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JEAN BOURGAIN'S ANALYTIC PARTITION OF
UNITY VIA HOLOMORPHIC MARTINGALES

PAUL F.X. MULLER

Using stopping time arguments on holomorphic mar-
tingales we present a soft way of constructing J. Bour-
gain's analytic partition of unity. Further applications
to Marcinkiewicz interpolation in weighted Hardy spaces
are discussed.

1. Introduction. In his 1984 Acta Mathematica paper Jean
Bourgain derives new Banach space properties of H°° and the disc
algebra from the existence of the following analytic partition of
unity:

THEOREM 1 [J. Bourgain]. Given f', a strictly positive integrable
function on T with f f(t) dt = 1 and 0 < δ < 1 then, there exist
functions Tj,jj G H°°(T) and positive numbers Cj such that:

i hi\L<c
2. Σ
3.

4.

5

Here I wish to present a soft way to this construction which results
from using probabilistic tools such as holomorphic martingales.

I should like to point out here that a proof for the existence of
analytic partitions of unity - much simpler than J. Bourgain's - has-
been given recently by Serguei Kislyakov. See [Kl] and [K2]. In
[K3] S. Kislyakov derived J. Bourgain's result on p-summing oper-
ators from the following weighted Marcinkiewicz decomposition.

THEOREM 2 [S. Kislyakov]. For any positive weight b on T there
exists a weight B > b and f B dt < C f b dt so that for any λ >
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0 and f e Hι{T,B) there exists g e H°°(T) and h e Hι{T,B)
satisfying:

2. Halloo < λ

3. ίhBdt<cί \f\Bdt.
J " Λl/I>λ}

Up to small perturbations we shall obtain a stochastic version of
Kislyakov's decomposition which allows us to prove the following:

THEOREM 3 [J. Bourgain]. For any 2-summing operator S on the
disc algebra and any 2 < q < oo the q-summing norm satisfies the
interpolation inequality

A very elegant proof of this interpolation inequality has been
given by Gilles Pisier who used vectorvalued Hι spaces. See [P].

2. The main result. Holomorphic martingales were introduced
by H. Fδllmer in [F] and N. Varopoulos in [V]. They are stable under
stopping times, and generalize analytic functions on the unit circle.
This connection has led to probabilistic proofs of several results in
Analysis, including Carleson's corona theorem [V], the existence of
a logmodolar Banach algebra having no analytic structure [C] and
P.W. Jones's interpolation theorems between H1 and H°° [Ml],
[M2].

This paper is not selfcontained! We freely use definitions from [V]
without further explanation. (Ω, P) denotes Wiener's measure space
governing complex Brownian motion. HP(Ω, P) is the subspace of

, P) consisting of holomorphic random variables. (See [V].)

THEOREM 4. Given Δ, a strictly positive integrable function
on (Ω, P) with / Δ dP = 1 and 0 < δ < 1, there exist functions
Wj, θj e H°°(Ω) and positive numbers Cj such that:

2.

3. \w]\A < Cj
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5.

Probability offers a soft way of constructing the functions θj so
that the verification of (5) becomes much easier than in J. Bour-
gain's proof. See [Bl, pp. 11, 12], The probabilistic concept will
be merged with analytic tools, such as Havin's lemma, which we use
in the following form, due to J. Bourgain. (See [Bl].)

THEOREM 5. For every measurable subset EofΩ, and 0 < e < 1
there exist functions a,βe H°°(Ω) such that:

i. M + |fl<i
1

2. < e on E.
5

3. \β\ <e on E.

4. ||α||]

5 . I l l -

Proof of Theorem 4. We shall first determine a new weight: Let
d = Δ2 and put

then we let

π=0

where C is determined by Doob's inequality: For d G L2(Ω)

Clearly this construction gives,
1. >l(Δi) < AiSC

2. Δ5 < CAi

3. I A\dP<C j AdP.
We next define holomorphic partitions of unity: Let Φ be the

outer function so that |Φ| = Δχ Consider now the stopping times
r0 = 0 and

Π := inf{ί > Ti-i
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to define Φ* := #(Φ|Jγ.) and d{ := Φ i + i - Φ i ? elements of ϋΓ°°(Ω)
for which obviously the identity

*=0

holds. The summands of the above expression will be our choice of
θi . Indeed we define Θ-X := ^ψ- and θt := § for t = 0,1,2, . . . . We
obtain from

= 3C|Φ|

that

Halloo < 3C7.
Havin's lemma allows us to truncate the above partition of unity:
We apply it to sets Ej := {Φ* > ΛP} and denote the resulting
functions by CXJ, $ . Then, following Bourgain, we define for i =
-1,0,1, . . .

s = 8

Verification of property (5). We first eliminate the weight Δ:

i - Σ ΘM AdP =

oo
2 \ 2

dP (hΫ-
The martingale differences di are supported on Ei and bounded

by Mi+1. Moreover, \wi\ < be on Ei+ι and J5i+5 C Ei for any 5.
Therefore, we obtain a domination by:

Using the inequality
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which holds for complex numbers in the closed unit disc, we get the
following upper bound for the square of the above sum of integrals:

\(l-βi+a)\dP.

Invoking the estimates from Havin's Lemma and applying Cauchy-
Schwarz' inequality give the following estimates:

eMC + Me"1) £ Σ M
s>8x=-l

Again by Cauchy-Schwarz we dominate the above sum by:

oo

eMC + logte- 1 )^ M2~s

s>8 \i=-l ) \i=-l

e"1) ^ M2"S

< eMC + M e " 1 ) ^ M2"SC.
s>8

This is what we want if e is chosen of order M~2 and M := δ~ι.
Havin's lemma, repeatedly applied, gives properties (4) and (3), i.e.,

H
2. | ^ 2 | Δ

Verification of property (2). As αx , βi satisfy \a{\ + \βi\ < 1 we
obtain Σ | ^ | < 40 from the following elementary considerations
concerning reals.

Let Si,ti be non negative real numbers so that

Si + U < 1 i e N.

Then for any n G N

Σ> Π *;<!•
Indeed, for n = 1 this claim is true. (Assuming that the product
over the empty index set equals 1.)

Assume the claim holds for "n", then consider
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Multiplying ίn + i with the LHS of the inequality gives:

+ I Σ Si Π *i I *n+l <
z = l

or:
n-fl Π

(which proves the claim).
Passing to the limit we see that

Hence for any K C N

Taking arithmetic progressions we divide N disjointly into KQ,... ,Kγ
such that i,j 6 Km implies \i — j \ > 8. For such K we find
(0 < U < 1)

*i Π * i < i

Therefore

^ Π *;<8

As \wi\ < 5 |αj | Πf>i+8 \βj\ w e obtain

ΣW< 4 0

To finish the proof of Theorem 4 it is now enough to take c% =
M2i. D

3. Reduction of J. Bourgain's partition of unity. To ob-
tain J. Bourgain's original result, we lift the density / from T to
Ω construct a new weight together with holomorphic partitions of
unity there and project the solutions back to T. This is done by
using norm-one operators

M : HP(T) -
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and

N : iF(Ω) -* Hp(T)

so that Id = NM, and N(M(f)F) = fN(F). (For the construction
of M and N see [V].)

Proof of Theorem 1. Apply Theorem 4 to the density Δ := Mf.
Let

9i:=N(θi),

Using §2 it is easy to verify conditions ( 1 ) . . . (5) of Bourgain's the-

orem.

4. Truncating functions in weighted Hp. Here we combine
stopping times and holomorphic partitions of unity to obtain a
Marcinkiewicz decomposition in weighted Hardy spaces.

Although the next theorem looks terribly complicated, it simply
states that up to a (reasonable) change of density and up to a small
error, interpolation is possible in weighted Hardy spaces.

THEOREM 6. For any density A on Ω and δ > 0 there exists
φ € i/°°(Ω) and a density Δi so that the following conditions hold:

2. Δx > Δ and ί Δi dP < <ΓC ί A dP

3.

4. Forq>2, f <= #'(Ω, Δi) and λ > 0 ί/iere ezisfc g e H°°(Ω)
and h € H2(Ω, Δ) satisfying

(a) fφ = g + h

(c) I \h\2A dP < Cqλ2-* J |/«|Δ! dP.

REMARK. Condition 4(c) involves the original density Δ in
the LHS and the new weight Δi in the RHS. Although weaker
than Kisliakov's result, Theorem 6 suffices to deduce Bourgain's
interpolation inequality for ^-summing operators.
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Proof. Let Wi 6 i7°°(Ω) and θt € i/°°(Ω) be given by Theorem 4.
Then we define:

Now we use the stopping time

to define gt := E{fj\FTά) and fy := /,- - ^ . By the stability
property of holomorphic martingales these functions are certainly
holomorphic and satisfy

i II»II«<A
2. ;

Now using partitions of unity we glue these partial solutions to-
gether

and

Then clearly

and

The estimate for / \h\2A dP follows a well established pattern, which
has been carefully presented in the central chapter of Wojtaszczyk's
book. See [W, Ch III.I].

Cauchy-Schwartz inequality (for the sequence space I2) and prop-
erty (2) of Theorem 4 imply that:

\h\2A dP<CΣj |/i;|2K |2Δ dP.

The last sum can be estimated, using the interplay between the
partitions and the density, by

if \h>\*&<Y,Ci I \fi\2dp.
J Ji\fj\>λJi\fj\>λJ
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Then we finish the proof as follows:

Φi\) dP

<C\2~q (\f\qΔxdP.

5. Reduction of J. Bourgain's interpolation inequality.
For a 2-summing operator S there exists a positive probability mea-
sure on T so that

\\Sx\\ < τr2(5) ([ \x\ dμ\2 for x G A

Without loss of generality we may assume that μ is absolutely con-
tinuous with respect to Lebesgue measure, i.e.,

dμ — fdt.

Consequently for b G i7°°(Ω) the operator U = SN satisfies

where Δ = Mf.
Proof of Theorem 3. Let 0 < δ < 1 be given. Theorem 6 applied

to the density Δ shows that U can be split into U — U\ + R\ so that

and

τr2(i2i) < δ

where Uxb = U(bφ) and Rxb = U(b(l-φ)). Indeed fix b G Hq{Ω, Δi)

of norm one in that space. Then according to Theorem 6 for λ =

ll'Sf||27r2(Sf)~9 we find a Marcinkiewicz decomposition of φb into

φb — g + h.
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Therefore

= \\Ubφ\\ < \\Ug\\ + \\Uh\\

<\\S\\ \\g\\oo + *2(S)

^ ^ A 1 - ^ <

As for the error term we have

\\U(b(l-φ))\\<*2(S)

Using properties (3), (4) and (5) of Theorem 4 give

/ |1 - φ\2A dP < C J |1 - 0|Δ dP < CδJ A dP

a n d r r r
Aι dP < δ~c / Δ dP.

We therefore obtained the correct estimates for Ux and Rx. To finish
the proof of Theorem 3, we now iterate the above decomposition and
observe that S = UM. D
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