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CONDITIONAL WIENER INTEGRALS II

CHULL PARK AND DAVID SKOUG

In this paper we establish various results involving con-
ditional Wiener integrals, E(F\X), for very general con-
ditioning functions X. Most related results in the liter-
ature, including the case when the conditioning function
X is vector-valued, then follow as corollaries of this more
general theory. A simple formula is given for converting
these generalized conditional Wiener integrals into ordi-
nary Wiener integrals and then this formula is used to
evaluate E(F\X) for various classes of functionals F. Fi-
nally these results are used to obtain a generalized condi-
tional form of the Cameron-Martin translation theorem.

1. Introduct ion. Let (C[0,T],.F\m ι ι,) denote Wiener space,
where C[0, T] is the space of all continuous functions x on [0, T]
vanishing at the origin. Let F(x) be a Wiener integrable func-
tion on C[0,T] (i.e., JE7[|F(X)|] < oo) and let X(x) be a Wiener
measurable function on C[0,T]. In [13], Yeh introduced the con-
cept of conditional Wiener integrals. He defined the conditional
Wiener integral of F given X as a function on the value space of
X and derived a Fourier transform inversion formula for comput-
ing conditional Wiener integrals. Using this formula for the case
X{x) = x(T), Yeh [13, 14] obtained some very useful results includ-
ing a Kac-Feynman integral equation and a conditional Cameron-
Martin translation theorem.

In [4], for certain functions F, Chang and Chang, using Yeh's
inversion formula, evaluated the conditional Wiener integral of F
given X(x) = (x(h),... , x(tn)) where 0 < tλ < t2 < . . . < tn = T.
In [8], the current authors obtained a very simple formula for the
conditional Wiener integral of F given X(x) = (x(tι),... ,x{tn)).
In particular we expressed the conditional Wiener integral directly
in terms of an ordinary (i.e., nonconditional) Wiener integral. Using
this formula it was relatively simple to generalize the Kac-Feynman
formula and to obtain a conditional Cameron-Martin translation
theorem involving vector-valued conditioning functions.
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In this paper we consider much more general conditioning func-
tions. In particular they need not depend upon the values of x at
only finitely many points in (0, Γ], A major thrust of this paper is
to develop a useful formula to convert these generalized conditional
Wiener integrals into ordinary (i.e., nonconditional) Wiener inte-
grals and then to obtain the corresponding Cameron-Martin trans-
lation theorem for these generalized conditional Wiener integrals.
We also use this simple formula to compute the generalized condi-
tional Wiener integral for various functions F(x) on C[0,T]. Most
of the results in [4, 8, 13, and 14] then follow as special cases of
the results obtained in this paper.

2. Preliminaries and definitions. Let % be an infinite dimen-
sional subspace of L2[0, T] with a complete orthonormal basis {o>j}.
Then the corresponding stochastic integrals

(2.1) jj(x) = ί ajiήdxit), j = 1, 2,...
J U

form a set of independent standart Gaussian variables on C[0, T]
with

(2.2) E[x(t)Ίj(x)} = Jaj(s)ds = βj(t).

For each n G N let Ήn be the subspace of Ή spanned by
{αi,. . . , α n }, and let Xn : C[0, Γ] -> Rn and X^ : C[0, T] -+ Rn be
defined by

(2.3)Xn(x) = (7i(*),.-. ,7n(*)), *«>(*) = (7i(*

If Bn denotes the σ-algebra of Borel sets in K", then a set of the
type

I = {xe C[0,T} : Xn(x) eB} = X-\B), B e Bn

is called a quasi-Wiener interval (or a Borel cylinder). It is well
known that

(2.4)

where

(2.5) K
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Let Tn be the σ-algebra formed by the sets {X~l(B) : B e Bn}, and
let T be the σ-algebra generated by Ό^xJ-n. Then, by the definition
of conditional expectations (see Doob [5], Tucker [10] and Yeh [12])
for each F G Lι(C[0,T],mw),

(2.6)

μ(B) = ί F{x)mw{dx) = ( E{F\Fn)mw{dx)
JXnl(B) JXΰl{B)

= JBE(F(x)\Xn(x)=ξ)PXn(d£)

= ί E(F(x)\Ίj(x) = (,-, j = 1,... ,n)PXu(dξ), B e Bn,
JB

where PXn(B) = mw{X~ι{B)), znά E(F(x)\Xn(x) = | ) is a Le-
besgue measurable function for ξ which is unique up to null sets in
Rn.

Since {Tn} is an increasing sequence of σ-algebras of Weiner mea-
surable sets, for F G Li(C[0,Γ],mω), {i?(F|JFn)} is a martingale
sequence. Thus, E\E(F\jFn)\ < E\F\ for every n, and so by the
martingale convergence theorem, lim E(F\JΓ

n) = ^(Fl^7) almost
surely and for each A G U ^ ^ n ,

(2.7) / ^ ( F ^ l ^ m ^ ί d a ; ) - lim / E(F(x)\Tn)mw(dx).
J A J A

From this and (2.6), it follows that for every B € U™=1B
n,

(2.8) / E(F(x)\Ίj(x)=ξJ, j = l,2,...)PXθΰ(dξ)

= \imJB E(F(x)\Ίj(x) = ξj, j = 1,... , n)PXn(dξ),

where

(2.9) PXn(dξ) = f [ {(2τr)-i
l

In (2.8) we used the convention that if B <E # n , then B G
by identifying B and £ x Rk in #"+* for A; = 1,2,.... Thus if
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B e U™=lB
n, then there exists N e N such that B e Bn for all

n> N, and hence by the martingale property

(2.10) / E{F{x)\Ίj{x) = £ , j = 1, 2, • )PXoβ(dj)

= / E(F(rE)| 7 j (a;) = &, j = 1,... , n)PXn(dξ), for all n > N,

from which (2.8) follows.
In the next section we develop quite simple formulas for con-

verting the generalized conditional Wiener integrals of the types
E(F(x)\Xn(x) = ξ) = E(F(x)\Ίj(x) = & j = l , . . . , n ) a n d
E(F(x)\jj(x) = ξj,j = 1,2,...) into ordinary Weiner integrals
which can often be computed explicitly. It then turns out that
all the conditional Weiner integrals that occur in [4, 8, 13, and 14]
are special cases of conditional expectations given in this paper.

3. Useful formulas for conditional Wiener integrals. Let
Ή, {CXJ}, Ήn and {jj(x)} be as in Section 2. Define projection maps
V and Vn from L2[0,T] into % and Hn, respectively, by

oo

(3.1)

3=1

For x e C[0,T] and ξ = (ξι,ζ2, • •), let

fT " ft

(3.2) xn(t)= VnIm{s)dx{s) = ΣΊj(x) a3{s)ds,
JO A—γ Jθ

where /p^] is the indicator function of the interval [0, ί]. Similarly,
define

(3.3) ^ ( t ) = / VI[0,t](s)dx(s) = Σ
JO -̂
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We note here that since {^(x)} is a sequence of i.i.d. standard

Gaussian random variables, the series Xoo(t) converges ra^-a.e. x(see

Shepp [9, p.324]). Since £00(t) is the evaluation of the random vari-

able Xoo(ί) for ηά{x) = ξj} j = 1,2,..., £»(ί) converges PXoo - a.e.

i
Our first theorem plays a key role throughout this paper.

THEOREM 1. // {x(t), 0 < t < T} is the standart Wiener pro-
cess, then the processes {x(t) — £oo(ί)5 0 < t < T} and Ύj(x)
are (stochastically) independent for j = 1,2,.... Also, {x(t) —
Xn{t)i 0 < t < T} and 7j(x) are independent for j = 1,... , n.

Proof For each j , using (2.2), (3.1) and (3.2)

ft 00 f t

E[Ίj(x){x(t) - Xooit)}] = / oLjtfds - Σδn / aj{s)ds = 0.
JO -j «/0

Since both jj(x) and x(t) — Xoo(t) are Gaussian and uncorrelated,
it follows that they are independent. The second claim follows in
similar manner. D

COROLLARY 1. The processes {x(t) - Xoo(t), 0 < t < T} and
{xoo(ί), 0 < t < T} are independent, and so are {x(t) — xn(t), 0 <
t < T} and {xn(t), 0<t<T}.

The following theorem is one of our main results.

THEOREM 2. Let F e Zq(C[0,T], mw). Then

(3.4)

E[F(X)\ΎJ(X) = ξj, j = 1,2,...] = E[F(x - Xoo + ξ^)], and

E[F(x)\-γj(x)=ξj, j = 1,... ,n] = E[F(x - xn + ξn)}.

Proof. Since x — Xoo and x^ are independent processes, and Ίj{x)
and x — Zoo are independent by Theorem 1, we may write

E[F(x)\-ϊj(x)=ξj, i = l,2,...]

= E[F((x - Xoo) + Xoo)\7j(x) = ξj, i = 1,2,...]
= Ey{Ex[F((y - yoo) + XO0)\ΊJ(X) = ξjy j = 1,2,...]},
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where y is a standart Wiener process independent of x. Thus, we
have

E [ F ( x ) \ Ί j ( x ) = ξ j , j = l , 2 , . . . }

= Ey{F{{y - yoo) + U)} = E[F(x -Xoo + £«,)],

as Xoo = ôo under the condition Jj = ζj, j = 1,2, The second
formula of (3.4) follows by the same reasoning. D

COROLLARY 2. Let F e Zq(C[0,T], mw). IfU = L2[0,T], then

E[F(x)\Ίj(x)=ξj,j = l,2,...) = F(ξ0O).

Proof. This follows from (3.4) by the fact that if U = L2[0,T],
then x(t) = So I[o,t](s)ds(s) = Σ£i(αjι-ί[o,t])7.j(aO = χoo(t) for t ^ -
a.e. x. D

COROLLARY 3. Let F e Li(C[0, Γ], mw). Then for every B e Bn,

i B F(x)mw(dx) = jB E[F(x -xn + ξn)PXn

The above corollary is a simple consequence of the second formula
in (3.4). In addition Theorem 4 on page 114 of [2] is a special case
of Corollary 3 above with B = Rn.

REMARKS.

(i) For each partition r Ξ r n = { ί l r . . , tn} of [0, T] with 0 = ί0 <
ίi < . . . < tn = Γ, let Xτ : C[0,T] -> E n be defined by X r (χ) =
(x(tι),... ,x(tn)). In [8], the current authors considered vector-
valued conditional Wiener integrals of the type E(F(x)\Xτ(x) = ξ)
for F G Z/i(C[0,T],mlί;). We note that these can be rewritten in
the form

(3.5) E(F(x)\Xτ(x) = ξ) =

= E(F(x)\x{tj) - x{t^x) = ξj - &•_!, j = 1,... ,n)

V
where ô = ô = 0 and

(3.6) ^(ί) = Ito-utAMlφi-tj-x, i = 1,... , n.
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Since {a\(t),... , an(t)} is obviously an orthonormal set of functions

in I/2 [0,T], the vector-valued conditional Wiener integral

E(F(x)\Xτ(x) = ξ) is a special case of the general conditional

Wiener integrals of the type E(F(x)\Xn(x) = £) considered in

this paper. Thus the conditional Wiener integrals that occur in

[4], [8], [13] and [14] are all special cases of those of the type

E(F(x)\Xn(x) = <£) for appropriate n and α 1 ? . . . , an.

It is also interesting to note that for each x G C[0, T] the polyg-

onal function [x] defined by

tj-ι < t < tj, j = 1,... ,n

has another representation, namely

xn(*), 0 < ί < T

where the α/s are given by (3.6) and xn{t) is given by (3.2). The
formula in [8], p.385, corresponding to (3.4) above is

E(F(x)\XT(x) = ξ) = E[F(x - [x] +

where for ξ G Mn, [^](ί) is the polygonal function

where the ^ ' s are given by (3.6) and ξn(t) is given by (3.2).
(ii) Thanks to the referee's suggestions, this paper has gone

through a number of improvements. The expressions given by (3.2)
and (3.3) were suggested by the referee. This in turn, strengthened
Theorems 1 and 2. Another suggestion made by the referee was the
possibility of generalizing Theorem 2 to other Gaussian processes.
This question is perhaps best handled by using the representation
of a Gaussian process using Wiener processes; see [7] and example
3 below.
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We close this section with some examples which illustrate that
formulas (3.4) are indeed very useful and easy to apply. In partic-
ular, the third example deals with the Ornstein-Uhlenbeck process
to show that our formulas can be applied to other useful Gaussian
processes.

fτ
E X A M P L E 1. For x e C[0,T] let F(x) = / x2(t)dt. Then using

Jo
(3.4) we obtain

E\j\2(t)dt\Xa(x)=ξ]

- Xn{t)f - Xn(t)j\ dt.

Since x — xn and xn are independent by Corollary 1, E[xn(i)(x(t) —
xn(t))] = 0, and using (2.2) and the fact that E[x(s)x(t)] = min{s, ί},
we obtain

E\ x2(t)dt\Xn(x)=ξ
3=1

In particular, if n = 1 and α(s) = 1/y/T, we see that

Γ / τ
E ξ = E

-jf

a;2(ί)dί|ar(T) = ̂

1* ?
— + —

τ 2 T j " "
which agrees with the results in [4], [8] and [13].

EXAMPLE 2. For x e C[0,T] let F(x) = exp {/0

Γa;(ΐ)dί}. Then

^ίexp |^ T χ(t ) C ?t | |X r ι ( a : )= | |

= exp

expjyo (x(t) - xn(t) + ξn(t))dt

E exp < / (x(t) — xn(t))dt
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In particular, if we choose the complete orthonormal cosine sequence
aj(t) = ^/2/Tcos[(j - l/2)τrί/T], j = 1,2,..., on [0,T], then it
is well known (see Shepp [9], p.325) that the corresponding xn(t)

converges to x{t) uniformly in t with probability one, and for each
,Γ],

°? rT ( rt rT ) rT
I J / W <*j(s)ds / aj(s)du(s)\dt= / u(t)dt.
~Tχ •'o [Jo Jo J Jo

Thus

lim E exp < / x(t)dt \ \Xn{x) = Xn(u) = exp \ ί u(t)dt
Jo

as expected. Since the orthonormal cosine sequence given above is
complete on [0,Γ], Corollary 2 can be applied to get

E exp U\{t)dt\ \ΊJ(X) = ΊAU), i = 1,2,...

U T Λ

u(t)dt >
J

for a.e. u E C[0,T].
EXAMPLE 3. Consider the Ornstein-Uhlenbeck process y(t) with

mean zero and covariance function R(s,t) = σ2 exp{— β\t—s\} where
β > 0. If we take σ — β = 1 for convenience, then y(t) can be
expressed in terms of the standart Wiener process x(t) (see p.414
of [7]),
(3.7) y{t)^e~tx(e2t), 0 < t < T.

Suppose F(y) is an integrable function of y. Let r = {0 = ίo5 ίi 5 ?
ίn = T} be a partition of [0,T]. Then, the conditional expectation

E[F(y)\y(tj)=ξj, j = 0 , 1 , . . . ,n]

can be expressed as a non-conditional expectation by utilizing (3.7).
Since e*y(ί) = x(e2t) and J:( ) has independent increments, we write

E[F(y)\y(tj)=ξj, j = 0,1,...,n]
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where y(t-i) = £_i = 0.
Define (yn)(t) by

(yn)(t) = e-< ^->

for tj-ι <t<tj, j = 1, . . . , n.

Similarly, define (fn)(<) by

D 2 ί
e2

for ίj_χ < t < tj, j — 1,... , n.

Then, {yn){tj) = ί/(*j) and (ξn)(tj) — ζj at each ί̂  € r. Further-
more, (?/n) and y — (yn) are independent processes as one can easily
check using the covariance function of y. Thus, we conclude that

E[F{y)\y{ti) = & j = 0 , 1 , . . . ,n] = E[F(y - (yn) + (&))].

4. Conditional expectation of functions involving stochas-
tic integrals. Using the same notation as in section 3 above, for
/ιGL 2[0,Γ]let

n

h(n)(t) =Vnh(t) =

(4.1)

Then, we have the following:

LEMMA 1. Lethe L2[0,T}. Then

(4.2) ίT h(t)h(n)(t)dt = ίTh2

{n)(t)dt = \\h(n)\\2 = it(h,aj)2,

JO JO y _ ^

and

(4.3) \\h-h{n)\\2 = \\h\\2-\\h{n)\\2.

Obviously, the above formulas hold when n = oo, and \\h —
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Our next theorem gives an interesting relationship involving /ι,
/i(n), x and xn that is very useful in computing conditional and
ordinary expectations of functions involving the stochastic integral

THEOREM 3. Let h G L2[0, T]. Then for each x G C[0, T]

(4.4) ίTh{t)dxn(t) = [Th{n)(t)dx(t) = ίTh{n)(t)dxn(t)

The formula also holds for n — oc if we consider \
Jo

Proof Using 3.1, 3.2, 4.1 and the fact that the α/s are orthonor-
mal, it is quite easy to show that for each x G C[0,T], each of the
stochastic integrals in 4.4 equals the expression

Σ,{h,aj) Γa3{t)dx{t).
7 — 1

D

COROLLARY 4. Lei /ι e L2[0,T}. Then

(4.5) exp|-jΓΓΛ(*)ΛrΛ(*)|j = e x p { | | | Λ ( n ) | |
2 } .

Proof By 4.4 and a well known Wiener integration formula

E exp< - / h(t)dxn(t)
I Jo

expl-J^ h{n)(t)dx(t)

-— > du

•
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THEOREM 4. Let h e L2[0,T] and assume that

F(x) = f Γ h(t)dx(ή]

is in L1(C[Q,T],τnw).
a). If h is a linear combination of {aι,... ,α: n }, say h{t) =

C\θiχ{t) + . . . + cnan(t) on [0, T], then

(4.6) E f £h(t)dx(t)] \Xn{x) = e] = /(ci6 + • + cnξn).

b). If {h, α i , . . . , an} is a linearly independent set of functions in

L2[0,T], then

(4.7) E / U h(t)dx(t)\ \Xn(x) =

u —

! exp
2| |Λ-Λ ( n )

Proo/. a).In this case Λ(n)(*) = Λ(t) and so by 3.4, 4.4 and 3.2,

E\f £h(t)dx(t)]\Xn(x)=ii

= E

= E

J\(t)d{x(t) - xn(t) + Ut)}\\

fT{h{t) - h{n)(t))dx(t) + Fh(t)dξn(t)\
J 0 J 0 J
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b). In this case we use 3.4, 4.4, and a well known Wiener inte-
gration formula to obtain

E f

f

f

/ h(t)d{x(t) - xn(t) + ξn(t)}
Jo

fT(h(t) - h{n)(t))dx(t) + fTh(t)dξn(t)}}
JO JO I I

= (27Γ)"1/2 / / ||Λ - h{n)\\u + / h(t)dξn(t) exp{-u2/2}du.
J-oo \ Jθ J

In Theorem 4 above the two extreme cases occur when h = ctj
for some j or when h is orthogonal to all the α/s.

C O R O L L A R Y 5. Let h,F and f be as in Theorem 4. Then

Γ Γ rT 1 J
(4.8) E\f

while if {h, αχ ? . . . , an} is an orthogonal set of functions in Z f̂O, T],

(4.9)

E f £h(t)dx(t)] \Xn(x) = ^ = h(t)dx(t)

Proceeding as above we obtain the following generalization of
formula 4.9.

COROLLARY 6. If {φι,... , φm, &u ? an) is an orthonormal set
of functions in L2[0,Γ] and if

F{x) = f U φι(t)dx(t),... ,£ φm(t)dx(t)
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is in Zq(C[O, T],mw), then

E (f f [T φi(t)dx(t),..., ίTφm(t)dx(t)} \Xn(x) = ξ

= E [/ I [T φ1 (t)dx(t),..., [T φm(t)dx(t)

m u2r [ u
J f(uu ... ,um) exp < - Σ ~f

[T

Our next corollary follows from the observations that / (h(t)

h{n)(t))dξn(t) = 0, and (h - V))(n)(*) = 0.

COROLLARY 7. Let h,F and f be as in Theorem 4- Then

ε\f\ h(t)d{x(t) - xn(t)} \Xn(x)

rp

= E

f

f

ίΊ\h(t) - h(n)(t)}dx(t)
«/0

£{h{t)-h{n)(t)}dx(t)

Many interesting examples of conditional Wiener integrals can be
obtained as special cases of the following theorem.

THEOREM 5. Let g e L2[0,T}. Then

(4.10)

E exp I / g(s)x(s)ds \ \Xn(x) = ξ

ds -

Proof. Using integration by parts it follows that
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ΓΓΛ ΓfΛ Γ" ΓΓΊ ""

/ g(s)x(s)ds = ί \ί g(t)dt
θ Jθ \_Js

dx(s)

and that

/ / g(t)dt
Jθ \Js

a^ds = fg(s)βj{s)ds =
Jθ

Hence using (3.4) we obtain

E exp j jίΓg(s)x{s)ds\ \Xn{x) = ξ

= E exp

— exp

/ g(t)dt
J s

d(x(s) - xn(s) + ξn(s))

T Γ / Γ

E exp

g{t)dt

Γ g(t)dt
J s

n T Γ

-Σ^) /
7 = 1 J θ L 7 5

dx(s)

o>j(s)ds

exp ΓJs
J=l

dx(s)

3=1 3=1

from which 4.10 follows. D

COROLLARY 8. Lei g(s) = 1 and let the aj's be given by 3.6.
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Then

E\expl£x{s)ds\\Xn(x)=ξ

£

8J=i

COROLLARY 9. Let n = 1 and aι(s) = 1/Λ/T

g(s)x(s)ds\\x(T)=ξ]

f fτ I fτ Γ fτ
i / tg{t)dt+- \ g(t)dt
1 Jθ Δ JO \Js

E ίexp U\x(s)ds\ \x(T) = ξ\= exp ί ^ - + M

[exp •]-x(T) = ξ] = exp lψ + ^

5. Translation of generalized conditional Wiener integrals.
The Cameron-Martin Theorem [3], [11] states that if xo(t) =

rt
/ /ι(5)c?5 for all t € [0, T] with Λ G L2[0, Γ], and if Tx is the trans-

formation from C[0, Γ] into itself defined by

then for any Wiener integrable function F on C[0, T] and any Wiener
measurable set Γ

(5.1) / F(y)mw(dy) = / F(x
^Γ JTjT (Γ)

where

(5.2) J(j;o,α;) = exp J - - | | / ι | | 2 - / h(t)dx(t) \ .
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In particular, if Γ = C[0, T], then 5.1 becomes:

(5.3) E[F(y)] = E[F{x + xo)J(xo, x)]

In [14], Yeh gives a conditional version of 5.3 which states that

E[F(y)\y(T) = ξ} = E ^F(y)\ £dy(t) = f

= E[F(x+xo)J(xo, x)\x(T) = ξ-xo(T)} exp j - ^ | p + ^ }

Our next theorem is a generalized conditional version of 5.3.

rt
THEOREM 6. Let h e L2[0,Γ] and let xo(t) = / h(s)ds for

Jo
t e [0, T]. Let F e Zq(C[0, T], mw) and let the ctj 's be as in Section
2. Then

(5.4) E[F(y)\Xa(y) = ξ]

= E[F(x + xo)J{xo, x)\Xn{x

where J(xo? x) is given by 5.2 and h^(t) is given by 4.1. ΓΛe
holds for n = oo as well.

Proof. By 3.4 we see that

(5.5) E[F(y)\Xn(y) = ξ\ = E[F(y -yn + &)].

Using 5.3 and noting that (x + xo)n = xn + (xo)n? we have

(5.6)

E[F(y -yn + ξn)} = E[F{x + xQ - xn - (xo)n + ξn)J(x0, x)].
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Next we rewrite J(XQ,X) in the form

(5.7)

exp I - £ h(t)d(x(t) - xn(t) + ξn(t) -

•expW h(t)d(ξn(t)-(xo)n(t))\.

Using 4.1 we see that

(5.8) ίT h(t)d(xo)n(t) = ίTh}n)(t)dt = \\h{n)\\2.

Since xn(t) and x(t) — xn(t) are independent processes on [0,T]

by Corollary 1, exp < — / h{t)dxn(t) > and

F{x + xo-xn- (xo)n + ξn)

• exp | - £ h(t)d(x{t) - xn(t) - Mn(t))

are also independent. Thus using 5.7, 4.5 and 5.8,

(5.9)

E[F(x + xo-xn- (xo)n + ξn)J(x0, x)]

= E F{x n + ξn)

expί-£h(t)d(x(t)-xn(t)+ξn(t) -

h(t)dξn(t)•exp - -
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Therefore, by using 5.9 and 3.4 we obtain

E[F(x + xo-xn- (xo)n + ξn)J(xo,

{ + [ h(t)dξn(t) - \\\h(n

= E {[F(x + x0) J(x0, x)] \Xa{x

This together with 5.6 and 5.5 yields 5.4. The case n = oo follows
by the martingle convergence theorem. D

REMARK. By choosing the a/s as in 3.6, we see that Theorem 4
on page 391 of [8] is a Corollary of Theorem 6 above.

Acknowledgement. We dedicate this paper to the memory of
Professor Robert H. Cameron (1908 - 1989).
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