CONDITIONAL WIENER INTEGRALS II

CHULL PARK AND DAVID SKOUG

In this paper we establish various results involving conditional Wiener integrals, E(F|X), for very general conditioning functions X. Most related results in the literature, including the case when the conditioning function X is vector-valued, then follow as corollaries of this more general theory. A simple formula is given for converting these generalized conditional Wiener integrals into ordinary Wiener integrals and then this formula is used to evaluate E(F|X) for various classes of functionals F. Finally these results are used to obtain a generalized conditional form of the Cameron-Martin translation theorem.

1. Introduction. Let $(C[0,T], \mathcal{F}^*, m_w)$ denote Wiener space, where C[0,T] is the space of all continuous functions x on [0,T] vanishing at the origin. Let F(x) be a Wiener integrable function on C[0,T] (i.e., $E[|F(x)|] < \infty$) and let X(x) be a Wiener measurable function on C[0,T]. In [13], Yeh introduced the concept of conditional Wiener integrals. He defined the conditional Wiener integral of F given X as a function on the value space of X and derived a Fourier transform inversion formula for computing conditional Wiener integrals. Using this formula for the case X(x) = x(T), Yeh [13, 14] obtained some very useful results including a Kac-Feynman integral equation and a conditional Cameron-Martin translation theorem.

In [4], for certain functions F, Chang and Chang, using Yeh's inversion formula, evaluated the conditional Wiener integral of F given $X(x) = (x(t_1), \ldots, x(t_n))$ where $0 < t_1 < t_2 < \ldots < t_n = T$. In [8], the current authors obtained a very simple formula for the conditional Wiener integral of F given $X(x) = (x(t_1), \ldots, x(t_n))$. In particular we expressed the conditional Wiener integral directly in terms of an ordinary (i.e., nonconditional) Wiener integral. Using this formula it was relatively simple to generalize the Kac-Feynman formula and to obtain a conditional Cameron-Martin translation theorem involving vector-valued conditioning functions.

In this paper we consider much more general conditioning functions. In particular they need not depend upon the values of x at only finitely many points in (0,T]. A major thrust of this paper is to develop a useful formula to convert these generalized conditional Wiener integrals into ordinary (i.e., nonconditional) Wiener integrals and then to obtain the corresponding Cameron-Martin translation theorem for these generalized conditional Wiener integrals. We also use this simple formula to compute the generalized conditional Wiener integral for various functions F(x) on C[0,T]. Most of the results in [4, 8, 13, and [4, 8, 13] then follow as special cases of the results obtained in this paper.

2. Preliminaries and definitions. Let \mathcal{H} be an infinite dimensional subspace of $L_2[0,T]$ with a complete orthonormal basis $\{\alpha_j\}$. Then the corresponding stochastic integrals

(2.1)
$$\gamma_j(x) = \int_0^T \alpha_j(t) dx(t), \ j = 1, 2, \dots$$

form a set of independent standart Gaussian variables on ${\cal C}[0,T]$ with

(2.2)
$$E[x(t)\gamma_j(x)] = \int_0^t \alpha_j(s)ds \equiv \beta_j(t).$$

For each $n \in \mathbb{N}$ let \mathcal{H}_n be the subspace of \mathcal{H} spanned by $\{\alpha_1, \ldots, \alpha_n\}$, and let $X_n : C[0,T] \to \mathbb{R}^n$ and $X_\infty : C[0,T] \to \mathbb{R}^n$ be defined by

$$(2.3) X_n(x) = (\gamma_1(x), \dots, \gamma_n(x)), X_{\infty}(x) = (\gamma_1(x), \gamma_2(x), \dots).$$

If \mathcal{B}^n denotes the σ -algebra of Borel sets in \mathbb{R}^n , then a set of the type

$$I = \{x \in C[0,T] : X_n(x) \in B\} \equiv X_n^{-1}(B), B \in \mathcal{B}^n$$

is called a quasi-Wiener interval (or a Borel cylinder). It is well known that

(2.4)
$$m_w(I) = \int_B K_n(\vec{\xi}) d\vec{\xi},$$

where

(2.5)
$$K_n(\vec{\xi}) = (2\pi)^{-\frac{n}{2}} \exp\left\{-\frac{1}{2} \sum_{j=1}^n \xi_j^2\right\}.$$

Let \mathcal{F}_n be the σ -algebra formed by the sets $\{X_n^{-1}(B) : B \in \mathcal{B}^n\}$, and let \mathcal{F} be the σ -algebra generated by $\bigcup_{n=1}^{\infty} \mathcal{F}_n$. Then, by the definition of conditional expectations (see Doob [5], Tucker [10] and Yeh [12]) for each $F \in L_1(C[0,T], m_w)$,

(2.6)

$$\mu(B) \equiv \int_{X_n^{-1}(B)} F(x) m_w(dx) = \int_{X_n^{-1}(B)} E(F|\mathcal{F}_n) m_w(dx)$$

$$= \int_B E(F(x)|X_n(x) = \vec{\xi}) P_{X_n}(d\vec{\xi})$$

$$= \int_B E(F(x)|\gamma_j(x) = \xi_j, \ j = 1, \dots, n) P_{X_n}(d\vec{\xi}), \ B \in \mathcal{B}^n,$$

where $P_{X_n}(B) = m_w(X_n^{-1}(B))$, and $E(F(x)|X_n(x) = \vec{\xi})$ is a Lebesgue measurable function for $\vec{\xi}$ which is unique up to null sets in \mathbb{R}^n .

Since $\{\mathcal{F}_n\}$ is an increasing sequence of σ -algebras of Weiner measurable sets, for $F \in L_1(C[0,T],m_w)$, $\{E(F|\mathcal{F}_n)\}$ is a martingale sequence. Thus, $E|E(F|\mathcal{F}_n)| \leq E|F|$ for every n, and so by the martingale convergence theorem, $\lim E(F|\mathcal{F}_n) = E(F|\mathcal{F})$ almost surely and for each $A \in \bigcup_{n=1}^{\infty} \mathcal{F}_n$,

(2.7)
$$\int_A E(F(x)|\mathcal{F}) m_w(dx) = \lim \int_A E(F(x)|\mathcal{F}_n) m_w(dx).$$

From this and (2.6), it follows that for every $B \in \bigcup_{n=1}^{\infty} \mathcal{B}^n$,

(2.8)
$$\int_{B} E(F(x)|\gamma_{j}(x) = \xi_{j}, \ j = 1, 2, \dots) P_{X_{\infty}}(d\vec{\xi})$$
$$= \lim_{R} \int_{B} E(F(x)|\gamma_{j}(x) = \xi_{j}, \ j = 1, \dots, n) P_{X_{n}}(d\vec{\xi}),$$

where

(2.9)
$$P_{X_n}(d\vec{\xi}) = \prod_{j=1}^n \left\{ (2\pi)^{-\frac{1}{2}} \exp(-\xi_j^2/2) d\xi_j \right\},$$
$$P_{X_\infty}(d\vec{\xi}) = \prod_{j=1}^\infty \left\{ (2\pi)^{-\frac{1}{2}} \exp(-\xi_j^2/2) d\xi_j \right\}.$$

In (2.8) we used the convention that if $B \in \mathcal{B}^n$, then $B \in \mathcal{B}^{n+k}$ by identifying B and $B \times \mathbb{R}^k$ in \mathcal{B}^{n+k} for $k = 1, 2, \ldots$ Thus if

 $B \in \bigcup_{n=1}^{\infty} \mathcal{B}^n$, then there exists $N \in \mathbb{N}$ such that $B \in \mathcal{B}^n$ for all $n \geq N$, and hence by the martingale property

(2.10)
$$\int_{B} E(F(x)|\gamma_{j}(x) = \xi_{j}, \ j = 1, 2, \dots) P_{X_{\infty}}(d\vec{\xi})$$
$$= \int_{B} E(F(x)|\gamma_{j}(x) = \xi_{j}, \ j = 1, \dots, n) P_{X_{n}}(d\vec{\xi}), \text{ for all } n \geq N,$$

from which (2.8) follows.

In the next section we develop quite simple formulas for converting the generalized conditional Wiener integrals of the types $E(F(x)|X_n(x)=\vec{\xi})=E(F(x)|\gamma_j(x)=\xi_j,\ j=1,\ldots,n)$ and $E(F(x)|\gamma_j(x)=\xi_j,j=1,2,\ldots)$ into ordinary Weiner integrals which can often be computed explicitly. It then turns out that all the conditional Weiner integrals that occur in [4, 8, 13, and 14] are special cases of conditional expectations given in this paper.

3. Useful formulas for conditional Wiener integrals. Let \mathcal{H} , $\{\alpha_j\}$, \mathcal{H}_n and $\{\gamma_j(x)\}$ be as in Section 2. Define projection maps \mathcal{P} and \mathcal{P}_n from $L_2[0,T]$ into \mathcal{H} and \mathcal{H}_n , respectively, by

(3.1)
$$\mathcal{P}h(t) = \sum_{j=1}^{\infty} (h, \alpha_j) \alpha_j(t),$$
$$\mathcal{P}_n h(t) = \sum_{j=1}^{n} (h, \alpha_j) \alpha_j(t).$$

For $x \in C[0,T]$ and $\vec{\xi} = (\xi_1, \xi_2, ...)$, let

(3.2)
$$x_n(t) = \int_0^T \mathcal{P}_n I_{[0,t]}(s) dx(s) = \sum_{j=1}^n \gamma_j(x) \int_0^t \alpha_j(s) ds,$$

$$\vec{\xi_n}(t) = \sum_{j=1}^n \xi_j(\alpha_j, I_{[0,t]}),$$

where $I_{[0,t]}$ is the indicator function of the interval [0,t]. Similarly, define

(3.3)
$$x_{\infty}(t) = \int_{0}^{T} \mathcal{P}I_{[0,t]}(s)dx(s) = \sum_{j=1}^{\infty} \gamma_{j}(x) \int_{0}^{t} \alpha_{j}(s)ds,$$

$$\vec{\xi}_{\infty}(t) = \sum_{j=1}^{\infty} \xi_{j}(\alpha_{j}, I_{[0,t]}).$$

We note here that since $\{\gamma_j(x)\}$ is a sequence of i.i.d. standard Gaussian random variables, the series $x_{\infty}(t)$ converges m_w -a.e. x(see Shepp [9, p.324]). Since $\vec{\xi}_{\infty}(t)$ is the evaluation of the random variable $x_{\infty}(t)$ for $\gamma_j(x) = \xi_j$, $j = 1, 2, \ldots, \vec{\xi}_{\infty}(t)$ converges $P_{x_{\infty}}$ - a.e. $\vec{\xi}$.

Our first theorem plays a key role throughout this paper.

THEOREM 1. If $\{x(t), 0 \le t \le T\}$ is the standart Wiener process, then the processes $\{x(t) - x_{\infty}(t), 0 \le t \le T\}$ and $\gamma_j(x)$ are (stochastically) independent for $j = 1, 2, \ldots$ Also, $\{x(t) - x_n(t), 0 \le t \le T\}$ and $\gamma_j(x)$ are independent for $j = 1, \ldots, n$.

Proof. For each j, using (2.2), (3.1) and (3.2)

$$E[\gamma_j(x)\{x(t) - x_{\infty}(t)\}] = \int_0^t \alpha_j(s)ds - \sum_{i=1}^{\infty} \delta_{ij} \int_0^t \alpha_j(s)ds = 0.$$

Since both $\gamma_j(x)$ and $x(t) - x_{\infty}(t)$ are Gaussian and uncorrelated, it follows that they are independent. The second claim follows in similar manner.

COROLLARY 1. The processes $\{x(t) - x_{\infty}(t), 0 \leq t \leq T\}$ and $\{x_{\infty}(t), 0 \leq t \leq T\}$ are independent, and so are $\{x(t) - x_n(t), 0 \leq t \leq T\}$ and $\{x_n(t), 0 \leq t \leq T\}$.

The following theorem is one of our main results.

Theorem 2. Let $F \in L_1(C[0,T], m_w)$. Then

(3.4)
$$E[F(x)|\gamma_{j}(x) = \xi_{j}, \ j = 1, 2, \dots] = E[F(x - x_{\infty} + \vec{\xi}_{\infty})], \ and$$

$$E[F(x)|\gamma_{j}(x) = \xi_{j}, \ j = 1, \dots, n] = E[F(x - x_{n} + \vec{\xi}_{n})].$$

Proof. Since $x - x_{\infty}$ and x_{∞} are independent processes, and $\gamma_j(x)$ and $x - x_{\infty}$ are independent by Theorem 1, we may write

$$E[F(x)|\gamma_{j}(x) = \xi_{j}, \ j = 1, 2, \dots]$$

$$= E[F((x - x_{\infty}) + x_{\infty})|\gamma_{j}(x) = \xi_{j}, \ j = 1, 2, \dots]$$

$$= E_{y}\{E_{x}[F((y - y_{\infty}) + x_{\infty})|\gamma_{j}(x) = \xi_{j}, \ j = 1, 2, \dots]\},$$

where y is a standart Wiener process independent of x. Thus, we have

$$E[F(x)|\gamma_j(x) = \xi_j, \ j = 1, 2, \dots]$$

= $E_y\{F((y - y_\infty) + \vec{\xi}_\infty)\} = E[F(x - x_\infty + \vec{\xi}_\infty)],$

as $x_{\infty} = \vec{\xi}_{\infty}$ under the condition $\gamma_j = \xi_j$, $j = 1, 2, \ldots$ The second formula of (3.4) follows by the same reasoning.

COROLLARY 2. Let $F \in L_1(C[0,T], m_w)$. If $\mathcal{H} = L_2[0,T]$, then $E[F(x)|\gamma_j(x) = \xi_j, j = 1, 2, ...] = F(\vec{\xi}_{\infty})$.

Proof. This follows from (3.4) by the fact that if $\mathcal{H} = L_2[0,T]$, then $x(t) = \int_0^T I_{[0,t]}(s) ds(s) = \sum_{j=1}^{\infty} (\alpha_j, I_{[0,t]}) \gamma_j(x) = x_{\infty}(t)$ for m_w - a.e. x.

COROLLARY 3. Let $F \in L_1(C[0,T], m_w)$. Then for every $B \in \mathcal{B}^n$,

$$\int_{X_n^{-1}(B)} F(x) m_w(dx) = \int_B E[F(x - x_n + \vec{\xi}_n) P_{X_n}(d\vec{\xi}).$$

The above corollary is a simple consequence of the second formula in (3.4). In addition Theorem 4 on page 114 of [2] is a special case of Corollary 3 above with $B = \mathbb{R}^n$.

REMARKS.

(i) For each partition $\tau \equiv \tau_n = \{t_1, \ldots, t_n\}$ of [0, T] with $0 = t_0 < t_1 < \ldots < t_n = T$, let $X_\tau : C[0, T] \to \mathbb{R}^n$ be defined by $X_\tau(x) = (x(t_1), \ldots, x(t_n))$. In [8], the current authors considered vector-valued conditional Wiener integrals of the type $E(F(x)|X_\tau(x) = \vec{\xi})$ for $F \in L_1(C[0, T], m_w)$. We note that these can be rewritten in the form

(3.5)
$$E(F(x)|X_{\tau}(x) = \vec{\xi}) = E(F(x)|x(t_{j}) = \xi_{j}, \ j = 1, \dots, n)$$

 $= E(F(x)|x(t_{j}) - x(t_{j-1}) = \xi_{j} - \xi_{j-1}, \ j = 1, \dots, n)$
 $= E\left(F(x)|\int_{0}^{T} \alpha_{j}(t)dx(t) = \frac{\xi_{j} - \xi_{j-1}}{\sqrt{t_{j} - t_{j-1}}}, \ j = 1, \dots, n\right)$

where $\xi_0 = t_0 = 0$ and

(3.6)
$$\alpha_j(t) = I_{[t_{j-1},t_j]}(t)/\sqrt{t_j-t_{j-1}}, \ j=1,\ldots,n.$$

Since $\{\alpha_1(t), \ldots, \alpha_n(t)\}$ is obviously an orthonormal set of functions in $L_2[0,T]$, the vector-valued conditional Wiener integral $E(F(x)|X_{\tau}(x)=\vec{\xi})$ is a special case of the general conditional Wiener integrals of the type $E(F(x)|X_n(x)=\vec{\xi})$ considered in this paper. Thus the conditional Wiener integrals that occur in [4], [8], [13] and [14] are all special cases of those of the type $E(F(x)|X_n(x)=\vec{\xi})$ for appropriate n and α_1,\ldots,α_n .

It is also interesting to note that for each $x \in C[0,T]$ the polygonal function [x] defined by

$$[x](t) = x(t_{j-1}) + \frac{t - t_{j-1}}{t_j - t_{j-1}} (x(t_j) - x(t_{j-1})),$$

$$t_{j-1} \le t \le t_j, \ j = 1, \dots, n$$

has another representation, namely

$$[x](t) = x_n(t), \ 0 \le t \le T$$

where the α_j 's are given by (3.6) and $x_n(t)$ is given by (3.2). The formula in [8], p.385, corresponding to (3.4) above is

$$E(F(x)|X_{\tau}(x) = \vec{\xi}) = E[F(x - [x] + [\vec{\xi}])]$$

where for $\vec{\xi} \in \mathbb{R}^n$, $[\vec{\xi}](t)$ is the polygonal function

$$[\vec{\xi}](t) = \xi_{j-1} + \frac{t - t_{j-1}}{t_j - t_{j-1}} (\xi_j - \xi_{j-1}), \ t_{j-1} \le t \le t_j, \ j = 1, \dots, n$$
$$= \vec{\xi}_n(t)$$

where the α_i 's are given by (3.6) and $\vec{\xi_n}(t)$ is given by (3.2).

(ii) Thanks to the referee's suggestions, this paper has gone through a number of improvements. The expressions given by (3.2) and (3.3) were suggested by the referee. This in turn, strengthened Theorems 1 and 2. Another suggestion made by the referee was the possibility of generalizing Theorem 2 to other Gaussian processes. This question is perhaps best handled by using the representation of a Gaussian process using Wiener processes; see [7] and example 3 below.

We close this section with some examples which illustrate that formulas (3.4) are indeed very useful and easy to apply. In particular, the third example deals with the Ornstein-Uhlenbeck process to show that our formulas can be applied to other useful Gaussian processes.

EXAMPLE 1. For $x \in C[0,T]$ let $F(x) = \int_0^T x^2(t)dt$. Then using (3.4) we obtain

$$E\left[\int_{0}^{T} x^{2}(t)dt | X_{\alpha}(x) = \vec{\xi}\right]$$

$$= E\left[\int_{0}^{T} (x(t) - x_{n}(t) + \vec{\xi}_{n}(t))^{2} dt\right]$$

$$= \int_{0}^{T} E\left[(x(t) - x_{n}(t))^{2} + (\vec{\xi}_{n}(t))^{2} + 2\vec{\xi}_{n}(t)(x(t) - x_{n}(t))\right] dt.$$

Since $x - x_n$ and x_n are independent by Corollary 1, $E[x_n(t)(x(t) - x_n(t))] = 0$, and using (2.2) and the fact that $E[x(s)x(t)] = \min\{s, t\}$, we obtain

$$E\left[\int_0^T x^2(t)dt | X_n(x) = \vec{\xi}\right] = \int_0^T \left\{ t + (\vec{\xi}_n(t))^2 - \sum_{j=1}^n \beta_j^2(t) \right\} dt.$$

In particular, if n = 1 and $\alpha(s) = 1/\sqrt{T}$, we see that

$$E\left[\int_0^T x^2(t)dt | X_1(x) = \xi\right] = E\left[\int_0^T x^2(t)dt | x(T) = \xi\right]$$
$$= \int_0^T \left\{t + \frac{\xi^2 t^2}{T^2} - \frac{t^2}{T}\right\} dt = \frac{T^2}{6} + \frac{\xi^2 T}{3}$$

which agrees with the results in [4], [8] and [13].

EXAMPLE 2. For $x \in C[0,T]$ let $F(x) = \exp\left\{\int_0^T x(t)dt\right\}$. Then

$$E\left[\exp\left\{\int_0^T x(t)dt\right\} | X_n(x) = \vec{\xi}\right]$$

$$= E\left[\exp\left\{\int_0^T (x(t) - x_n(t) + \vec{\xi}_n(t))dt\right\}\right]$$

$$= \exp\left\{\int_0^T \vec{\xi}_n(t)dt\right\} E\left[\exp\left\{\int_0^T (x(t) - x_n(t))dt\right\}\right].$$

In particular, if we choose the complete orthonormal cosine sequence $\alpha_j(t) = \sqrt{2/T}\cos[(j-1/2)\pi t/T], \ j=1,2,\ldots,$ on [0,T], then it is well known (see Shepp [9], p.325) that the corresponding $x_n(t)$ converges to x(t) uniformly in t with probability one, and for each $u \in C[0,T]$,

$$\sum_{j=1}^{\infty} \int_0^T \left\{ \int_0^t \alpha_j(s) ds \int_0^T \alpha_j(s) du(s) \right\} dt = \int_0^T u(t) dt.$$

Thus

$$\lim_{n \to \infty} E\left[\exp\left\{\int_0^T x(t)dt\right\} | X_n(x) = X_n(u)\right] = \exp\left\{\int_0^T u(t)dt\right\}$$

as expected. Since the orthonormal cosine sequence given above is complete on [0, T], Corollary 2 can be applied to get

$$E\left[\exp\left\{\int_0^T x(t)dt\right\} \middle| \gamma_j(x) = \gamma_j(u), \ j = 1, 2, \dots\right]$$
$$= \exp\left\{\int_0^T u(t)dt\right\}$$

for a.e. $u \in C[0,T]$.

EXAMPLE 3. Consider the Ornstein-Uhlenbeck process y(t) with mean zero and covariance function $R(s,t) = \sigma^2 \exp\{-\beta |t-s|\}$ where $\beta > 0$. If we take $\sigma = \beta = 1$ for convenience, then y(t) can be expressed in terms of the standart Wiener process x(t) (see p.414 of [7]),

(3.7)
$$y(t) = e^{-t}x(e^{2t}), \ 0 \le t \le T.$$

Suppose F(y) is an integrable function of y. Let $\tau = \{0 = t_0, t_1, \ldots, t_n = T\}$ be a partition of [0, T]. Then, the conditional expectation

$$E[F(y)|y(t_i) = \xi_i, j = 0, 1, ..., n]$$

can be expressed as a non-conditional expectation by utilizing (3.7). Since $e^t y(t) = x(e^{2t})$ and $x(\cdot)$ has independent increments, we write

$$E[F(y)|y(t_j) = \xi_j, \ j = 0, 1, \dots, n]$$

= $E[F(y)|e^{t_j}y(t_j) - e^{t_{j-1}}y(t_{j-1}) = e^{t_j}\xi_j - e^{t_{j-1}}\xi_{j-1}, \ j = 0, \dots, n]$

where $y(t_{-1}) = \xi_{-1} = 0$. Define $(y_n)(t)$ by

$$(y_n)(t) = e^{-t} \left[e^{t_{j-1}} y(t_{j-1}) + \frac{e^{2t} - e^{2t_{j-1}}}{e^{2t_j} - e^{2t_{j-1}}} (e^{t_j} y(t_j) - e^{t_{j-1}} y(t_{j-1})) \right]$$

for $t_{j-1} \le t \le t_j$, j = 1, ..., n. Similarly, define $(\vec{\xi_n})(t)$ by

$$(\vec{\xi}_n)(t) = e^{-t} \left[e^{t_{j-1}} \xi_{j-1} + \frac{e^{2t} - e^{2t_{j-1}}}{e^{2t_j} - e^{2t_{j-1}}} (e^{t_j} \xi_j - e^{t_{j-1}} \xi_{j-1}) \right]$$

for $t_{j-1} \le t \le t_j$, j = 1, ..., n.

Then, $(y_n)(t_j) = y(t_j)$ and $(\vec{\xi}_n)(t_j) = \xi_j$ at each $t_j \in \tau$. Furthermore, (y_n) and $y - (y_n)$ are independent processes as one can easily check using the covariance function of y. Thus, we conclude that

$$E[F(y)|y(t_j) = \xi_j, \ j = 0, 1, \dots, n] = E[F(y - (y_n) + (\vec{\xi_n}))].$$

4. Conditional expectation of functions involving stochastic integrals. Using the same notation as in section 3 above, for $h \in L_2[0,T]$ let

(4.1)
$$h_{(n)}(t) = \mathcal{P}_n h(t) = \sum_{j=1}^n (h, \alpha_j) \alpha_j(t) \text{ and}$$
$$h_{(\infty)}(t) = \mathcal{P}_\infty h(t) = \sum_{j=1}^n (h, \alpha_j) \alpha_j(t)$$

Then, we have the following:

LEMMA 1. Let $h \in L_2[0,T]$. Then

$$(4.2) \int_0^T h(t)h_{(n)}(t)dt = \int_0^T h_{(n)}^2(t)dt = ||h_{(n)}||^2 = \sum_{j=1}^n (h,\alpha_j)^2,$$

and

Obviously, the above formulas hold when $n = \infty$, and $||h - h_{(\infty)}|| = 0$ if $\mathcal{H} = L_2[0, T]$.

Our next theorem gives an interesting relationship involving h, $h_{(n)}$, x and x_n that is very useful in computing conditional and ordinary expectations of functions involving the stochastic integral $\int_0^T h(t)dx_n(t)$.

THEOREM 3. Let $h \in L_2[0,T]$. Then for each $x \in C[0,T]$

(4.4)
$$\int_0^T h(t)dx_n(t) = \int_0^T h_{(n)}(t)dx(t) = \int_0^T h_{(n)}(t)dx_n(t)$$

The formula also holds for $n = \infty$ if we consider $\int_0^T h(t)dx_\infty(t) = \sum_{j=1}^\infty \gamma_j(x)(h,\alpha_j)$.

Proof. Using 3.1, 3.2, 4.1 and the fact that the α_j 's are orthonormal, it is quite easy to show that for each $x \in C[0,T]$, each of the stochastic integrals in 4.4 equals the expression

$$\sum_{j=1}^{n} (h, \alpha_j) \int_{0}^{T} \alpha_j(t) dx(t).$$

Corollary 4. Let $h \in L_2[0,T]$. Then

(4.5)
$$E\left[\exp\left\{-\int_0^T h(t)dx_n(t)\right\}\right] = \exp\left\{\frac{1}{2}||h_{(n)}||^2\right\}.$$

Proof. By 4.4 and a well known Wiener integration formula

$$E\left[\exp\left\{-\int_0^T h(t)dx_n(t)\right\}\right]$$

$$= E\left[\exp\left\{-\int_0^T h_{(n)}(t)dx(t)\right\}\right]$$

$$= (2\pi)^{-1/2} \int_{-\infty}^\infty \exp\left\{-||h_{(n)}||u\right\} \exp\left\{-\frac{u^2}{2}\right\} du$$

$$= \exp\left\{\frac{1}{2}||h_{(n)}||^2\right\}.$$

Theorem 4. Let $h \in L_2[0,T]$ and assume that

$$F(x) = f \left[\int_0^T h(t) dx(t) \right]$$

is in $L_1(C[0,T], m_w)$.

a). If h is a linear combination of $\{\alpha_1, \ldots, \alpha_n\}$, say $h(t) = c_1\alpha_1(t) + \ldots + c_n\alpha_n(t)$ on [0, T], then

(4.6)
$$E\left[f\left[\int_0^T h(t)dx(t)\right]|X_n(x) = \vec{\xi}\right] = f(c_1\xi_1 + \ldots + c_n\xi_n).$$

b). If $\{h, \alpha_1, \ldots, \alpha_n\}$ is a linearly independent set of functions in $L_2[0, T]$, then

(4.7)
$$E\left[f\left[\int_{0}^{T}h(t)dx(t)\right]|X_{n}(x) = \vec{\xi}\right]$$

$$= \left[2\pi(||h||^{2} - ||h_{(n)}||^{2})\right]^{-1/2}$$

$$\cdot \int_{-\infty}^{\infty}f(u)\exp\left\{-\frac{\left(u - \int_{0}^{T}h(t)d\vec{\xi}_{n}(t)\right)^{2}}{2||h - h_{(n)}||^{2}}\right\}du.$$

Proof. a).In this case $h_{(n)}(t) \equiv h(t)$ and so by 3.4, 4.4 and 3.2,

$$E\left[f\left[\int_{0}^{T}h(t)dx(t)\right]|X_{n}(x) = \vec{\xi}\right]$$

$$= E\left[f\left[\int_{0}^{T}h(t)d\{x(t) - x_{n}(t) + \vec{\xi}_{n}(t)\}\right]\right]$$

$$= E\left[f\left[\int_{0}^{T}(h(t) - h_{(n)}(t))dx(t) + \int_{0}^{T}h(t)d\vec{\xi}_{n}(t)\right]\right]$$

$$= E\left[f\left[\int_{0}^{T}h(t)d\vec{\xi}_{n}(t)\right]\right]$$

$$= f\left[\int_{0}^{T}h(t)d\vec{\xi}_{n}(t)\right]$$

$$= f(c_{1}\xi_{1} + \ldots + c_{n}\xi_{n}).$$

b). In this case we use 3.4, 4.4, and a well known Wiener integration formula to obtain

$$E\left[f\left[\int_{0}^{T} h(t)dx(t)\right] | X_{n}(x) = \vec{\xi}\right]$$

$$= E\left[f\left[\int_{0}^{T} h(t)d\{x(t) - x_{n}(t) + \vec{\xi}_{n}(t)\}\right]\right]$$

$$= E\left[f\left[\int_{0}^{T} (h(t) - h_{(n)}(t))dx(t) + \int_{0}^{T} h(t)d\vec{\xi}_{n}(t)\right]\right]$$

$$= (2\pi)^{-1/2} \int_{-\infty}^{\infty} f\left(||h - h_{(n)}||u + \int_{0}^{T} h(t)d\vec{\xi}_{n}(t)\right) \exp\{-u^{2}/2\}du.$$

In Theorem 4 above the two extreme cases occur when $h \equiv \alpha_j$ for some j or when h is orthogonal to all the α_j 's.

COROLLARY 5. Let h, F and f be as in Theorem 4. Then

(4.8)
$$E\left[f\left[\int_0^T \alpha_j(t)dx(t)\right]|X_n(x) = \vec{\xi}\right] = f(\xi_j),$$

while if $\{h, \alpha_1, \ldots, \alpha_n\}$ is an orthogonal set of functions in $L_2[0, T]$,

(4.9)
$$E\left[f\left[\int_{0}^{T}h(t)dx(t)\right]|X_{n}(x) = \vec{\xi}\right] = E\left[f\left[\int_{0}^{T}h(t)dx(t)\right]\right]$$

$$= [2\pi||h||^{2}]^{-1/2}\int_{-\infty}^{\infty}f(u)\exp\left\{-\frac{u^{2}}{2||h||^{2}}\right\}du.$$

Proceeding as above we obtain the following generalization of formula 4.9.

COROLLARY 6. If $\{\phi_1, \ldots, \phi_m, \alpha_1, \ldots, \alpha_n\}$ is an orthonormal set of functions in $L_2[0,T]$ and if

$$F(x) = f\left[\int_0^T \phi_1(t)dx(t), \dots, \int_0^T \phi_m(t)dx(t)\right]$$

is in $L_1(C[0,T],m_w)$, then

$$E\left(f\left[\int_0^T \phi_1(t)dx(t), \dots, \int_0^T \phi_m(t)dx(t)\right] | X_n(x) = \vec{\xi}\right)$$

$$= E\left[f\left[\int_0^T \phi_1(t)dx(t), \dots, \int_0^T \phi_m(t)dx(t)\right]\right]$$

$$= \left[\prod_{j=1}^m [2\pi]^{-1/2}\right] \int_{\mathbb{R}^m} f(u_1, \dots, u_m) \exp\left\{-\sum_{j=1}^m \frac{u_j^2}{2}\right\} d\vec{u}.$$

Our next corollary follows from the observations that $\int_0^T (h(t) - h_{(n)}(t)) d\vec{\xi}_n(t) = 0$, and $(h - h_{(n)})_{(n)}(t) = 0$.

COROLLARY 7. Let h, F and f be as in Theorem 4. Then

$$E\left[f\left[\int_{0}^{T} h(t)d\{x(t) - x_{n}(t)\}\right] | X_{n}(x) = \vec{\xi}\right]$$

$$= E\left[f\left[\int_{0}^{T} \{h(t) - h_{(n)}(t)\}dx(t)\right] | X_{n}(x) = \vec{\xi}\right]$$

$$= E\left[f\left[\int_{0}^{T} \{h(t) - h_{(n)}(t)\}dx(t)\right]\right]$$

$$= [2\pi||h - h_{(n)}||^{2}]^{-1/2} \int_{-\infty}^{\infty} f(u) \exp\left\{-\frac{u^{2}}{2||h - h_{(n)}||^{2}}\right\} du.$$

Many interesting examples of conditional Wiener integrals can be obtained as special cases of the following theorem.

Theorem 5. Let $g \in L_2[0,T]$. Then

(4.10)

$$E\left[\exp\left\{\int_{0}^{T}g(s)x(s)ds\right\}|X_{n}(x) = \vec{\xi}\right]$$

$$=\exp\left\{\sum_{j=1}^{n}\xi_{j}(g,\beta_{j}) + \frac{1}{2}\int_{0}^{T}\left[\int_{s}^{T}g(t)dt\right]^{2}ds - \frac{1}{2}\sum_{j=1}^{n}(g,\beta_{j})^{2}\right\}.$$

Proof. Using integration by parts it follows that

$$\int_0^T g(s)x(s)ds = \int_0^T \left[\int_s^T g(t)dt \right] dx(s)$$

and that

$$\int_0^T \left[\int_s^T g(t)dt \right] \alpha_j(s)ds = \int_0^T g(s)\beta_j(s)ds = (g,\beta_j).$$

Hence using (3.4) we obtain

$$E\left[\exp\left\{\int_{0}^{T}g(s)x(s)ds\right\}|X_{n}(x) = \vec{\xi}\right]$$

$$= E\left[\exp\left\{\int_{0}^{T}\left[\int_{s}^{T}g(t)dt\right]d(x(s) - x_{n}(s) + \vec{\xi}_{n}(s))\right\}\right]$$

$$= \exp\left\{\sum_{j=1}^{n}\xi_{i}\int_{0}^{T}\left[\int_{s}^{T}g(t)dt\right]\alpha_{j}(s)ds\right\}$$

$$\cdot E\left[\exp\left\{\int_{0}^{T}\left[\int_{s}^{T}g(t)dt\right]dx(s)\right.$$

$$\left.-\sum_{j=1}^{n}\gamma_{j}(x)\int_{0}^{T}\left[\int_{s}^{T}g(t)dt\right]\alpha_{j}(s)ds\right\}\right]$$

$$= \exp\left\{\sum_{j=1}^{n}\xi_{j}(g,\beta_{j})\right\}$$

$$\cdot E\left[\exp\left\{\int_{0}^{T}\left[\int_{s}^{T}g(t)dt - \sum_{j=1}^{n}(g,\beta_{j})\alpha_{j}(s)\right]dx(s)\right\}\right]$$

$$= \exp\left\{\sum_{j=1}^{n}\xi_{j}(g,\beta_{j}) + \frac{1}{2}\int_{0}^{T}\left[\int_{s}^{T}g(t)dt - \sum_{j=1}^{n}(g,\beta_{j})\alpha_{j}(s)\right]^{2}ds\right\}$$

from which 4.10 follows.

COROLLARY 8. Let $g(s) \equiv 1$ and let the α_j 's be given by 3.6.

Then

$$E\left[\exp\left\{\int_0^T x(s)ds\right\} | X_n(x) = \vec{\xi}\right]$$

$$= \exp\left\{\frac{T^3}{6} + \frac{1}{2} \sum_{j=1}^n (\xi_j + \xi_{j-1})(t_j - t_{j-1}) - \frac{1}{8} \sum_{j=1}^n (t_j - t_{j-1})(t_j + t_{j-1})^2\right\}.$$

COROLLARY 9. Let n = 1 and $\alpha_1(s) \equiv 1/\sqrt{T}$. Then

$$\begin{split} E\left[\exp\left\{\int_0^T g(s)x(s)ds\right\}|x(T) &= \xi\right] \\ &= \exp\left\{\frac{\xi}{T}\int_0^T tg(t)dt + \frac{1}{2}\int_0^T \left[\int_s^T g(t)dt\right]^2 ds - \frac{1}{2T}\left[\int_0^T tg(t)dt\right]^2\right\}, \\ E\left[\exp\left\{\int_0^T sx(s)ds\right\}|x(T) &= \xi\right] &= \exp\left\{\frac{\xi T^2}{3} + \frac{T^5}{90}\right\}, \\ and \\ E\left[\exp\left\{\int_0^T x(s)ds\right\}|x(T) &= \xi\right] &= \exp\left\{\frac{\xi T}{2} + \frac{T^3}{24}\right\}. \end{split}$$

5. Translation of generalized conditional Wiener integrals. The Cameron-Martin Theorem [3], [11] states that if $x_0(t) = \int_0^t h(s)ds$ for all $t \in [0,T]$ with $h \in L_2[0,T]$, and if T_1 is the transformation from C[0,T] into itself defined by

$$T_1(x) = x + x_0 \text{ for } x \in C[0, T],$$

then for any Wiener integrable function F on C[0,T] and any Wiener measurable set Γ

(5.1)
$$\int_{\Gamma} F(y) m_w(dy) = \int_{T_v^{-1}(\Gamma)} F(x+x_0) J(x_0, x) m_w(dx)$$

where

(5.2)
$$J(x_0, x) = \exp\left\{-\frac{1}{2}||h||^2 - \int_0^T h(t)dx(t)\right\}.$$

In particular, if $\Gamma = C[0, T]$, then 5.1 becomes:

(5.3)
$$E[F(y)] = E[F(x+x_0)J(x_0,x)].$$

In [14], Yeh gives a conditional version of 5.3 which states that

$$\begin{split} E[F(y)|y(T) &= \xi] = E\left[F(y)|\int_0^T dy(t) = \xi\right] \\ &= E[F(x+x_0)J(x_0,x)|x(T) = \xi - x_0(T)] \exp\left\{-\frac{x_0^2(T)}{2T} + \frac{\xi x_0(T)}{T}\right\}. \end{split}$$

Our next theorem is a generalized conditional version of 5.3.

THEOREM 6. Let $h \in L_2[0,T]$ and let $x_0(t) = \int_0^t h(s)ds$ for $t \in [0,T]$. Let $F \in L_1(C[0,T],m_w)$ and let the α_j 's be as in Section 2. Then

(5.4)
$$E[F(y)|X_{\alpha}(y) = \vec{\xi}]$$

$$= E[F(x+x_0)J(x_0,x)|X_n(x+x_0) = \vec{\xi}]$$

$$\cdot \exp\left\{ \int_0^T h(t)d\vec{\xi}_n(t) - \frac{1}{2}||h_{(n)}||^2 \right\}$$

where $J(x_0, x)$ is given by 5.2 and $h_{(n)}(t)$ is given by 4.1. The result holds for $n = \infty$ as well.

Proof. By 3.4 we see that

(5.5)
$$E[F(y)|X_n(y) = \vec{\xi}] = E[F(y - y_n + \vec{\xi}_n)].$$

Using 5.3 and noting that $(x + x_0)_n = x_n + (x_0)_n$, we have

(5.6)
$$E[F(y-y_n+\vec{\xi_n})] = E[F(x+x_0-x_n-(x_0)_n+\vec{\xi_n})J(x_0,x)].$$

Next we rewrite $J(x_0, x)$ in the form

(5.7)

$$J(x_0, x) = \exp\left\{-\frac{1}{2}||h||^2\right\}$$

$$\cdot \exp\left\{-\int_0^T h(t)d(x(t) - x_n(t) + \vec{\xi}_n(t) - (x_0)_n(t))\right\}$$

$$\cdot \exp\left\{-\int_0^T h(t)dx_n(t)\right\}$$

$$\cdot \exp\left\{\int_0^T h(t)d(\vec{\xi}_n(t) - (x_0)_n(t))\right\}.$$

Using 4.1 we see that

(5.8)
$$\int_0^T h(t)d(x_0)_n(t) = \int_0^T h_{(n)}^2(t)dt = ||h_{(n)}||^2.$$

Since $x_n(t)$ and $x(t) - x_n(t)$ are independent processes on [0, T] by Corollary 1, $\exp\left\{-\int_0^T h(t)dx_n(t)\right\}$ and

$$F(x + x_0 - x_n - (x_0)_n + \vec{\xi}_n)$$

$$\cdot \exp\left\{-\int_0^T h(t)d(x(t) - x_n(t) + \vec{\xi}_n(t) - (x_0)_n(t))\right\}$$

are also independent. Thus using 5.7, 4.5 and 5.8,

(5.9)

$$E[F(x+x_0-x_n-(x_0)_n+\vec{\xi}_n)J(x_0,x)]$$

$$=E\left[F(x+x_0-x_n-(x_0)_n+\vec{\xi}_n)\right]$$

$$\cdot\exp\left\{-\int_0^T h(t)d(x(t)-x_n(t)+\vec{\xi}_n(t)-(x_0)_n(t))\right\}$$

$$\cdot\exp\left\{-\frac{1}{2}||h||^2+\frac{1}{2}||h_{(n)}||^2+\int_0^T h(t)d\vec{\xi}_n(t)-||h_{(n)}||^2\right\}.$$

Therefore, by using 5.9 and 3.4 we obtain

$$E[F(x+x_0-x_n-(x_0)_n+\vec{\xi}_n)J(x_0,x)]$$

$$=E\left(\left[F(x+x_0)\exp\left\{-\int_0^T h(t)d(x(t))\right\}\right]|X_\alpha(x+x_0)=\vec{\xi}\right)$$

$$\cdot \exp\left\{-\frac{1}{2}||h||^2+\int_0^T h(t)d\vec{\xi}_n(t)-\frac{1}{2}||h_{(n)}||^2\right\}$$

$$=E\left(\left[F(x+x_0)J(x_0,x)\right]|X_\alpha(x+x_0)=\vec{\xi}\right)$$

$$\cdot \exp\left\{\int_0^T h(t)d\vec{\xi}_n(t)-\frac{1}{2}||h_{(n)}||^2\right\}.$$

This together with 5.6 and 5.5 yields 5.4. The case $n = \infty$ follows by the martingle convergence theorem.

REMARK. By choosing the α_j 's as in 3.6, we see that Theorem 4 on page 391 of [8] is a Corollary of Theorem 6 above.

Acknowledgement. We dedicate this paper to the memory of Professor Robert H. Cameron (1908 - 1989).

REFERENCES

- [1] L. Breiman, *Probability*, Addison-Wesley, Reading, Mass. 1968.
- [2] R.H. Cameron, A "Simpsons Rule" for the numerical evaluation of Wiener's integrals in function space, Duke Math. J., 18 (1951), 111-130.
- [3] R.H. Cameron and W.T. Martin, Transformation of Wiener integrals under translations, Ann. Math., 45 (1944), 386-396.
- [4] K.S. Chang and J.S. Chang, Evaluation of some conditional Wiener integrals, Bull. Korean Math. Soc., 21 (1984), 99-106.
- [5] J.L. Doob, Stochastic processes, Wiley, New York, 1953.
- [6] M. Kac, Probability and Related Topics in Physical Sciences, Interscience Publishers, New York, 1959.
- [7] C. Park, Representations of Gaussian processes by Wiener processes, Pacific J. Math., 94 (1981), 407-415.
- [8] C. Park and D.L. Skoug A simple formula for conditional Wiener integrals with applications, Pacific J. Math., 135 (1988), 381-394.
- [9] L.A. Shepp Radon-Nikodym derivative of Gaussian measures, Ann. Math. Stat., **37** (1966), 321-354.
- [10] H.G. Tucker, A graduate course in probability, Academic Press, New York, 1967.

- [11] J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, New York, 1973.
- [12] _____, Stochastic processes and the Weiner integral, Marcel Dekker, New York, 1973.
- [13] _____, Inversion of conditional Wiener integrals, Pacific J. Math., 59 (1975), 623-638.
- [14] _____, Transformation of conditional Wiener integrals under translation and the CAmeron-MArtin translation theorem, Tôhoku Math. Journ., 30 (1978), 505-515.

Received September 7, 1991 and in revised form November 5, 1992.

MIAMI UNIVERSITY OXFORD, OH 45056-1641 E-mail address: cpark@miavx1.acs.muohio.edu

AND

UNIVERSITY OF NEBRASKA LINCOLN, NE 68588-0323