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CONDITIONAL WIENER INTEGRALS II

CHULL PArRK AND DAVID SKOUG

In this paper we establish various results involving con-
ditional Wiener integrals, E(F|X), for very general con-
ditioning functions X. Most related results in the liter-
ature, including the case when the conditioning function
X is vector-valued, then follow as corollaries of this more
general theory. A simple formula is given for converting
these generalized conditional Wiener integrals into ordi-
nary Wiener integrals and then this formula is used to
evaluate E(F|X) for various classes of functionals F. Fi-
nally these results are used to obtain a generalized condi-
tional form of the Cameron-Martin translation theorem.

1. Introduction. Let (C|[0,T], F*, m,) denote Wiener space,
where C[0,T] is the space of all continuous functions z on [0, T]
vanishing at the origin. Let F(z) be a Wiener integrable func-
tion on C[0,T] (i.e., E[|F(z)|]] < oo) and let X(z) be a Wiener
measurable function on C[0,T]. In [13], Yeh introduced the con-
cept of conditional Wiener integrals. He defined the conditional
Wiener integral of F' given X as a function on the value space of
X and derived a Fourier transform inversion formula for comput-
ing conditional Wiener integrals. Using this formula for the case
X(z) = z(T), Yeh [13, 14] obtained some very useful results includ-
ing a Kac-Feynman integral equation and a conditional Cameron-
Martin translation theorem.

In [4], for certain functions F', Chang and Chang, using Yeh'’s
inversion formula, evaluated the conditional Wiener integral of F’
given X (z) = (z(t1),...,z(ty)) where 0 < t; <ty < ... <t, =T.
In [8], the current authors obtained a very simple formula for the
conditional Wiener integral of F' given X (z) = (z(¢1),...,z(tn)).
In particular we expressed the conditional Wiener integral directly
in terms of an ordinary (i.e., nonconditional) Wiener integral. Using
this formula it was relatively simple to generalize the Kac-Feynman
formula and to obtain a conditional Cameron-Martin translation
theorem involving vector-valued conditioning functions.

293



294 CHULL PARK AND DAVID SKOUG

In this paper we consider much more general conditioning func-
tions. In particular they need not depend upon the values of z at
only finitely many points in (0,7]. A major thrust of this paper is
to develop a useful formula to convert these generalized conditional
Wiener integrals into ordinary (i.e., nonconditional) Wiener inte-
grals and then to obtain the corresponding Cameron-Martin trans-
lation theorem for these generalized conditional Wiener integrals.
We also use this simple formula to compute the generalized condi-
tional Wiener integral for various functions F'(z) on C[0,T]. Most
of the results in [4, 8, 13, and 14| then follow as special cases of
the results obtained in this paper.

2. Preliminaries and definitions. Let 7 be an infinite dimen-
sional subspace of Ly[0,T] with a complete orthonormal basis {c;}.
Then the corresponding stochastic integrals

(2.1) 7,(z) = /(]Taj(t)d:c(t), i=1,2,...

form a set of independent standart Gaussian variables on C[0, T
with

(2.2 Ble(ty(@)] = [ as(s)ds = 60)

For each n € N let H, be the subspace of H spanned by
{a1,... ,an}, and let X,, : C[0,T] — R* and X, : C[0,T] — R" be
defined by
(2.3) Xn(2) = (11(2), .-, m(2)), Xoo(2) = (M(2),72(2),-..).

If B™ denotes the o-algebra of Borel sets in R”, then a set of the
type

I={z€C[0,T]: X,(z) € B} =X, (B), Be B"
is called a quasi-Wiener interval (or a Borel cylinder). It is well
known that

— -

(2.4 mu() = [, Kn()dé,

where

(2.5) Kn(§) = (27)7% exp{—%ééf}-
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Let F, be the o-algebra formed by the sets { X, '(B) : B € B"}, and
let F be the o-algebra generated by U2 ; F,,. Then, by the definition
of conditional expectations (see Doob [5] Tucker [10] and Yeh [12])
for each F' € L;(C|0,T], my),

(2.6)
w(B) = /X oy F@ma(dr) = /X iy BOEIF ) ()

:/ E(F(2)|Xn(z) = )Py, (d€)
_/ 2)i(z) =&, j=1,...,n)Px,(df), B € B,

where Px_ (B) = my(X7Y(B)), and E(F(z)|X,(z) = £) is a Le-
besgue measurable function for E which is unique up to null sets in
R™.

Since {F,} is an increasing sequence of o-algebras of Weiner mea-
surable sets, for F' € L;(C[0,T],m,), {E(F|F,)} is a martingale
sequence. Thus, F |E(F|F,)| < E|F| for every n, and so by the
martingale convergence theorem, lim F(F|F,) = E(F|F) almost
surely and for each A € U2 | F,,

@7) [ BF@)F)my(ds) =lim [ E(F ()| F)m, (da)

From this and (2.6), it follows that for every B € U2, B",

28) [ BE@h@) =&, j=12...)Px.(d)
= hm/ z)|vi(z) =&, 5=1,... ,n)PXn(dg),
where
(2.9 P, (dd) = ﬁ{ ~} exp(—€2/2)de; )
Py (d€) = fj{ (27) 7% exp(—€/2)dg; } -

In (2.8) we used the convention that if B € B, then B € B"**
by identifying B and B x RF in B"** for k = 1,2,.... Thus if
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B € U2 B", then there exists N € N such that B € B" for all
n >N, and hence by the martingale property

(2.10) / B(P@)hy(e) = &, §=1,2,...) P (df)
— / o)) =&, j=1,...,n)Px,(df), for alln > N,

from which (2.8) follows.

In the next section we develop quite simple formulas for con-
verting the generalized conditional Wiener integrals of the types
E(F(z)|Xn(z) = &) = E(F(2)lv(z) =&, j = 1,...,n) and
E(F(z)|v(z) = &,j = 1,2,...) into ordinary Weiner integrals
which can often be computed explicitly. It then turns out that
all the conditional Weiner integrals that occur in [4, 8, 13, and 14]
are special cases of conditional expectations given in this paper.

3. Useful formulas for conditional Wiener integrals. Let
M, {e;}, H, and {7j(z)} be as in Section 2. Define projection maps
P and P, from L,[0,7] into ‘H and H,, respectively, by

(3.1) Phit) = iw, o)1 (1),
Puh(t) = é(h, 7)o ().

For z € C[0,T] and £ = (£1,&,,...), let

(32)  zn /731[(” )dz(s =§j / s)ds,

II'M s
EQ
2~
S

where Ijg 4 is the indicator function of the interval [0, ¢]. Similarly,
define

(3.3) Zol(t) = | Pl (s)dz(s) = i'yj(x) /Ot a;(s)ds,
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We note here that since {;(z)} is a sequence of i.i.d. standard
Gaussian random variables, the series z,(t) converges m,,-a.e. z(see
Shepp [9, p.324]). Since £(t) is the evaluation of the random vari-
aible Too(t) for vi(z) =&, 7=1,2,..., é;o(t) converges P, - a.e.

&
Our first theorem plays a key role throughout this paper.

THEOREM 1. If {z(t), 0 < t < T} is the standart Wiener pro-
cess, then the processes {z(t) — zo(t), 0 < t < T} and v;(x)
are (stochastically) independent for j = 1,2,.... Also, {z(t) —
z,(t), 0 <t < T} and vj(x) are independent for j=1,... ,n

Proof. For each j, using (2.2), (3.1) and (3.2)

Bl (@)elt) = 2] = [ as(s)ds = 2 [/ oy(s)ds =0

Since both «;(z) and z(t) — z(t) are Gaussian and uncorrelated,
it follows that they are independent. The second claim follows in
similar manner. O

COROLLARY 1. The processes {z(t) — zx(t), 0 < t < T} and
{z(t), 0 <t < T} are independent, and so are {z(t) — z,(t), 0 <
t < T} and {z,(t), 0 <t < T}.

The following theorem is one of our main results.

THEOREM 2. Let F € L;(C[0,T], my). Then

(3.4)
E[F(LL‘)I’W(&?) = éj’ J=12,.. ] = E[F($ —To +Eoo)]’ and
E[F(z)|ly;(z) =&, j=1,...,n) = E[F(z — 2, + £,)].

Proof. Since z — o, and z, are independent processes, and v;(z)
and £ — T, are independent by Theorem 1, we may write

E[F(z)|vi(z) =&, 1 =1,2,...]
= E[F((z — Zco) +xoo)l7j($) =&, 7=12,.. ]
= Ey{Ex[F((y - yoo) + xoo)h’](x) = gj, .7 = 1’2a .. ]},
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where y is a standart Wiener process independent of z. Thus, we
have

ElF(z)ly(z) =&, i =1,2,...] }
= y{F((y - yoo) +€oo)} = E[F(.’E —Too +§oo)],

as Ty = f—:x, under the condition v; = ¢&;, j = 1,2,.... The second
formula of (3.4) follows by the same reasoning. ]

COROLLARY 2. Let F € Li(C[0,T], my). If H = L,[0,T], then
E[F(2)lvi(@) =&, j=1,2,...] = F(é)-
Proof. This follows from (3.4) by the fact that if H = L,[0,T],

then z(t) = f To,g(s)ds(s) = 521 (a, 1j0,4)75 (%) = Teo(t) for my, -
a.e. . ]

COROLLARY 3. Let F € L,(C[0,T],my,). Then for every B € B",

/X;I(B) F(z)my(dz) = /B E[F(z — z, + En)Pxn(dE).

The above corollary is a simple consequence of the second formula
in (3.4). In addition Theorem 4 on page 114 of [2] is a special case
of Corollary 3 above with B = R".

REMARKS.

(i) For each partition 7 = 7, = {t1,... ,t,} of [0,T] with 0 = ¢, <
ty <...<t,=T,let X, : C[0,T] - R be defined by X,(z) =
(z(t1),...,z(tn)). In [8], the current authors considered vector-

valued conditional Wiener integrals of the type E(F(z)|X,(z) = £)
for F € L;(C[0,T],m,). We note that these can be rewritten in
the form

(3.5) E(F(2)|X,(z) = §) = BE(F(2)|a(t;) =&, j=1,... ,n)
= E(F ()!x( i) — ot )—«sj—fj LJi=1...,n)

=5 (Fe [ ety = S5 51, n)

where £ = to = 0 and

(36) aj(t) = I[tj_l,tj](t)/\/tj - tj—l; ] = 1, o.M
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Since {a4(t), ... ,an(t)} is obviously an orthonormal set of functions
in Ly[0,T], the vector-valued conditional Wiener integral
E(F(z)|X.(z) = £) is a special case of the general conditional
Wiener integrals of the type E(F(z)|Xa(z) = £) considered in
this paper. Thus the conditional Wiener integrals that occur in
(4], [8], [13] and [14] are all special cases of those of the type
E(F(z)| X, () = €) for appropriate n and oy, . .. , ap.

It is also interesting to note that for each z € C[0,T] the polyg-
onal function [z] defined by

t

E2HL (at) - wlty ),

[2](t) = =(t;-1) + R

tj—]. Stst]7 j:].,... ,n
has another representation, namely
[Z](t) = 2a(t), 0Kt LT

where the a;’s are given by (3.6) and z,(t) is given by (3.2). The
formula in [8], p.385, corresponding to (3.4) above is

E(F(z)|X,(z) = §) = E[F(z — [2] + [¢])]

where for £ € R, [gj(t) is the polygonal function

t—1ti_1 .
é](t ] 1+'t_—_'j_£7_1‘(§]_§]—-1)7 tj—lstgtj}]’:l)"'7n
G—

= fn (t)

where the o;’s are given by (3.6) and &,(t) is given by (3.2).

(ii) Thanks to the referee’s suggestions, this paper has gone
through a number of improvements. The expressions given by (3.2)
and (3.3) were suggested by the referee. This in turn, strengthened
Theorems 1 and 2. Another suggestion made by the referee was the
possibility of generalizing Theorem 2 to other Gaussian processes.
This question is perhaps best handled by using the representation
of a Gaussian process using Wiener processes; see [7] and example
3 below.
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We close this section with some examples which illustrate that
formulas (3.4) are indeed very useful and easy to apply. In partic-
ular, the third example deals with the Ornstein-Uhlenbeck process
to show that our formulas can be applied to other useful Gaussian
processes.

T
ExXAMPLE 1. For z € C[0,T] let F(z) = / z*(t)dt. Then using
0
(3.4) we obtain

E [ | "2 (4)dt X o () =5]
-5 / (ol - ) + )72
= [ B[ - 50 + G0 + 2 0)(a(0) — 5 (0)]

Since = — z,, and x,, are independent by Corollary 1, E[z,(t)(z(t) —
T,(t))] = 0, and using (2.2) and the fact that E[z(s)z(t)] = min{s, t},
we obtain

E [/Osz(t)dtIXn(x) =£] = /OT {t+ €nlt) é }
In particular, if n = 1 and a(s) = 1/+/T, we see that
p|[[w0aix =¢] = 5| [ 0atar) =

T 242 2 T2 2
- {t+f_t_t_}dt=_+i1
0

which agrees with the results in [4], [8] and [13].
EXAMPLE 2. For z € C[0,T] let F(z) = exp { Wz } Then

E lexp { | ’ x(t)dt} X, (z) = g‘]

= [on{ [ al0) =200+ £ (o))

~ exp { | Tfn(t)dt} E [exp { | ") - xn(t))dtH |
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In particular, if we choose the complete orthonormal cosine sequence
o;(t) = /2/Tcos[(j — 1/2)mt/T}, j = 1,2,..., on [0,T], then it
is well known (see Shepp [9], p.325) that the corresponding z,(t)
converges to z(t) uniformly in ¢ with probability one, and for each
u € C[0,T],

2/: {/Ot a;(s)ds /OT CY]‘(S)d'U,(S)} dt = /OTu(t)dt.

Thus

Jim £ [exp { | Tx(t)dt} X (z) = Xn(u)] — exp { / Tu(t)dt}

as expected. Since the orthonormal cosine sequence given above is
complete on [0, 7], Corollary 2 can be applied to get

Blew{ [ atit} o) =0 7= 1.2...

— exp { / ! u(t)dt}
for a.e. u € C[0,T).

ExaMPLE 3. Consider the Ornstein-Uhlenbeck process y(t) with
mean zero and covariance function R(s,t) = o2 exp{—0|t—s|} where
B > 0. If we take 0 = § = 1 for convenience, then y(t) can be
expressed in terms of the standart Wiener process z(t) (see p.414
of [7]),

(3.7) y(t) = e tz(e*), 0<t< T.

Suppose F(y) is an integrable function of y. Let 7 = {0 = o, %1, . .. ,
t, = T} be a partition of [0,T]. Then, the conditional expectation

E[F(y)|y(t9) :fﬁ 7=0,1,... ’n]

can be expressed as a non-conditional expectation by utilizing (3.7).
Since e'y(t) = z(e?) and z(-) has independent increments, we write

= E[F(y)|evy(t;) — ei-'y(tj—1) = €& — "€, §=0,...,n]
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where y(t_;) =&_; = 0.
Define (y,)(t) by

2t

et — e2ti-1

()0 = e ry(t1) + STty - ry(ty-0)
fort; ., <t<t;, j=1,...,n.

Similarly, define (£,)(t) by

2t

et — i1

&)t =€t {etj—lfj—l + (¢ — etj“lfj—l)]

fOI‘tj_l Stst], ]=1, , M.

Then, (yn)(t;) = y(t;) and (&)(t;) = &; at each t; € 7. Further-
more, (y,) and y — (y,,) are independent processes as one can easily
check using the covariance function of y. Thus, we conclude that

E[F)ly(t;) =&, 5=0,1,...,n] = E[F(y — (ya) + (&))]-

4. Conditional expectation of functions involving stochas-
tic integrals. Using the same notation as in section 3 above, for
h € Ly[0,T] let

M=

him)(t) = Prh(t) = )_(h, a;)e;(t) and

<.
Il
-

(4.1)

M8

hieo) () = Pooh(t) = p_(h, 0)c;(t)

<.
I
—-

Then, we have the following:

LEMMA 1. Let h € Ly[0,T]. Then

n

(12) [ hhin(@de = [ ()it = Ihinll? = > ()

and

(4.3) [k~ hwlI? = [1RI1* = [1Aew .

Obviously, the above formulas hold when n = oo, and ||h —
byl = 0 if H = L,[0, T).
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Our next theorem gives an interesting relationship involving h,
h(n),  and z, that is very useful in computing conditional and
ordinary expectations of functions involving the stochastic integral

Jy h(t)dza(2).
THEOREM 3. Let h € Ly[0,T]. Then for each z € C[0,T]

(4.4) / (t)dzn (t) / gy (t)das(t / i (£)d ()
0
T
The formula also holds for n = oo if we consider/ h(t)dz(t) =
0
Z )(h, a).

Proof. Using 3.1, 3.2, 4.1 and the fact that the «;’s are orthonor-
mal, it is quite easy to show that for each z € C[0,T], each of the
stochastic integrals in 4.4 equals the expression

n

S(hvay) [ o(e)datt).

=1

COROLLARY 4. Let h € Ly[0,T]. Then
(@5)  Blow |~ [ hdza(o) | = exp {5lInwl?}
. €Xp o Tn = exp 9 (n) .

Proof. By 4.4 and a well known Wiener integration formula

Blew - [ hyimo |
= E [exp {— /0 ! h(n) (t)dx(t)”

2
— (92)"1/2 _ v
= (27)~ /_ exp{ Ay Hu} exp{ 5 }du
_ 1 2
= exp {2||h(n)|| } :
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THEOREM 4. Let h € L,[0,T] and assume that

Pla) = £ | [ a0
is in L1(C[0,T], my,).

a). If h is a linear combination of {o1,...,an}, say h(t) =
cioq(t) + ... + cpan(t) on [0,T), then

46) £ ¢ | [ n0)ast0)] 1o(0) = €] = e+ + )

b). If{h,a1,...,a,} is a linearly independent set of functions in
LQ[O, T], then

n B [f [ | Th(t)dz(t)] Xa(@) =5j
= (Al — I D)

} u [ he)aéo 2
./Oof(u)exp[—( N ) du.

Proof. a).In this case h(,)(t) = h(t) and so by 3.4, 4.4 and 3.2,

B 1| Hoyaeto)] 1ot =4

B |1 | matat) - 2.0 + £}

’
E[ /(h — hmy(t))dz(t) + / h(t) dfn(t)H
ol

| [ g ]|
= 1| [ moao)

= flertés + ...+ cn&n).
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b). In this case we use 3.4, 4.4, and a well known Wiener inte-
gration formula to obtain

B |1 | haso)| 1xn0) = 4

—E [f [/OT h(t)d{z(t) — zn(t) + éz(t)}”
—E [f [/ (h(t) = hny(t))dz( t)+/ dén(t)H
= (2m)"12 [ (||h hmy|lu + / (t)dén(t )) exp{~u’/2}du.

O

In Theorem 4 above the two extreme cases occur when h = o;
for some j or when h is orthogonal to all the a;’s.

COROLLARY 5. Let h, F and f be as in Theorem 4. Then

a9 || [ ] 1% -4 - 1)

while if {h, a1, ... ,0n} is an orthogonal set of functions in Ly[0,T),

(4.9)

E [f [ /0 i h(t)dx(t)] | Xn(z) = gj =F lf [ /0 ' h(t)da:(t)H
~ orllPI2 [ g0 exp{ -5 |

Proceeding as above we obtain the following generalization of
formula 4.9.

COROLLARY 6. If {¢1,... ,®m, 1, ... ,0n} is an orthonormal set
of functions in Ly[0,T) and if

F(x):f[/ é1(t)dz(t) /qsm t)da(t ]
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is in L1(C[0,T), my), then

B (1| ei0asey.... / ' ¢m<t>d:c<t>] Xale) =€)
oot o]

ﬁ[27r]—1/2} /R’" fug, ... exp{ f: %l} di.

Jj=1

T
Our next corollary follows from the observations that / (h(t) —
0
hin)(£))dn(t) = 0, and (h — h(n))(m) (£) = 0.

COROLLARY 7. Let h, F and f be as in Theorem 4. Then
B |1 | 10atat) - 20} | ) =
=5 1] [ 1h0) - h a0 13, = §

=81 | [ 00 - o)t
= [2]|h — hewy|[P] 712 /_O:o f(u) exp {—QHh—‘_UQh(nW}d“'

Many interesting examples of conditional Wiener integrals can be
obtained as special cases of the following theorem.

THEOREM 5. Let g € Ly[0,T). Then
(4.10)

B e { [ slo(e)ds} () =
_exp{ng 9,8;) + 2/ [/ dtJ ds—%i(g,ﬁj)2}.

J=1

Proof. Using integration by parts it follows that
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/OTg(s)x(s)ds = /OT [/ST g(t)dt} dz(s)

and that

/OT [/STg(t)dt} aj(s)ds = /(;Tg(s),@j(s)ds = (g, 05)-

Hence using (3.4) we obtain

Bleso{ [ streteras | 13,0 = 4
=8 |ow{ [ | [ st0a] dtets) = 2.0+ £}
= exp {z af |/ "st0a aj<s>ds}
ol [ stou] aat
-3 yte) | [ ot aj<s)ds}]
~ exp {gf,(g,ﬂj)}

exp {/OT [/ST g(t)dt — Zi:l(g,ﬁj)a](s)} da:(s)”

= exp {gmg,ﬂj) v [ [ [ oyt - Jé(g,ﬂj)aj(s)} ds}

-E

B

from which 4.10 follows. O

COROLLARY 8. Let g(s) = 1 and let the o;’s be given by 3.6.
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Then

COROLLARY 9. Let n =1 and ay(s) = 1/VT. Then
E [exp {/{)Tg(s)x(s)ds} |z(T) = f}

= exp{%/:tg(t)dt+ %/OT [/sTg(t)dtrds— 2_17” [/()Ttg(t)dtr},

E :exp {/OT sa:(s)ds} 12(T) = g] — exp {%f + Z);;} ,

and
E :exp {/OTx(s)ds} \2(T) = .g] = exp {%C + g—j} .

5. Translation of generalized conditional Wiener integrals.
The Cameron-Martin Theorem [3], [11] states that if zo(t) =

t

/ h(s)ds for all ¢ € [0, T] with h € Ly[0, T], and if T is the trans-
0

formation from C[0, T'] into itself defined by

Ti(z) =  + xo for z € C[0, T,

then for any Wiener integrable function F' on C[0, T] and any Wiener
measurable set I’

(5.1) /F F(y)ma(dy) = /T ey F(@+ 0) (20, 7)m (d0)

where

(5.2) J (2o, ) = exp { —%HhH? - /0 ) h(t)da:(t)} .
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In particular, if I' = C[0, T, then 5.1 becomes:
(5.3) E[F(y)] = E[F(z + z0)J (0, 7)]-

In [14], Yeh gives a conditional version of 5.3 which states that

BFOIT) == B | )l [ o) =

= E[F(z+z0)J (29, 2)|z(T) = E—zo(T)] exp {_56022?) i fx(;ET)} .

Our next theorem is a generalized conditional version of 5.3.

t
THEOREM 6. Let h € Lo[0,T] and let zo(t) = /0 h(s)ds for

t €[0,T]. Let F € Li(C[0,T],my) and let the a;’s be as in Section
2. Then

(5.4) E[F(y) = ¢]
= E[F(x + a:o) (0, 7)| Xn( + 70) = €]

oo { [ B0 - el

where J(zo, x) is given by 5.2 and h(,)(t) is given by 4.1. The result
holds for n = oo as well.

Proof. By 3.4 we see that
(5.5) E[F(4)|Xn(y) = €] = E[F(y -y + &)}
Using 5.3 and noting that (z + 2o)n = Zn + (z0)n, we have

(5.6)
E[F(y = yn + &)] = E[F(z + 20 — 2n — (Zo)n + &) J (20, 2)].
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Next we rewrite J(zo, z) in the form

(5.7)
T(ao,3) = exp {3 A}

exp {_ T () — ralt) + ED) - (xo>n(t>>}

- exp { - h(t)dxn(w}

-

oo { [ BOAE D - (a(0)

DN | =

S—

Using 4.1 we see that

68 [ hOdEo)nt) = [ K@it = [l

Since z,(t) and z(t) — z,(t) are independent processes on [0, 7]

T
by Corollary 1, exp {— / h(t)dxn(t)} and
0

F(z+zo—zn — (z0)n + 5_;1)

—

T
exp{ = [ B ~ 200+ E0) ~ @)l0)
are also independent. Thus using 5.7, 4.5 and 5.8,
(5.9)

E[F(.T +Zo— 2y — (iEo)n + §n)‘](x0’x)]

-

=FE|F(z+ 20— Zn — (To)n + &)

- exp { - /0 ’ R(t)d(z(t) — za(t) + En(t) — (mo)n(t))”

exp {3 IHIP + GllheolF + [ BOGE D ~ Wil
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Therefore, by using 5.9 and 3.4 we obtain
E[F(z + %0 — Tn, — (%0)n + &) J (20, 7)]

= 5([Fteranew (- [ Hoataton | ato 200 =)

cexp {31IIP+ [ HOE - ol
=E ([F(:c + 19)J (20, T)] [ Xa(T + 20) = f‘)
o [ h0)3E (0 - Flno P}

This together with 5.6 and 5.5 yields 5.4. The case n = oo follows
by the martingle convergence theorem. O

REMARK. By choosing the «;’s as in 3.6, we see that Theorem 4
on page 391 of [8] is a Corollary of Theorem 6 above.

Acknowledgement. We dedicate this paper to the memory of
Professor Robert H. Cameron (1908 - 1989).
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