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HECKE CHARACTERS OF SINGULAR DRINFELD
MODULES

SϋNGHAN BAE

The j-invariant j of a Drinfeld module of rank 2 on F7[T]
over C determine an isomorphism class of Drinfeld mod-
ules over C. But for singular Drinfeld modules the pair
(j, χ) of a singular j-invariant j and an algebraic Hecke
character χ represent an //-isomorphism class of singular
Drinfeld modules, where H is the Hubert class field of
certain imaginary quadratic function field.

0. Introduction. In the theory of elliptic curves (or more gener-
ally, abelian varieties) with complex multiplication, the Hecke char-
acters play some important roles, such as the classification of isogeny
classes of elliptic curves and the study of zeta functions. In the the-
ory of Drinfeld modules, Gross introduced the notion of algebraic
Hecke characters [Grl]. In this note we restrict ourselves to the
Hecke characters arising from the singular Drinfeld modules of rank
2 on A — FJT], and see the correspondences between isogeny classes
or isomorphism classes of singular Drinfeld modules and Hecke char-
acters.

We fix the following notations throughout this paper:

Fq : finite field of ^-elements
A = Fq[T], k = Fq(T)
K — quadratic extension of k where oo does not split
Ls — separable closure of a field L
L = algebraic closure of a field L.

1. Hecke Characters and Frobenius morphism. Let L be
an yl-field. In this note by a Drinfeld module over L we always
mean a Drinfeld module of rank 2 on A. Thus a Drinfeld module φ
is completely determined by

(X) = TX + gXq + AXq2
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with (], Δ G L .
From now on, unless otherwise stated, we suppose that L is a

global function field, that is, a finite extension of k and that φ is a
singular Drinfeld module with End(φ) isomorphic to an order O of
an imaginary quadratic function field K. We fix an isomorphism

θ : K —> End(φ)k = End(φ) ®A k

so that ~ ^ = a for a E O, viewing θ(cή as an additive polynomial
in X. Such an isomorphism θ is said to be normalized. (See [B-K]
for more details.)

LEMMA 1.1. K is contained in L if and only if every element in
Eιιd(φ) is defined over L.

Proof. Let σ £ Ant(Ls/L) and u G O. Then we have

dθ(u)c

dX
= uσ.

Hence it follows from [B-K], Prop. 2.2, that θ(u)σ = θ(u) if and
only if uσ — u. Thus the result follows. D

By the analytic description of Drinfeld modules via lattices, there
is an A-lattice α of K and an A-module isomorphism

a : K/a-^Ύoτ(φ).

Then one can follow the methods in [L], Chap. 10, §4, to get

THEOREM 1.2. Assume K C L. Let IL be the set of ideles of L.
Then,
(i) L(Toτφ) is abelian over L and there is a unique homomor-

phism

χφ : 7L —> K*

making the following diagram commutative
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K/a

K/a

Tov(φ)

(β,L)

Ύov(φ)

0*Lv, and

where (s, L) is the Artin map.

(ii) Xφ has finite order on the subgroup Π ^ L * x Iiv)[O

Xφ(s) =NL/K(s) forseL*.

(iii) If V is a prime ideal of OL where φ has good reduction, then
Xφ is unramified atV, that is, Xφ is trivial on local V-units. In
this case Xφ{V) is well-defined and the reduction θ(χφ(V)) of
θ(χφ(V)) at V is the Frobenius homomorphism of the reduced
Drinfeld module φ at V.

Proof. Let σ be an automorphism of L(Tor(^)) over L inducing
(SjL) on the maximal abelian subfield of L(Toτ(φ)). Then the re-
striction of σ to Kab is equal to

(NL/κ(s),K).

). Then applying (1.12) of [Ge], we get an A- module

β : K/Γιa^Tor(φσ)

Let t —
isomorphism

making the following diagram commutative with φσ — σ, since φ is
defined over L;

K/a

- 1Kjt

Now the rest of the proof is just the translation of the proofs of
Theorems 8 and 9 of [L], Chap. 10, §4 into the Drinfeld setting.
Note that χψ(s) in this note is μ(s) in the notation of [L]. D
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REMARKS. 1. Above theorem implies that χ is an algebraic
Hecke character of weight 1 in the sense of Gross [Grl].

2. It is easy to see that χψ — χψ> if and only if φ and φι are
isogenous over L.

Nowwe will consider the case K (jL L. For this we need some
properties of reductions of Drinfeld modules.

PROPOSITION 1.3. Let M be a complete field with discrete valua-
tion υ, R its ring of integers andm its maximal ideal. Suppose that
the residue field R/ra is with characteristic V C A, and a G A\V.
Let v be the extension of v on Ms. Put

Rs = {xe Ms : ϋ{x) > 0}

ms = {xe Rs : ϋ(x) > 0}.

Let φ be a Drinfeld module of rank 2 defined over R. Then
(i) Tor0(m5) = {x G xns : x E Tor(φ)} has no nontrivial points of

order a.

(ii) // φ has good reduction mod m; then

Tovφ(R)a = {x G Rs : φa(x) = 0} —+ Ύoτφ (R/m)

is injective and M(ΎoVφ(Rs)a) is an unramified extension of
M.

Proof (ii) follows easily from (i). To show (i) let x be a nonzero
element in ms. Then

v(φa(x)) = v(ax) = v(x) > 0, since φa{x) = CLX (mod xq).

Hence φa(x) φ 0. D

LEMMA 1.4. Let the notations be the same as in Proposition 1.3.
Assume that φ lias good reduction. Then the reduction map

End{φ) —> End(φ)

is well-defined and injective.

Proof This follows from (3.3) of [Ge]. D

Wo now go back to our situation.
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THEOREM 1.5. Let φ be defined over a global function field Lo

not containing K. Let L — LQK. Let VQ be a prime ideal of OL0

where φ has good reduction. Let

be the automorphism of L over LQ and V and V be the primes of
L above VQ. Let Xφ(V) be defined as in Theorem 1.2 taking φ to be
defined over L. Then

(i) VQ is unramified in L.
(ii) Xφ(V)f = Xφ(Vf). Let UVo (resp. Uv and I V ) be the Frobe-

nius endomorphism of the reduction φ(Vo) at Vo (resp. φ(V) and
φ(V) atV andV viewingφ overL). Let(p(T)) = NLo/k(V0) where
p(T) is a monic polynomial in A.

(iii) // Vo remain prime in L, then Πp0 is not rational and we
have

Πp = UpQ and Π^ — φμp(τ) with μ G F*.

In this case Φ(VQ) is super singular.
(iv) // Vo splits completely in L, then

^
τiVo=θ(χφ(V))andnVo=θ(Xφ(V')).

In this case φ(Vo) is not super singular.

Proof, (i) follows from Lemma 1.4. Exactly the same argument
as in [L] would prove (ii). If Vo remain prime, then V — V and
UpQ = Πv. Thus Xφ(V) is fixed by σ and hence χψ(V) is rational.
Hence Up = Φμp(τ) where μ G F*, and this proves (iii).

Now suppose that Vo splits completely in L. Then Tl-p0 = Π^.
Thus Π<p0 is the reduction of θ(χψ(V)) mod V. Furthermore

f)y = φNκ/k{Xφ{v)).
Taking bar, we get

D
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2. Twists of Drinfeld modules. Let j(φ) denote the /-invariant
of a Drinfeld module φ.

THEOREM 2.1. Let φ be a Drinfeld over a field L. Than there is
a bijecίion between the sets

\ Isomorphism classes φ \ ττ\(n \ + < L\\
\ T u •( r\ ίA\(<—> Hι[G, AntL,(φ))
[ over L with j [φ) = ;j(φ) J '

winch takes φ to the trivial class. Here G = Gal(L's/L).

Proof. Suppose that j(φ) φ 0. Then AutLs(φ) = F*. If j(φ) =

J{Φ)i w e c a n choose an element c G L such that

cφcΓ1 = φ.

Then cq~] G L, since j(φ) φ 0. Hence c G Ls. Define a map

by ΊiΦ{σ) = σ(c)/c. Since cf/~ι G L, σ(c) = //c with μ G F* by
Kurnmer theory. Hence σ(c)/c G F* and ηψ is well-defined and
gives an element of H](G, AuU s (φ)).

Conversely, let

be a cocycle. Since Hι(G, (Ls)*) is trivial and F* C (L5)*, there is
an element c G (L6)* such that

η(σ) = σ(c)/c.

Since σ{c)/c G FJ, α ( c ^ 1 ) = ά'1. Thus c 9 " 1 G L and the Drinfeld
module φη = c^c"1 is defined over L. It is easy to see that the maps

ψ i—> ηψ and η ι—>• c/)77

are inverses to each other.
If j(φ) = 0, then Antιs(φ) = F*2. But the same proof as above

will give the results in this case too. D

We call φη the twist of φ assosiated to η G Hι(G, AutLs (</>)).
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REMARK. Theorem 2.1 holds for Drinfeld modules which arc not
singular.

Now we will consider the action of the twists on the Hecke charac-
ters. Let L = H be the Hubert class field of A", that is, the maximal
unramified abelian extension of A' where oc splits completely. It is
well-known that H = K(j(φ)) for any Drinfeld module φ with com-
plex multiplication by A'. Let G = GΛ\(HS/H). AS in the proof of
Theorem 2.1, each η G H{(G,A\ιtj[s(φ)) corresponds to an element
c{η) of (HSY such that

Φη = c(η)φc{7i)-1.

We also know that

c(η)η~} G H if j(φ) φ 0

and

ciηf-1 eHiϊ;j(ψ) = 0.

Thus we can identify Hι(G, Aut,,s(φ)) with

• if j ^ o

*iij = 0.

From now on, we assume that Endc{Φ) is isomorphic to OK-> the ring
of integers of A. Since A C H, any endomorphism of φ is defined
over H by Lemma 1.1. Hence any class η in Hι(G,A\itjfs(φ)) is
represented by a continuous homomorphism

η : G - * Ό\.

Here η(σ) — σ(c(η))/c(η) and

The Artin homomorphism

(,H):IH/H*—>Gab
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allows us to view 77 as a continuous homomorphism

η = ηo(,H):IH—* K\

which is trivial on the principal ideles.

PROPOSITION 2.2. For η e H1(G,AutHs(φ)),φη has complex
multiplication by Oχ over H and

Proof. Since φη — c(η) φ c(η)

Let u 6
Then

— 1

(φη) =c(η) Έndff(φ) c(η) ι.

. Then u — Σatτ
% with α̂  G H where τ(x) = xq.

Hence c(η) u • c(η)~ι is defined over H by the construction of c(η) if
j(φ) Φ 0. If j(φ) — 0, it is easy to see that α̂  = 0 for odd i. Hence
c(η) • u • c{η)~ι is defined over H in this case too.

Consider the following commutative diagram in Theorem 1.2,

K/a Ίor(φ)

(s,H)

K/a — 2 ^ Tor((/>)

and

K/a
c(η)a

Ύor(φη)

Xφn(s)NH/κ(s-
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Assume that j(φ) Φ 0.
We have, for x € K/a,

(c(η)a(x)){s'H) = c(η){s'H)a(x){s'H)

If j(φ) φ 0, then the last equation is equal to

c(η) • a(η((s,H)) • χφ(s)NH/κ(s-ι)x),

c(ηY
since η((s,H)) — ^ — G F* Therefore, from the latter dia-

c(η)
gram,

χφη(s) =η{s)χφ(s).

lϊ j(φ) = 0, then K = Fqi(T) and a is F92-linear. Hence the result
follows in this case too. D

LEMMA 2.3. Let φ and ψ be two singular Drinfeld modules over
H with complex multiplication by Oχ. Then they become isogenous
over Hs.

Proof. It is easy to see that φ and ψ are isogenous over H. Let

u : φ —> ψ

be an isogeny over H. Write

U =

φτ = T + gr + Δr 2

and
φτ = T + g'τ + A'τ

where g, g', Δ and Δ' are in H.
Then

α r Δ
? r = a? A'.



224 SUNGHAN BAE

Hence a G Hs. One can use induction to show that ar-i G Hs for
every i > 0. Hence φ and ψ are isogenous over Hs.

Suppose that φ and ψ are two singular Drinfeld modules over H
with complex multiplication by Oχ- Choose an isogeny

u : φ — > ψ

over Hs. Let A — deg u denote the monic generator of the A-degree
ideal of u (see [B-K] for the definition of the Λ-degree ideal), and
u denote the isogeny

ύ : ψ — > φ

such that

UOU — φA-

and

UOU = φA-

Clearly u is defined over Hs.
Define a 1-cocycle

η:G = G<d\{Hs/H) —> (EndΠs(φ) ΘΛ k)*

σ i—> ύ o σ(u) ® 4 _ ^ ^ = w o σ(u) o ^ i d e g ? /

It is easy to see that // is continuous and independent of the choice
of ?/. As before one can define the induced homomorphism

D

Then the same proof as in Proposition 2.2 gives,

PROPOSITION 2.4. Let φ.Φ andη arc sa above. Them

\u = n ' XΦ '- hi —> A'*.
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3. Drinfeld Modules over H. To each singular Drinfeld mod-
ule φ over H with complex multiplication by OK-, we have associated
two invariants :

the j-invariant j(φ) G H
the Hecke character χφ : IH —> K*.

The j-invariants of such Drinfeld modules form a finite set J of
cardinality h = #C\(OK). We have the following classification the-
orem for singular Drinfeld modules over ϋf, whose proof is exactly
the same as in the classical case [Gr2],

THEOREM 3.1.

(a) Let j be an element of J and let

χ:IH-+K*

be a homomorphism whose restriction to H* is the norm, and
satisfies the condition that χ has finite order on the subgroup

Then there is a singular Drinfeld module φ with complex mul-
tiplication by OK over K with j(φ) = j and χφ = χ.

(b) The character Xφ determines the isogeny class of φ over H',
and the pair (j(φ),Xφ) determines the isomorphism class of φ
over H. Two singular Drinfeld modules are isomorphic over
H if they are isogeneous over H and isomorphic over Hs.

Proof Given j and χ, let ψ be any Drinfeld module over H with

j(φ) = j . Let

R=x/Xψ IH —> K*.

Then 77 is trivial on //"*, and thus induces

η:G = Gzl{Hs/H) —> K\

via the Artin isomorphism. Since η is of finite order on Ily^H* x
ΠυfooC?J/t;, the image of η lies in O*κ = μ(K*). Then by Proposition
2.2, the Drinfeld module φ = ψη has complex multiplication by Oκ
with j(φ) — j(ψ) = j and Xφ = Xψ η = χ But Proposition 2.4
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implies that χφ determines φ up to isogeny over H. By Proposition
2.2, the pair (j,χφ) determines φ up to //-isomorphisms. D

REMARK. The condition that χ has finite order on the subgroup

Πί;|oo//^ X Π^ooO/y ϊ ;

is stronger than the condition that χ is continuous. The reason for
this condition is that lu/H* contains a subgroup isomorphic to Z.

Next we will consider the action of the group Gal(///fc). Let
σ £ G&\(H/K). The action of σ on χφ is given by

Exactly the same proof as in the classical theory would give

LEMMA 3.2. If ψ = φσ, then χψ = σ(χφ).

Let φ and ψ be two singular Drinfeld modules with complex mul-
tiplication by OK- The group Homπ(φ,ψ) is trivial unless χφ — \ψ
by Proposition 2.2. Hence assume that χφ = Xψ. Then, by Propo-
sition 2.4,

KomH(φ,ψ) =

Let the association [α] \-> σ[a] be the Artin isomorphism

C\{OK) ^+ Gal{H/K).

Then

=σ[a](j(φ))

for some integral ideal α of Oχ. Then we have

LEMMA 3.3. If χφ = χ-ψ and j(ψ) = &[a](j(Φ)), then the group
Hoπiif(y\ φ) becomes a projective Oχ-module of rank 1. One has an
isomorphism

a -—>Homir('ψ,φ)

a i—> un
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wliere the A-degree ideal of u^ is equal to

Here tli.e O^-module structure ts given by tlie isomorphism

4. Descended Drinfeld modules. Let o be a singular Drinfeld
module1 with complex multiplication by (9/x and let II{] = k(j(φ)).
Then by [Ge] ( 1.3) that [// : 7/()] = 2. Let

Gal(/////()) = (σ).

\\> say that o can b(Λ descended to //() if there is a Drinίeld module
ό(, over //() which is isomorphic to φ over //. Then we have.

PROPOSITION 4.1. Tlie singular Drmfeld 'module ό ca/n, be de-
scended to //(). //' and. only if <?{j{ώ)) = j(φ) and o~(\φ) = \φ.

Proof. The "only if part is easy and the same as in the classical
case.

Now assume that j(φ) and \φ are invariant under σ. Suppose that
j{φ) φ 0. Let G = Gcύ{H«/H{)) and Go = Cr<ι\(Hζ/H). Oner we

have identified H{{G,O*N) (rasp. H{{G^O*K)) with (H^) ///*

resp. (i/iPτ)* /H*\ Then the map

associated to the restriction map

is just the map induced by the inclusion

Since j(φ) lies in i/0, we can find a Drinfeld module φ over HQ with

( 1 \ *

Hv-1 ) such that

φ — cφc~ι.
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( 1 \ *

H~) IH*. Then the action of σ

on [r] is as follows :
Lot (1 = rq ' G H and σ(r) bo any (</ - l)st root of σ{d). Thou

define
rτ([r]) = [σ(r)}.

Sui)]X).sc that σ(\o) = \φ. Then \ψ/\r lies in the subgroup
Hι(G(].O*κ)^ and \,;>/\,. 'corresponds to [<]. Honco [r] = [σ(c)}

in ( / / ^ ) * ///*. i.e.. r = o (r) /; with /; G //. Tims

and so

siiκ (λ a" = if/ on // .

{hσ(h))"-1 = 1 .

Thus

However K/k is an imaginary cμiadratie extension, // € F^, i.e.,
//, = v'K v e F*. Then

Honco by Hubert Theorem 90,

-

for some h\ G H. Let

Then it is easy to see that

σ(dχ) = rii, i.e. dL G i/o

Let ci he any (q — l)-th root of d\. Then [c] is the image of [c\]
under restriction and C\ψci[λ is defined over H{) and isomorphic to
ώ over H.
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In the case of j(φ) = 0, H = K = F ρ 2 (Γ) and Ho = k = Fq(T).
Thus the proof is easy and left to the reader. •

REMARK. The proof of the above theorem is different from that
of the classical case because one cannot lift σ to Hs.

Let G = Gal(# o7#o) and ε be the class in Hι{G,O*κ) which is
represented by the quadratic character

ε : G —-> G a l ( # / # 0 ) -> O^.

Then we have

THEOREM 4.2.

(a) Two descended Drinfeld modules φ and ψ are isogenous over
HQ if and only if χφ = χ^.

(b) Within each Ho-isogeny class {φ} with a fixed j -invariant there
are exactly 2 HG isomorphism classes, represented by the mod-
ules φ and φε. These Drinfeld modules become isomorphic
over H, where the Ho-isogeny u : φ —> φε becomes a complex
multiplication.

Proof, (a) If φ and ψ are isogenous over Ho, then they are isoge-
nous over H, so χφ = χψ Now assume χφ = χψ. Then ^ and Φ are
isogenous over H. Let

?i : 0 —> φ

be an H-isogeny and α as in section 2. Lot α be an element of Λ'*
such that

Then

θ(a) = u o σ ^ G (Endπ(φ)
0.4-deg M

7/ o σ(?i) σ(ύ) o ?/,

0/t-dog ?/ Φλ-deg ?/

'/i o o (ίm) o u
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7/ O Ίu Λ A O U

__ — — - egu ^ s i n C e ψ is descended

Φ(A-άeg u)2

_ UO UO φA-άeg u

Φ(A-deg u)2

ψA—deg u ° γ^Λ—deg tx -*

Φ{A-deg u)2

Hence by Hubert 90, a = b/σ(b) for some b e K. Let v! — uo 0(6).
Then σ(u') = τj; and so u' is defined over HQ.

(b) Let G = Gal(ίfo

5//ίo) and Go - Gal(Hξ/H) = G&l(Hs/H).
Then the same method as in the classical case will give the re-
sult. D
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