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HECKE CHARACTERS OF SINGULAR DRINFELD
MODULES

SUNGHAN BAE

The j-invariant j of a Drinfeld module of rank 2 on F [T
over C' determine an isomorphism class of Drinfeld mod-
ules over C. But for singular Drinfeld modules the pair
(j,x) of a singular j-invariant j and an algebraic Hecke
character x represent an H-isomorphism class of singular
Drinfeld modules, where H is the Hilbert class field of
certain imaginary quadratic function field.

0. Introduction. In the theory of elliptic curves (or more gener-
ally, abelian varieties) with complex multiplication, the Hecke char-
acters play some important roles, such as the classification of isogeny
classes of elliptic curves and the study of zeta functions. In the the-
ory of Drinfeld modules, Gross introduced the notion of algebraic
Hecke characters [Grl]. In this note we restrict ourselves to the
Hecke characters arising from the singular Drinfeld modules of rank
2on A = F [T}, and see the correspondences between isogeny classes
or isomorphism classes of singular Drinfeld modules and Hecke char-
acters.

We fix the following notations throughout this paper:

F,: finite field of g-elements

A =F,[T], k=F,(T)

K = quadratic extension of £ where oo does not split
L# = separable closure of a field L

L = algebraic closure of a field L.

1. Hecke Characters and Frobenius morphism. Let L be
an A-field. In this note by a Drinfeld module over L we always
mean a Drinfeld module of rank 2 on A. Thus a Drinfeld module ¢
is completely determined by

or(X)=TX 4+ gX7+AXT
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with g, A € L.

From now on, unless otherwise stated, we suppose that L is a
global function field, that is, a finite extension of £ and that ¢ is a
singular Drinfeld module with End(¢) isomorphic to an order O of
an imaginary quadratic function field K. We fix an isomorphism

§ : K — End(¢); = End(¢) ®,
so that 1(01_5\21 = « for @ € O, viewing () as an additive polynomial
in X. Such an isomorphism 6 is said to be normalized. (See [B-K]

for more details.)

LEMMA 1.1. K is contained in L if and only if every element in
End(¢) s defined over L.

Proof. Let 0 € Aut(L*/L) and v € O. Then we have

do(u)®
ax_

Hence it follows from [B-K]|, Prop. 2.2, that 8(u)? = 6(u) if and
only if u° = u. Thus the result follows. Il

By the analytic description of Drinfeld modules via lattices, there
is an A-lattice a of K and an A-module isomorphism

a : K/a— Tor(¢).
Then one can follow the methods in [L], Chap. 10, §4, to get
THEOREM 1.2. Assume K C L. Let I}, be the set of ideles of L.

Then,
(i) L(Tor¢) is abelian over L and there is a unique homomor-

phism

Xo - IL—)K*

making the following diagram commutative
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K/a —=— Tor(¢)
Xo(S)Np k(s™1) (s,L)

K/a —*— Tor(¢)

where (s, L) is the Artin map.

(ii) xg has finite order on the subgroup Il oL} X yeoO] ,,, and
x¢(8) = Nk (s) for s € L*.

(iii) If P is a prime ideal of O where ¢ has good reduction, then
Xo 1S unramified at P, that is, x4 1S trivial on local P-units. In
this case x5(P) is well-defined and the reduction 6(x,(P)) of
0(x4(P)) at P is the Frobenius homomorphism of the reduced
Drinfeld module ¢ at P.

Proof. Let o be an automorphism of L(Tor(¢)) over L inducing
(s, L) on the maximal abelian subfield of L(Tor(¢)). Then the re-
striction of o to K% is equal to

(NL/K(S), K)
Let t = Ng,1(s). Then applying (1.12) of [Ge], we get an A- module
isomorphism
B K/t'a = Tor(¢°)

making the following diagram commutative with ¢” = o, since ¢ is
defined over L;

K/a —=— Tor(¢)

K/t7'6 —L— Tor(¢).

Now the rest of the proof is just the translation of the proofs of
Theorems 8 and 9 of [L], Chap. 10, §4 into the Drinfeld setting.
Note that x4(s) in this note is p(s) in the notation of [L]. U
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REMARKS. 1. Above theorem implies that x is an algebraic
Hecke character of weight 1 in the sense of Gross [Gr1].

2.1t is easy to see that x4 = x4 if and only if ¢ and ¢’ are
isogenous over L.

Nowwe will consider the case K ¢ L. For this we need some
properties of reductions of Drinfeld modules.

PROPOSITION 1.3. Let M be a complete field with discrete valua-
tion v, R its ring of integers and m its mazimal ideal. Suppose that
the residue field R/m is with characteristic P C A, and a € A\P.
Let © be the extension of v on M?®. Put

R: ={x € M*:0(z) > 0}

m* = {z € R*: 9(z) > 0}

Let ¢ be a Drinfeld module of rank 2 defined over R. Then
(i) Tory(m*) = {z € m*: z € Tor(¢)} has no nontrivial points of
order a.

(ii) If ¢ has good reduction mod m, then

Tory(R), = {z € R’ : ¢o(x) = 0} —> Tor, (R/m)

is injective and M (Tory(R®),) s an unramified extension of
M.

Proof. (ii) follows casily from (i). To show (i) let z be a nonzero
element in m®. Then

0(¢a(z)) = 0(ax) = 0(x) > 0, since ¢,(z) = ax  (mod z7).
Hence ¢,(z) # 0. O

LEMMA 1.4. Let the notations be the same as in Proposition 1.3.
Assume that ¢ has good reduction. Then the reduction map

End(¢) — End(¢)
1s well-defined and injective.
Proof. This follows from (3.3) of [Ge]. 0J

We now go back to our sitnation.
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THEOREM 1.5. Let ¢ be defined over a global function field Ly
not containing K. Let L = LoK. Let Py be a prime ideal of Oy,
where ¢ has good reduction. Let

o:&— ¢

be the automorphism of L over Ly and P and P’ be the primes of
L above Py. Let x4(P) be defined as in Theorem 1.2 taking ¢ to be
defined over L. Then

(i) Py is unramified in L.

(i) x¢(P) = xo(P"). Let Ilp, (resp. lp and Ilp) be the Frobe-
nius endomorphism of the reduction ¢(Py) at Py (resp. #(P) and
@(P') at P and P’ viewing ¢ over L). Let (p(T)) = Ny,x(Po) where
p(T) is a monic polynomial in A.

(iii) If Po remain prime in L, then Ilp, is not rational and we
have

Ilp = H%O and H% = Q—ﬁﬂp(T) with p € F .
In this case ¢(Py) is supersingular.

(iv) If Py splits completely in L, then

H'Po = H'P: .
Ip, = 0(x4(P)) and H',,O = 0(x»(P")).

In this case ¢(Py) is not supersingular.

Proof. (i) follows from Lemma 1.4. Exactly the same argument
as in [L] would prove (ii). If Py remain prime, then P = P’ and
I3, = IIp. Thus x,(P) is fixed by o and hence x4(P) is rational.
Hence Ilp = ¢,p(r) where p € F}, and this proves (iii).

Now suppose that Py splits completely in L. Then Ilp, = Ilp.
Thus IIp, is the reduction of §(xs(P)) mod P. Furthermore

9(X¢(P))0(X¢(P,))’ = ¢NK/k(X¢(7’))'
Taking bar, we get

Iy, = 6(xs(P)").
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2. Twists of Drinfeld modules. Let j(¢) denote the j-invariant
of a Drinfeld module ¢.

THEOREM 2.1. Let ¢ be a Drinfeld over a field L. Then there is
a bujection between the sets

{ Isomorphism classes 1 } H'(G At ()

over L with j(v) = j(¢)
which takes ¢ to the trivial class. Here G = Gal(L*/L).
Proof. Suppose that j(¢) # 0. Then Autr(¢) = F;. If j(v) =
j(¢), we can choose an clement ¢ € L such that
coct = 1.
Then ¢! € L, since j(¢) # 0. Hence ¢ € L*. Define a map

Ty - G — Aut;,«(qﬁ) = F;

by ny(0) = o(c)/e. Since 7' € L, o(c) = pc with € Fj; by
Kummer theory. Hence o(c)/c € F; and ny is well-defined and
gives an element of H'(G, Auty:(¢)).

Conversely, let

n: G — Autps(¢) = F}
be a cocycle. Since H'(G, (L*)*) is trivial and F; C (L*)*, there is
an clement ¢ € (L*)* such that
0(o) = o(c)/e.
Since o(c)/c € Fy, o(c47!) = ¢?"'. Thus ¢*~' € L and the Drinfeld
module ¢" = céc™! is defined over L. It is easy to see that the maps
1 —> 1y and g —> @

arc inverses to cach other.
If j(¢) = 0, then Autzs(¢) = Fy,. But the same proof as above
will give the results in this case too. 0

We call ¢" the twist of ¢ assosiated to n € HY(G, Autps(¢)).
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REMARK. Theorem 2.1 holds for Drinfeld modules which are not
singular.

Now we will consider the action of the twists on the Hecke charac-
ters. Let L = H be the Hilbert class field of /', that is, the maximal
unramified abelian extension of A where oc splits completely. It is
well-known that H = K (j(¢)) for any Drinfeld module ¢ with com-
plex multiplication by K. Let G = Gal(H*/H). As in the proof of
Theorem 2.1, cach n € H'(G, Auty (o)) corresponds to an element
¢(n) of (H*)* such that

O = c(n)ge(n) ™"

We also know that
c(m)?' e Hif j(¢) #0

and

c(n)” " € Hif j(¢) = 0.
Thus we can identify H'(G. Autys(¢)) with
(HT)*/H* if j #0
(Ha-1)*/H*if j = 0.

From now on, we assume that End¢(¢) is isomorphic to Ok, the ring
of integers of K. Since K C H, any endomorphism of ¢ is defined
over H by Lemma 1.1. Hence any class n in H'(G, Autys(¢)) is
represented by a continuous homomorphism

n:G— Ok.
Here n(0) = a(c(n))/c(n) and
F, if j(¢) #0

F., if j(4) = 0.

Ox =
The Artin homomorphism

(\H): Iy/H — G*
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allows us to view 7 as a continuous homomorphism

n no(,H): Iy — K,

which is trivial on the principal ideles.

PROPOSITION 2.2. For n € H'(G,Autys(¢)),d" has complex
multiplication by Ok over H and

Xon = 1" Xo-

Proof. Since ¢" = c(n) - ¢ - c(n) 71,

Endg (") = ¢(n) - Endg(¢) - c(n) ™"

Let u € Endg(¢). Then u = ¥ a,7* with a; € H where 7(z) = 7.
Then

e(n) - u-cn)™ =3 aie(n) =T

Hence ¢(n)-u-c(n)~! is defined over H by the construction of c(n) if
J(@) # 0. If j(¢) =0, it is easy to see that a; = 0 for odd i. Hence
c(n) - u-¢(n)~! is defined over H in this case too.

Consider the following commutative diagram in Theorem 1.2,

K/a —%—~ Tor(¢)
X¢($)Nu/k(s™1) (s,H)

K/a —— Tor(¢)

and

K/a _clme, Tor(¢")
X¢n (8) Ny k(s™1) (s,H).

K/a =22, Tor(4")
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Assume that j(¢) # 0.
We have, for z € K/a,

(c(mal(z))>™) = () Pa(z)
= ¢(n)*a(xs(s) Nk (s71)x)
c(n)>H
c(n)

= c(n) o(Xs(s)Naayic(s7")x).

If j(#) # 0, then the last equation is equal to
c(n) - a(n((s, H)) - x4(s)Nuyx(s)z),

c(n)(=H)

c(n)
Xgn(8) = n(8)xp(8)-

If j(¢) =0, then K = F(T) and « is Fp-linear. Hence the result
follows in this case too. ]

since n((s,H)) =
gram,

€ F,. Therefore, from the latter dia-

LEMMA 2.3. Let ¢ and v be two singular Drinfeld modules over
H with complex multiplication by Ok. Then they become isogenous
over H®.

Proof. It is easy to see that ¢ and ¢ are isogenous over H. Let
U:p—

be an isogeny over H. Write
r
U= Z a; 7",
1=0

¢r =T + g7 + AT?
and
Yr=T+g'7+A7%

where ¢, ¢, A and A’ are in H.
Then
0, A7 = al A
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Hence a € H*. One can use induction to show that a,_; € H® for
every ¢ > 0. Hence ¢ and 1 are isogenous over H*.

Suppose that ¢ and 1 are two singular Drinfeld modules over H
with complex multiplication by Og. Choose an isogeny

u:p—

over H®. Let A —deg u denote the monic generator of the A-degree
ideal of u (see [B-K] for the definition of the A-degree ideal), and
@ denote the isogeny

U:p — ¢

such that

uou = ¢A—degu

and

Uou = 'l/)/l-degu-

Clearly u is defined over H®.
Define a 1-cocvcle

n:G=Gal(H*/H) — (Endj:(¢) @4 k)*

oo O—(,“‘) ® =1o 0-((”’) © ¢;-l—'<leg U

A—degu

[t is casy to see that 7 is continuous and independent of the choice
of u. As before one can define the induced homomorphism

7 ]” — 07\

Then the same proof as in Proposition 2.2 gives,

PROPOSITION 2.4. Let . and 1 are sa above. Then

o=\ Ly — KT
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3. Drinfeld Modules over H. To each singular Drinfeld mod-
ule ¢ over H with complex multiplication by O, we have associated
two invariants :

the j-invariant j(¢) € H
the Hecke character x4 : [y — K™.

The j-invariants of such Drinfeld modules form a finite set J of
cardinality h = #Cl(Og). We have the following classification the-
orem for singular Drinfeld modules over H, whose proof is exactly
the same as in the classical case [Gr2].

THEOREM 3.1.
(a) Let j be an element of J and let

x: Iy — K*

be a homomorphism whose restriction to H* is the norm, and
satisfies the condition that x has finite order on the subgroup

Myjoo HZ X Myjes O o -

Then there is a singular Drinfeld module ¢ with complex mul-
tiplication by Ok over K with j(¢) = j and Xy = X.

(b) The character x4 determines the isogeny class of ¢ over H,
and the pair (j(4), x4) determines the isomorphism class of ¢
over H. Two singular Drinfeld modules are isomorphic over
H if they are isogeneous over H and isomorphic over H®.

Proof. Given j and Y, let 9 be any Drinfeld module over H with
(W) = j. Let
n=x/xy: In — K.

Then 7 is trivial on H*, and thus induces
n:G=Ga(H/H) — K*,

via the Artin isomorphism. Since 7 is of finite order on Il H, X
Moo O ,» the image of 1 lies in O} = u(K*). Then by Proposition
2.2, the Drinfeld module ¢ = 9" has complex multiplication by Ok
with j(¢) = j(v») = j and x4 = xy -7 = Xx. But Proposition 2.4
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implies that x, determines ¢ up to isogeny over H. By Proposition
2.2, the pair (j, x4) determines ¢ up to H-isomorphisms. O

REMARK. The condition that x has finite order on the subgroup

Hv]ooH; X Hv’[oo 07]’1;

is stronger than the condition that y is continuous. The reason for
this condition is that I;;/H* contains a subgroup isomorphic to Z.

Next we will consider the action of the group Gal(H/k). Let
o € Gal(H/K). The action of o on x4 is given by

7 (xo)(s) = o(xp(07's)).
Exactly the same proof as in the classical theory would give
LEMMA 3.2. If ¢ = @7, then xy = 0(Xo)-

Let ¢ and ¥ be two singular Drinfeld modules with complex mul-
tiplication by Ok. The group Homy (¢, 1) is trivial unless x, = xu
by Proposition 2.2. Hence assume that x4 = Xxy. Then, by Propo-
sition 2.4,

Homy (¢, ¢) = Homy: (¢, ¥).
Let the association [a] — o[q) be the Artin isomorphism
Cl(Ok) — Gal(H/K).

Then
i) = o1q(i(¢))

for some integral ideal a of Of. Then we have

LEMMA 3.3. If xy = xy and j(¢) = o1q(j(@)), then the group
Homy (1, @) becomes a projective Ok -module of rank 1. One has an
wsomorphism

a -:—> HOI’H”(’L/), ¢)

(v — g
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where the A-degree ideal of u, s cqual to
(‘\vl\'/k“ ) (‘/\/l\'/ka) - .

Here the Opc-module structure s groen by the isomorphisin,

0: 0 =~ Endy(o).

4. Descended Drinfeld modules. Let o be asingular Drinfeld
module with complex multiplication by Oy and let Hy = F(j(o)).
Then by [Ge] (1.5) that [H 2 I;] = 2. Let

(:El](/[/[]()) = <(f>

Wo say that o can be descended to Hy if there is a Drinfeld module
O, over Ty which is isomorphic to ¢ over H. Then we have.

ProrositioN A.1. The singular Drinfeld module o can be de-
scended to Hy. iof and only if o(j(0)) = j(¢) and a(\y) = Yo

Proof. The only if” part is casy and the same as in the classical
case.
Now assume that j(¢) and y, are invariant under 0. Suppose that

J(@d) #0. Let ¢ = Gal(Hj/H,y) and Gy = Gal(Hj/H). Once we
have identificd H'(G, O3) (resp. H'(Gy, O})) with <H(;’.:'> JH}

(1‘(‘8]). (Hﬁi—l)* /H*). Then the map
(1) 15— (H) i
associated to the restriction map
H'(G,0%) — H'(Gy, OF)
is just the map induced by the inclusion
(a77) — ()"
Since j(¢) lies in Hy, we can find a Drinfeld module 1 over H, with

Jj(1) = j(¢#). Then there is an clement ¢ € (Hq{—ly such that

¢ = cpe
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Let [¢] denote the class of ¢ in (Hﬁ)* JH*. Then the action of o
on [c] is as follows :

Let d = ¢V € H and o(c¢) be any (¢ — 1)st root of o(d). Then
define

Suppose that o(\,) = \,. Then \,/\, lies in the subgroup
H'(Gy. O5) and \,/\,. corresponds to [¢]. Hence [¢] = [o(c)]
in (HTL) JH* ic..c=a(c)-hwith h € H. Thus

d=a(d)h’'

and so

a(d) = do(h)"!
since 02 = id on H. Therefore
(ho(h)T ' = 1.

Thus
ho(h) = € Fy.

However N/k is an imaginary quadratic extension, p € F;ZI, i.ce.,

p=1* veF; Then
h [h
h, (_) -1
vo\v
Hence by Hilbert Theorem 90,

h
- = hy/o(hy)

for some h; € H. Let
dl = d/h(ll——l
Then it is easy to see that

o(dy) =d,, i.c. d, € Hy.

Let ¢ be any (g — 1)-th root of d;. Then [¢] is the image of [¢]
under restriction and ¢ fz/)(:l'] is defined over Hy and isomorphic to
¢ over H.
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In the case of j(¢) =0, H = K = Fp(T) and Hy = k = F (7).
Thus the proof is easy and left to the reader. O

REMARK. The proof of the above theorem is different from that
of the classical case because one cannot lift o to H*®.

Let G = Gal(H/H,) and ¢ be the class in H!(G, O}) which is
represented by the quadratic character

e:G — Gal(H/Hp) — O.
Then we have

THEOREM 4.2.

(a) Two descended Drinfeld modules ¢ and 1 are isogenous over
Hy if and only if x4 = Xxu-

(b)  Within each Hy-1sogeny class {¢} with a fized j-invariant there
are exactly 2 Hy isomorphism classes, represented by the mod-
ules ¢ and ¢°. These Drinfeld modules become isomorphic
over H, where the Hy-isogeny u : ¢ — ¢° becomes a complex
multiplication.

Proof. (a) If ¢ and ¢ are isogenous over Hy, then they are isoge-
nous over H, so x4 = Xy. Now assume X4 = Xy. Then ¢ and ) are
isogenous over H. Let

u:o—> Y
be an H-isogeny and i as in section 2. Let a be an element of A
such that o
woa(u
f(a) = ———

= € (En(l[[ ((f)) ®a ]1’7)*.
¢A—(Ieg u

Then
0(Nira) = 6(a - o(a))

_doo(u) o(ld)ou

¢A—d<:g u d)A—-deg u
o o(tu)ou

(,b(.»'\—d(‘.g 1)?

il © U("/’A—«l(‘g u) ou

D(A=deg u)?
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_ U0 Padegu u, since v is descended
¢(A~deg u)?
Gouo ¢A—deg u
¢(A——deg u)?
— ¢A—deg u© ¢A-deg uo_ 1
¢(A~deg u)?

Hence by Hilbert 90, a = b/0(b) for some b € K. Let v’ = u o (b).
Then o(u') = «’ and so v’ is defined over Hy.

(b) Let G = Gal(H§/Hy) and Gy = Gal(H§/H) = Gal(H*/H).
Then the same method as in the classical case will give the re-
sult. 0
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