ(p)2λp. Thus if the goal is to generate newforms of ar-
bitrarily high level having the same eigenvalues as a given newform,
the character χ must be quadratic.

If we assume that gcd(r, 4N) = 1, and / G Sφ(4N,φ) is a
newform, then by Theorem 6.6 of [11], the exact level of fx is ANr2.
Hence even if fχ is a newform, its level is no longer squarefree. The
examples we produced above all have the feature that the level is
of the form ANM where M is odd and squarefree, thus character
twists do not explain the existence of these newforms.

3. Multiplicity-One Theorems. In the case of integral weight
modular forms, we know that it is possible to have two linearly in-
dependent cusp forms which have the same eigenvalues for all but
a finite number of the Hecke operators Tp, p a prime. However,
if we restrict to the subspace of newforms, then this collection of
eigenvalues is sufficient to characterize a cusp form up to a constant
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multiple. Moreover, as a consequence of the multiplicity-one theo-
rem for newforms of integral weight, any newform which a priori is
a simultaneous eigenform (only) for all but a finite number of the
Hecke operators, is in fact a simultaneous eigenform for all of the
Hecke operators.

In the half-integral weight case, a knowledge of the Hecke eigen-
values, even for all of the Hecke operators Tp2 is far from sufficient
to characterize a cusp form. Such information is at first glance ad-
equate only to determine the values of the Fourier coefficients of a
cusp form / which lie in a given square class. That is, given the
value of the Fourier coefficient a(t) for t a squarefree positive inte-
ger, the values of a(tn2) are determined by the Hecke eigenvalues.
What is lacking is a knowledge of the values of the Fourier coeffi-
cients α(ί) for squarefree integers t. Although Waldspurger [20] is
able (under mild assumptions) to characterize the value of α(ί)2, the
sign of the coefficient is undetermined. Moreover, by Theorem 3 of
[18], we know that / must be supported on an infinite number of
square classes, so that determining the actual values of the a(tn2}
for a given cusp form always involves an infinite number of choices
of sign. The need to deal with this ambiguity motivates the re-
sults below in which we develop sufficient conditions to characterize
half-integral weight newforms.

It is obvious that a knowledge of all of the Hecke eigenvalues and
of all the values a(t) for squarefree t is sufficient to characterize all
of the Fourier coefficients. In light of the comments above we first
consider a special case in which it is assumed that we are working
with simultaneous eigenforms for all of the Hecke operators Tp ι and
have a knowledge of almost all of the Fourier coefficients at square-
free values t. We find that this is more than enough information to
characterize a cusp form.

PROPOSITION 3.1 Let N be a positive integer, and φ a Dinchlei
character defined modulo AN. Suppose that f,g e 5fc/2(4/V,'0) with
Fourier expansions f = Σ n >i a(n)xn and g = J2n>i b(ή)xn. Sup-
pose that for all primes p, f and g are simultaneous eigenforms for
all of the Hecke operators Tvi having the same eigenvalues for all
p. Moreover, suppose that the Fourier coefficients a(t) = b(t) for
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almost all squarefree positive integers t. Then f = g.

Proof. Consider h = / — g = Σn>ι c(n)xn. Since h is a simulta-
neous eigenform for all of the Hecke operators Tp2, it follows from
the action of the Hecke operators on the Fourier coefficients that if
c(t) = 0, then c(tn2) = 0 for all positive integers n. If h φ 0, then
c(tn2) = 0 except for a (non-empty) finite set of positive square-
free integers t. By Theorem 3 of [18], h has weight 1/2 or 3/2 and
at weight 3/2 lies in the span of the theta series hψ, contrary to
assumption. D

Notice that in the previous proposition, we have not assumed
that the cusp forms are newforms. In the integral weight case,
a newform is automatically a simultaneous eigenform for all of the
Hecke operators, a consequence of multiplicity-one. For half-integral
weight forms this is far from clear, for if / G Sfc/2(4iV, ψ, F) for some
integral weight newform F and q is a prime dividing JV, we know
merely that / | Tq2 6 Sk/2(4N,ψ,F) which would imply that /
is an eigenform for Tq2 if Sk/2{^N,ψ,F) is 1-dimensional, but not
necessarily otherwise. In what follows, we add the constraint that
our cusp form is a newform in exchange for the assumption that it
is a simultaneous eigenform for all the Hecke operators. As we shall
see, we again get a mutltiplicity-one theorem (see Theorem 3.9),
however the proof requires significantly more work.

We first give some of the elementary properties of the Hecke and
shift operators in

PROPOSITION 3.2. Suppose m e Z+ and q is a prime dividing
N. Then Bm maps Sk/2(4N,ψ) to S*/2(4/Vm,^χm) and Tq maps
Sk/2(4:N,ψ) to Sk/2{4N,ψχq). Moreover, if q2 \ N and φχq is de-
fined modulo ±Nfq} then Tq takes Sk/2(^N,ψ) to Sk/2(4N/q,ipxq)
and hence 7> = T2 takes Sk/2(4N,ψ) to Sk/2(4N/q,ψ).

Proof Proofs of the first two statements can be found in [14] and
[10]. The remaining statements are proven in analogy with Lemma
l o f [ 7 ] . D

We now define an analogue of the Atkin-Lehner involution oper-
ator Wq. Versions of this operator have already been defined in [6]
and in [8]; our definition differs from theirs by (at most) a constant.
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DEFINITION. Let q be a prime dividing N, and set a = ord9 4/V.
For / e Sk/2{4N,φ), define Wq = WfN by

where C = L^qa \\ € Γ^AN/g"), and (</<), is the 9-part of

the character ^
First we remark that even when q = 2, θ(Cτ)/θ(τ) is an automor-
phy factor for C since, following the proof of the transformation
formula for theta functions (see [21]) we find that Θ(CT)/Θ(T) =
( c + l/r) 1 / 2 r 1 / 2 . To show Wq is well-defined, notice that if

qaa! b'

are as in the definition of Wq, then

where

Thus Wς is well-defined if and only if

or equivalently

But d" = 1 (mod 4N/gα) and d" = -ANcb'/qa (mod <f), hence

since —ANcb/qa = 1 (mod gα).
We now establish some basic properties of W .̂ Consider the space

,ψ), and let 9 be a prime dividing N. Set α = ord(747V,
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Q = qa, and M = 4N/Q. Write φ = φQφM- With this notation,
we have the

PROPOSITION 3.3. The operator Wq takes Sk/2(4N,φQφM) to

jProof. Take A' = βfy e Γ0(4N), and C =
Γι(4N/qa) as in the definition of Wq. Then

where

From this we deduce that for / G Sib/2 (4iV,

Now, rf" = gααd' - 4Ncba'/qa (mod 4JV), gΩα = 1 (mod 4N/qa),
and -4Ncb/qa = 1 (mod ςα), so d" = d' (mod M) and rf" = o'
(mod qa), so

Dwhich completes the proof.

The next several propositions are analogous to results obtained
for integral weight forms by Li [7].

PROPOSITION 3.4. Suppose q,q' are distinct primes dividing N,
and that oτάq N = l. Then Bq,W*N = W^'Bqf.

Proof. Let C = ( * , I € Γι(4N/q). Then using our previous
y±Γv C/q Lj

techniques we find that
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where C = I I C I Λ -i I Since diagonal matrices commute,

it follows that

G

PROPOSITION 3.5. Consider Sk/2{4N,ψ) and suppose that q is a
prime such that ord9 N = 1 and ψχq is defined modulo AN/q. Then
Tg + qV4-ιWq maps Sk/2(4N, φ) to Sk/2(4N/q, φXg).

Proof. Recall that for / G Sk/2(4N,φ),f\Tg = qk'^f \ξ\ΣkA*k

where ξ = I n I ,qι^\ G Q and where {A%} is a complete set of

coset representatives for

( r ' Γ i ^ Λ O ^ n Γ ^ Λ Γ Γ ) \Γi(4iV)*.

One checks that

)*ί Π Γi(4JV) ) = (Γi(47V) ΓΊ ΓO(47V, q)Y ,

so one may take Ak = ί π 1 1, k — 0,... , q — 1. From the definition,

f\Wq = (Ψχq)q(b)f\ξ\C* with C e T^AN/q) of the required form.
The hypothesis about the character and the restrictions on the level
require that the g-part of ψ equal χq, hence (Ψχq)q(b) = 1. For
notational ease, we put Aq = C, thus

= Qkμ-lf\ξ\t^l

Let A = [ ,1 e Γ0(4iV). As in Lemma 3 of [7], we see that
\caj

{AkA} = {Sfĉ fc} where Bk = [ , I G Γ0(4N/q,q) and where

dk = d (mod 4N/q)] also note that (d*, JV) = 1 for all fc. Thus

fc=0
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o ) B k ( o ) € Γ°( 4 Λ Γ)
Thus

f\(τq + q

ki^wq) i A* = q^-1 Σ χMk)f I c; \ ξA
q

Σ
k=0

k=0

Since (dk,N) = 1, χq(dk)ψ(dk) = ψχq(dk) and since ψχq is defined
modulo 4N/q and dk = d (mod 47V/g), we have

-χWq)\A* = qk"-1 φχq{d)f\J2ξA
9

A Ξ o

which completes the proof. D

PROPOSITION 3.6. Suppose ί is a prime (not necessarily dividing
N)andf = g\Bέe Sk/2(4N,<ψ) with g(τ) = Σ n > i ^ ( n ) e 2 ^ . //
ί I N and ψχι is a character modulo AN/I then g G Sk/2{4N/ί,
otherwise g = 0 (and hence f = 0).

PrOO/.p|S, = rfc/^|ewithe = [ ( θ l ) ' r V 4 ]
implies g = lk'Af \ ξ'1. Let TV' = N/l or N as £ | N or not. If

^ = (c d) € Γ o ( 4 i V ' ' Q* t h e n S = (θ l

e"xA*e = Xe(d)B*. Thus

^ μ* = ek^f i e'11 A* = &
1 = ψχe(d)g.

(1 \

ni

for any integer m.

Case I.£\N and ^x^ is defined modulo 4N/£ = 4N'.
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Any matrix A = I , I G TQ(AN') can be written in the form
\caj

(lm\ Λl(ln\ „ . , , , ,, (a1 b'\
I π i M n 1 * o r s o m e integers m and n and A' = I , , G

Γo(4Λ '̂,£). Combining the observations above, we see that g\A* =
1777, λ Λt*fln\ ~

Λ 1 i L J = ΦxAdjg. Since d = d (mod 4iV ) and ^x^

is defined modulo 4/V7, we have ψχt(d) = ψχt(d') which completes
the proof of this case.

Case II. ^ f TV, or ^ I iV and ^ not defined modulo AN1 =
In either case it is trivial to check that cond('0χ^) divides 4iV'£,

but not AN'. Thus there exists an integer v ^ 0 (mod i) with (1 +

) = 1 and ^ ( 1 + 4iV'i;) φ 1. Put ^ - ( ^ Jjj
and note that A G Γ0(4iV', £). Since 1 + AN'v φ 0 (mod ί), we may
choose an integer u such that u{l + AN'v) + 1 Ξ 0 (mod £). Then

so by the earlier observations

<Mi + 4iv'̂ )̂  = ̂ M'* = ̂ l(oΐ) ̂ * ( ί ΐ

Since ^χ^(l + 4N'υ) Φ ψχe(l), we must have g = 0. D

Now we can prove

PROPOSITION 3.7. Suppose f = Σ n >i a(n)e27rinτ is an element of
Sk/2(4N, Ψ) such that a(n) — 0 if (n, K) = 1 /or some fixed integer
K. Then:

(1) α(n)=0i/(n,JV) = l ;
(2) i/ g i5 α prime dividing N and ψχq is defined modulo £N/q,
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set

= ίf\q ιfq2\N
Ψ \ (1 + q-1)-1 [f\Tq + 9*/4-1 Wj otherwise;

then ψ e Sk/2(4N/q,ψχq) and f - (φ\Bq) = Σn>i H™)^™ G
Sk/2(4:N, -0) iϋiί/ι 6(n) = 0 /or (n, (if, iV)) = 1 or n a power of q.

Proof. For a prime ^ define the annihilator At : Sk/2(4N,ψ) -+
Sk/2{ANl\ψ)bΎ

where Nf = lcm(N,£). By Proposition 3.2, At maps Sk/2(AN,φ)
into Sk/2(4N£, ψ)Ίΐ£\ N, and At maps Sk/2(4N, φ) into Sk/2(4N, φ)
if ^2 I iV and τ/% is defined modulo AN/L Let ^ 1 , . . . ,^ r be the
distinct primes dividing if, and suppose £r does not divide TV. By
hypothesis, the n t h Fourier coefficient of / | Atλ \ A^2 | | Aίτ_x is
nonzero only when £Γ \ n. Hence / | Aιx | | Aιτ_x — Φ | Btr where
Φ = Σn>ι c(n)e2πιnτ. Applying Proposition 3.6, we see that Φ must
be 0; hence a(n) = 0 when (n, £\ £r-ι) = 1. Arguing by induction
on r shows that a(n) = 0 when (n,N) = 1. Since (n,N) = 1 or
(n, if) = 1 implies a(n) = 0, (n, (if, iV)) = 1 also implies a(n) = 0.

Now, suppose that ^ is a prime dividing N such that ^ χ 9 is de-
fined modulo AN/q. If q2 \ N then the theorem follows from Propo-
sition 3.2. If (K,N) = q then by Proposition 3.6 / = g | Bq with
9 e Sk/2(4N,φχq), and thus <p = g\Bq\Tq = g and f - (φ\Bq) =0.
Finally we consider the case where ord^TV) = 1 and (if, N) Φ
q. By Proposition 3.5, ψ = (1 + q~ι)~ιf \ (Tq + qk^~ιWq) e
Sk/iiAN/q.φXq). In particular, we note that the </-part of the char-
acter φχq is trivial. We have already established that α(n) = 0
for (n, {K,N)) = 1. If (K,N) = 1, the result is obvious. Let
<7i,... , qt = 9 be the distinct primes dividing (if, TV); since (if, TV) 7̂
q and ordg(7V) = 1, we must have t > 1. Looking at the Fourier coef-
ficients of /, we see that / = Σ j = 1 Φj \ BQj where Φi = ίi / |T 9 l ,

and Φj = qj f \ Aqi \ ••• | ^ . i | Γς j for j > 1. Clearly
Φj I £ ρ j e Sk/2(4Nq2 q2, φ) for all j . Also'

Aqt_ιeSk/2(4N',<ψ)
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where N' = Nq\ q^_v so by Proposition 3.6,

Now,

1/4 (ab
icd

<Γ 1 )Φ t

where I , j G Γχ(4iVgi -ql_ι/q) is chosen to represent Wq and

where we recall that the g-part of ψχq is trivial. For 1 < j < ί,
Proposition 3.4 shows that

, I B q j I B
qj

and

(1 + g" 1 )^ =
7=1

Wi"'1*) G Skι2{AN*,ψXqXqj). Therefore

= (1 + q~l)Φt + Σ Φ, I (Tff + qk"-ι

7=1

' > ! * « ,

and so

- (Φt

= Σ (φi -

I (Tq

7=1

) I Bq. I Ϊ5q
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Thus if (n, q\ qt-\) = 1 or n is a power of g, then the n t h Fourier
coefficient of / — (φ \ Bq) is zero. D

Now recall that the space spanned by the oldforms, Sφ(4N,φ)
is the subspace of Sk/2 (4iV, φ) spanned by forms and shifts of forms
of lower levels, that is

Sζ/2(4N1φ)= Σ Sk/2(4N',φχe)\Be.
N't\N
N'<N

Also, the subspace spanned by the newforms, S£,2(4N,φ), is the

orthogonal complement of S^,2(4N^φ) in 5̂ /2 (4iV,^) with respect

to the Petersson inner product (see [11] for details).

THEOREM 3.8. Suppose f{τ) = Σn>ι a(n)e2πinτ e Sk/2(4N,φ)
and a(n) = 0 whenever (n, K) = 1 for some fixed integer K. Then

Proof. Let 5i, ,9r5*** ?9r-fs be the distinct primes dividing
(JV, X) such that ^χ 9 j. is defined modulo 4:N/qj if and only if r <
j<r + s. lΐs>0 then Proposition 3.7 says that there is some ψ G
Sk/2(4N/qr+syφχqr+s) such that ( / - φ\Bqr+s)(τ) - Σn>ι b(n)e2*™
where 6(n) ^ 0 only if (n,qι -qr+s-ι) > 1. Thus induction on s
shows that / = h + g where h e Sj~/2(4N,ψ) and g(τ) —
Σn>i c(n)e 2 π i n r where c(n) φ 0 only if (n, gi ?r) > l Then with
Aς i defined as in the proof of Proposition 3.7,

= Σ c(qrn)e2*inτ \ Bqr G Skβ(4N', φ)
n>\

where N' = Λ/'g2 ^ _ x ; since ^X^ is not defined modulo AN1 /qr,
Proposition 3.6 shows that g \ Aqi AQr_1 = 0 and hence c(n) Φ 0
only if (n, qι gr-i) > l Induction on r now yields the theo-
rem. D

This allows us to prove a multiplicity-one theorem for half-integral
weight newforms.

THEOREM 3.9. Suppose f(τ) = Σn>ιa(n)e27rinτ and g(τ) =
Σn>iHn)e2πmτ are newforms in Sk^i^N.φ) such that
(1) for almost all primes p \ AN, f\Tp* = λp f and g\Tp2 = λp g;

and
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(2) for almost all squarefree integers t, a(t) = b(t).
Then f = g.

Proof. Let K be the product of all primes p not dividing 4N
such that condition (1) fails and all squarefree integers ί such that
condition (2) fails. For n G Z+ such that (n,4NK) — 1, write
n = tm2 where t is squarefree; then using induction on the number
of prime factors of ra, the action of the Hecke operators on Fourier
coefficients implies that a(n) — b(n). Hence

with c(n) = 0 whenever (n, ANK) — 1, and so /—g G 5^2(4iV, φ) by

Theorem 3.8. Since /, g G S£/2(4N, φ), we must have / = 5. D

4. The Hubert Modular Case. In this section, we describe
generalizations of the results in §3 to the Hubert modular setting.
In general, the proofs involved are analogous to those in the elliptic
case, so we focus solely on developing the necessary operators and
their properties.

Let K be a totally real number field of degree n over Q with ring
of integers 0 , unit group Ẑ , totally positive units U+, and group
of square units U2. Let λί be an integral ideal and X a fractional
ideal; define

a = u2 (mod λί) for some

and define

where r = (. . . , r J 5 . . . ) G Un and for a G K, Tr(aτ) = Σj aiJ)Tj
(a^ the conjugates of a over Q) and e(aτ) = e*

tTr(aτ)m Let ^ denote
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the group extension of GL^K) consisting of pairs [A, ψ{r)) where

A = ί , I G G\JΪ>(K) and where φ{τ) is a holomorphic function on

Un satisfying φ{τ)2 = tN(cτ + d) 7V(det A)-1'2 with \t\ = 1. We re-
fer to the function φ as a factor of automorphy for the matrix A. The
group law in Q is given by [A, ψ{τ)] [B,φ(τ)\ = [AB, φ(Bτ)ψ(τ)].
For A G Γ Q ^ O , ! 2 ) , jχ(A,τ) = 0(J,Aτ)/0(J,τ) is a well-defined
automorphy factor for A (see [21] and [23]); moreover, jχ(A,τ) —
jj{A,τ) whenever A G Γ0(4(9, J 2 ) ΓΊ Γ0(4O, J2).

For A G Γ 0 (4O,J 2 ), put A* = [AJx(τ)] G G, and for any
subgroup Γ C T^W.Ί2) define Γ* = {A* : AeΓ} which is a
subgroup of G' Finally for a holomorphic function / on 7ίn and
[A, φ{τ)] G G, define the slash operator by

/ I k/2[A, φ(τ)] = f I [A, φ(r)} = φ(r)-kf(Ar).

Next, let ψ be a numerical character modulo 4Λί and k an odd ra-
tional integer; let λΛk/2 (Γo(4Ar,X2)*, ψ) denote the space of Hubert
modular forms of (uniform) weight k/2 and character ψ for the
group Γ0(4Λ/", J 2 )* , that is the set of functions / which are holomor-
phic on %n and at the cusps satisfying f(Aτ) = ψ(a)jχ(A,τ)f(τ).
As shown in §2 of [23], Mk/2 (Γ0(4ΛΛ X2)*, ψ) = {0} unless φ{u) = 1
for all u G ZY, so we will assume throughout that φ is trivial on U.

For the convenience of the reader we briefly recall the definition
of two operators whose definitions and properties appear in [23].
Fix a space of modular forms λΛk/2 (Γo(4Λ/",I2)*,V;) For a prime
V \ 4Λ/", let {A*} denote a complete set of representatives for

The Hecke operator TV2 maps Mk/2 (Γo(4Λr,X2)*,'0) to
Mk/2 (Γ0(4Λ/",P2X2)*,^) and is defined by

Analogous to the integral weight case, we have an operator S-p
which also maps the space Mk/2 (ΓO(4Λ/',X2)*,'0) to
Mk/2 {Γ0(4λί,V2Ί^)\φ) defined by

f\Sv = f
θ{Vl,τ)\
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where

\2 Q

/ γ V~ιX~2d~ι\
C E \j^φj2Q Q I , det C = 1, and ac = 1 (mod λί).

In fact, S-p is an isomorphism, so by setting Sφ-ι = Sφl and
SJXSJ2 = SJXJ^ we can inductively define 5 j for any fractional
ideal J relatively prime to ΛΛ The relationship between the oper-
ators Tφi and Sφ is given by Lemma 2.2 of [23] which we restate
below.

LEMMA 4.1. ForV a prime, V \ AM, and f e Mk/2 (Γo(4Λ/",
we have

where b runs over V 2 (X?d) / (X?d) and β runs over

Let Xi,... ,Ih' be ideals representing the (nonstrict) ideal classes
of K\ then by the Global Square Theorem, I j * , . . . ,2^/ lie in distinct
strict ideal classes. Let

ti

λ = l

Whenever J and J are fractional ideals in the same (nonstrict)
ideal class, say al = J with α G X x , the mapping f *-* f \

^ ^ ( 2 ) 1 / 4 is an isomorphism from the space^ ^ (

Mh/2 ( ^ ( W , ! 2 ) * , φ) onto Λ4Λ/2 (Γ0(4ΛΛ J2)\ ψ)\ notice that this
isomorphism is independent of the choice of a. Hence by considering
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the action componentwise, we can consider Tφ2 and S-p as operators
on the space Mk^i^N, Ψ)

For any Hecke character Φ extending φ (cf. [22], [12]) there is
an associated ideal character Φ* whose conductor divides 4ΛΛ By
setting

: F\SV

= Ψ{V)F for all primes V\4λί},

we get

Mk/2(4Λf, φ) = ®*Mk/2(4λf, Φ)

where the sum is over all Hecke characters Φ extending φ with
Φoo = 1 (cf. [22], [23]).

Let F = (... ,/λ> ) G Λ Ί ^ ^ ^ ) . Notice that since / λ |

Ί*χ2d~ι, fχ has a Fourier expansion of

the form

with ^ = 0 or ξ > 0. For F = (. . . , /A, .. -) G Λ^fc/2(4Λ^, Φ), we use
the coefficients α\(£) to build "Fourier coefficients" associated to F
and attached to integral ideals. Mimicing the integral weight case,
we will define Fourier coefficients only for integral ideals of the form
ξlχ2 where ξ e X\ is either zero or totally positive. Notice that all of
these ideals lie in what Hecke refers to as the principal complex (see
[3]), that is in the strict class of the square of some ideal. However,
unlike the integral weight case, these Fourier coefficients depend not
only upon the ideal, but also upon an extra parameter which we now
describe; for more details see [23]. Let G be the quotient group
K+jK2, the group of totally positive elements modulo squares, and
let H = U+K2/K2 ^ U+jU2, a subgroup of G. Let G be the
character group of G and i ? x = {φ G G : φ\π = 1} For a character
φ e G and an integral ideal M = ξlχ2 for some ξ » 0, we define
the Λ4, φ-Fourier coefficient of F, α(Λί, φ; F) , to be

N(T Ί~k/2 _

a(M,φ;F)= { x ) £ Φ(ξu)ax(ξu)
I " u J ueu+/W>
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where / λ (r) = Σζaχ(ζ)e(2ζτ). Notice that a(M,φ\F) depends
only upon the choice of φ modulo HL. If M. is a nonzero integral
ideal, but not of the form Λ4 = ξlχ2 for any λ, we put a(ΛΊ, φ\ F) =
0 for all φ. Finally, if Λ4 - 0 and 7V(Xλ)-*/2αλ(0) = iV(Xμ)-*/2αμ(0)
for all λ, μ then we set a(0, φ\ F) = ΛΓ(Zλ)~*/2αλ(0). As shown in §2
of [23], the Λ4, φ-Fourier coefficients of F characterize F whenever
the 0, ^-Fourier coefficients of F can be defined. In particular, these
Fourier coefficients characterize any cusp form in λΛk/2{^Ί Φ)

Now, each space ΛΊ^(^Λf, Φ) is invariant under the Hecke oper-
ators TV2 where V is a prime ideal, V \ 4Λ/*, and the action of such
TV2 on the Fourier coefficients of F 6 Λ/ί/c/2(4Λ/r, Φ) is a natural
extension of their action when K = Q (Theorem 2.5 of [23]). To
make clear the action of TV2 on the components of a modular form
JF = ( . . . , / λ j . . . ) G .Mfc/2(4A/\ Φ), fix an index λ and choose an
index μ and 7 G Kx such that VX\ — jlμ. Take {A/} to be a
complete set of coset representatives for

Then the /^-component of F \ TV2 equal to

We give an equivalent formulation of this definition which appears
in [21] and from which the definiton of the Hecke operator TQ given
below will seem more natural. Choose p £ if, p ^> 0 such that
V2Ί\ — pΊ?μ, then the representatives {̂ 4*} chosen above form a
complete set of coset representatives for
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and p = vη1 for some υ G U+. Furthermore, letting φ vary over
G/H1 and u over U+/U2, we have

(since φ is quadrat ic and as shown in [23], γ———^
\ \L4~^ '. LA J

= />

fx

We now define the operators TQ, WQ (for Q a prime ideal dividing
Λί) and BΛΊ (for λΛ an integral ideal). We expect these operators to
map a modular form which transforms under Γ0(4jV,X) to a mod-
ular form which transforms under Γo(4Λ/r,IQ) (or Γo(4Λ/\XAi))^
and since we are restricting our attention to modular forms which
transform under groups Γ 0 (4JV,X) where X is in the principal ideal
class complex, we shall define TQ, WQ and BM to be 0 when Q (or
λΛ) is not in the principal complex.

In analogy with the above definition of TV2, we define TQ as fol-
lows. With Q in the principal ideal class complex, fix/}>0 and
indices λ and μ such that QX\ — pX?μ\ let {^} be a complete set of
coset representatives for

Set the μ-component of F \ TQ equal to

N(Q) f - i
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Clearly this definition is independent of the choice of p and we have
only one index μ corresponding to each index λ, thus F \ TQ is
well-defined.

We define BM in a similar fashion, although here M can be any
integral ideal (in the principal complex). If we have 7 >> 0 such
that MΊ% = jXχ then we set the 77-component of F \ BM equal to

Before defining WQ = Wς^ we need to define a quadratic nu-
merical character χM defined modulo AM, where M is any integral
ideal in the principal complex. For M in the principal complex, take
a G O such that (α, AM) = 1; choose ω » 0 such that ωM~ι = X2

for some integral ideal X with (ω,a) = 1. Also choose φa G G
to be a fixed representative of G/HL such that φa(u) — (u\a) for
all u e U+. (Notice that the quadratic residue symbol (*|α) is a
character on U+/U2, so exactly one of our fixed representatives of
G/HL extends (*|α).) Define χM(a) = ^α(ω)(α;|α). To show this
is well-defined, suppose ω1 » 0 with ω'M~ι = J2, J C O, and
(α;', α) = 1. Thus J 2 and J2 must be in the same strict ideal class,
and hence X and J are in the same nonstrict ideal class (recall that
Xi,... , X/j/ represent all the distinct nonstrict classes and X^,... , Ί%,
lie in distinct strict ideal classes). This means that ωfω~1O — β2Ό
for some β G Kx, so ω' = /?2u;i> for some v G W+. Since ^ and (*|α)
are quadratic characters and 0α(^) — (^lα)? w e have

φa(ω')(ω'\a) = φa(ωv)(ωv\a) = ^fl(α;)(α;|α).

Therefore ^ is well-defined. To show χM is a character modulo
AM, take α as above, and choose q G M. Now, using Dirichlet's
theorem on primes, we can choose ω\, ω2 3> 0 such that ωιM~~ι = P 2

where ^ is prime and (u^a) = 1 = (α;»,α + 4g); then we have
g = αiίJi + Q^2^2 for some ot{ G (9 and (/>α = ^α-f4^ for any β £ O
since (tx|α) = (tx|α + 4j9) for any u e U+ (note that Theorem 3.7
of [21] implies that (^|*) is a character modulo 40). Noting that
(α;j|*) is a character modulo AωiM and setting a1 = a + Aa\ω\ and
a" = a' + Aa2ω2 = a + Aq, we see that

XM(a) = ΦaMMa) = φai{ωι)(ωι\a') = χM(a')

= Φa'(ω2)(ω2\a') = ~φan(ω2){ω2\a") = x^(a + 49).
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Hence χM is a character modulo 4Λ4.
With Λ4 in the principal complex we also define a character χ* on

ideals relatively prime to 4Λ4 and a Hecke character x^ as follows.
For V a prime ideal not dividing 4Λ4, choose ω ;» 0 such that
ωλd"1 = Ί? for some integral ideal X such that (ω,V) = 1, and
choose φφ to be the fixed representative oΐG/H± such that φv{u) =
(u\V) for all u e U+. Set

extend v* multiplicatively to all ideals relatively prime to 4Λ4. Set

equal to the Hecke character defined by
where s is an idele of K relatively prime to 4ΛΊ and XM(s) is the
numerical character χM evaluated on the 4Λ4-part of s.

Now, suppose Q is a prime ideal dividing Λί such that ψχ£ is
defined modulo 4λίQ~a where a = oτdQ4λί. If Q is not in the
principal complex, we set WQ = Wψ = 0. So suppose other-
wise; for every index λ, choose an index μ and p > 0 such that
Qati = pl?μ. Then for F = ( . . . , / λ, -..) e A^A:/2(W, Φ) set the
μ-component of F \ WQ = F \ W^ equal to

where (ΨX£)Q denotes the Q-part of the character of ψχ£, φ and u

vary over G/H1 and U+/U2 (respectively), and where

°=
with detC = 1. As in the case where K = Q, jχμ(C,τ) is an auto-
morphy factor for C even when Q is dyadic, and WQ is independent
of the choice of matrix C; as with the operator TQ, the operator WQ
is independent of the choice of p.

Arguments identical to those used when K — Q give us

LEMMA 4.2. Let λΛ, Q be an integral ideals in the principal com-
plex with Q a prime ideal idividing λί. Then we have:
(1) BM maps Λ^/2(4Λ/\ φ) to Mk/2(4λfM, φχM);
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(2) TQmapsMk/2(4λί,φ)toMk/2(4λί,

(3) // φχ£ is defined modulo 4ΛfQ~a where a = ordς 4Λf, then

WQ maps Mk/2(4λf,Ψ) to

Furthermore, the techniques developed in [21] and [23] show

that for V a prime ideal not dividing 4ΛίQ, F = ( . . . , f \ , . . . ) €
A/ίfc/2(4Λ/', Φ), and u, 7 and η as in the definition of BQ with (7, V)

= 1,

Λ ,N{Ίu)-Ά\Sv

= {rίua2\d!V) h\Sv

where 6! G O, df = 1 (mod 40), and α G iT x such that (7?xα2

? d'V)
= 1. (Here d' is the lower right entry of a matrix used to define
Sφ on the λ-component of F.) Since d! is (in Hecke's terminology)
primary and ηua1 > 0, Hecke's Law of Quadratic Reciprocity (see
[3]) shows that (yua2 \ d') = 1. Thus taking φv e G/H1- such that
φγ(u) = (u\V) for all u G U+, we have

^-Λ/4

f\\BQ\S-p =

and since 7Q
<£ does,

= X2 with (7, V) = 1 and ̂ >^ varies over G/H1- as
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This together with similar arguments give us

LEMMA 4.3. Let Λd, Q be an integral ideals in the principal com-
plex with Q a prime ideal dividing λί. Then we have:
(1) BM maps Mk/2(4λf, Φ) to Mk/2(4λfM, Φ ^ ) ;

(2) TQ maps Mk/2{4λf, Φ) to Mk/2(4λf, Φ ζ ) ;

(3) If ψχ£ is defined modulo 4λίQ~a where a = oτd.Q4Λf = 1 ;

^ maps Mk/2(4λί^)

We now examine the effect of the operators TQ and BQ on the
Fourier coefficients of F e Mk/2(4J\f,fy) in the case that Q is an
ideal in the principal complex. Writing f\(r) ='Σζ€χ2 αλ(C)e(2C r)
where F = (... , f\,...) and taking η and 7 ^> 0 as in the definition
of WQ, we see that the 77-component of F \ BQ{T) is

Thus for ξ > 0 and M = ξlχ2 C O,

Ά(QM,a;F\BQ)

Σ

and replacing υ by uυ,

^ 'a{^vu)φ{^fu)a\ (ζv).
: U2]2

 UtV

For fixed υ,

^^(ξyv^φ^u) = a(ξυ) Ύ^aφ{^u) = [U+ : K2] a(ξv)
φ,u φ,u
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since Σu θίφ{Ίu) — aΦ(l) Σu &φ{v) — 0 unless aφ = 1. Thus

Now suppose that Q is a prime ideal in the principal complex such
that Q divides λί. Then taking / ) > 0 and μ as in the definition of
TQ, we see that the μ-component of F\TQ(T) is

(where β runs over Tβ

2d ι/QIμ

2d ι)

• v ΣΣ

Σ ^ M C H e (2Cr)

Thus for M = ξl~2, ξ > 0,

Σ Σ

which replacing υ by vu"1 becomes

Σ Σ a(ξpυ)φa(pu)ax(ξpυ).
?J2]2

• u J u,

Since X)u φa(u) = 0 except when 0α = 1, we get

a ( M , a ; F \ T Q ) = [ λ )

ί 6 4 • U J
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Define Sfc/2(4Ar, Φ) to be the subspace of Mkβi^N, Φ) consisting
of cusp forms and Sφ(4Λf, Φ) the subspace of 5fc/2(4Λ/", Φ) spanned
by forms of lower levels (i.e. forms of some level 4ΛΛ where λί' D
λί) and shifts (via BQ) of such forms. With the Petersson inner
product on SA;/2(4Λ/*, Φ) defined as in formula (3.3) of [15], we set
5^"/2(4JV, Φ) equal to the orthogonal complement of Sζ,2(4λί, Φ).
Now arguments identical to those used in the case where K — Q
allow us to extend Propositions 3.1-3.7 and Theorem 3.8 to the case
where K is any totally real number field. Thus we get

THEOREM 4.4. Suppose FUF2 e S^2(4λί^)and suppose that
(1) for almost all prime ideals V \ Aλί, F\ \ Tφ2 = \φFχ and

F2\TV2 = XVF2; and

(2) for almost all squarefree integral ideals λΛ, a(Λ/ί,0;i7\) =
b{M,φ]F2)forallφeG/H±.

Then F1 = F2.
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