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A REFLECTION PRINCIPLE IN COMPLEX SPACE
FOR A CLASS OF HYPERSURFACES AND MAPPINGS

FRANCINE MEYLAN

The Schwarz reflection principle in one complex vari-
able can be stated as follows. Let M and M' be two real
analytic curves in C and % a holomorphic function defined
on one side of M, extending continuously through M, and
mapping M into M\ Then Ή has a holomorphic extension
across M. We address here the question of extending this
classical theorem to higher complex dimensions for some
class of hypersurfaces and mappings.

1. Introduction and main results. Let M and M1 be two
germs of real analytic hypersurfaces at 0 in C1 4"1, n > 1, and % a
holomorphic mapping defined on one side of M, extending smoothly
up to M, and mapping M into M', with Ή,(0) = 0. We say that
the reflection principle holds if Ή, extends holomorphically across
M at 0. In the complex plane, by the classical Schwarz reflection
principle, the reflection principle holds. The first results in higher
dimension were due to H. Lewy [16] and S. Pincuk [18]. They
proved independently that the reflection principle holds if M and
M' are strictly pseudoconvex, and % is a diffeomorphism from M
to M'. Other results on the reflection principle have been obtained
by Baouendi, Jacobowitz and Treves [2], Baouendi and Rothschild
[3], [4], [5], Bell [6], Diederich and Fornaess [10], Diederich and
Webster [11], as well as by other mathematicians. In [3] and [4]
the authors obtain a reflection principle for M and M' germs of real
analytic hypersurfaces at 0, of finite type, satisfying an algebraic
condition. The mapping they consider is of finite multiplicity. In [5]
the authors consider the case of C2 and obtain a more general result
which allows M and Mf to be of infinite type; in fact they obtain a
necessary and sufficient condition for the reflection principle to hold.
In this paper, we address the question of extending the reflection
principle in C 1 * 1 , n > 1, to a new class of germs of real analytic
hypersurfaces allowing them to be of infinite type, and to a new
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class of mappings, generalizing the results obtained in [3], [4], and

[5]
To make this more precise, we first introduce notation and def-

initions needed in the sequel. Let M be a germ of a real analytic
hypersurface at 0. After a local holomorphic change of coordinates,
we can assume that there exists Ω, a sufficiently small open neigh-
borhood of 0 in C1 4"1, n > 1, such that M is given in Ω by

(1.1) Iτnw = φ(z, z, Rew),

with Z G C 7 1 , W E C, φ a real valued convergent power series
and φ{z, 0, w) = 0. Such a choice of coordinates is called normal
coordinates.

Let Ω+ = {(z,w) e Ω|Imtϋ > φ(z,z,Reu>)}, and similarly
Ω+ = {(z,w) € Ω|Imiϋ > φ(z,z,Rew)}. Consider a mapping
H holomorphic in Ω+, smooth in Ω+, valued in C1 4"1 and satisfying
Ή,(M) C M', where M' is another germ of a real analytic hyper-
surface at 0 in C 1 * 1 , also given in normal coordinates (z',wf). We
shall always assume Ή(0) = 0. We shall say that such {M,M',Ή)
satisfy the hypothesis of the reflection principle.

Write H = (^i,^2,. . ,?n,Q) = {?,$) and denote by (FUF2,
. . . ,jPn,G) = (F,G) the formal holomorphic Taylor series of the
components Tu F2, . , Fn, Q at 0. Let H = (/1, . . . , / n, g) be the
restriction of % to M. Recall that M is flat if after a holomorphic
change of coordinates in C 1 * 1 , M is given by Iτnw = 0.

Let M be a germ of a real analytic hypersurface given in normal
coordinates by

(1.2) Imw = φ(Z) z, Re w) = (Rew)mφ(z, z, Rew),

where ^ is a real valued convergent power series in z, z, Re zi; such
that φ(z, z, 0) φ 0 and m > 0. We shall see that m is independent
of the choice of normal coordinates. Write

(1.3) £(*,C,o)

Note that m = 0 if and only if M is of finite type in the sense of
[8], [15]. We introduce the following definition.

DEFINITION 1.4. M is m-essential at 0 if the ideal (aa(z)) in
the ring of formal power series C[[z]] generated by all the aa(z) is
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of finite codimension, i.e.

(1.5) m — ess.typeM = dime C[[z]]/(αα(z)) < oo.

Note that M is O-essential at 0 if and only if M is essentially
finite in the sense of [2], [3]. Also we shall see that the above
definition is independent of the choice of normal coordinates. Recall
the following definitions:

Let (M, M', Ή) satisfy the hypothesis of the reflection principle.
% is not totally degenerate at 0 if

(1.6)

Also, Ή, is of finite multiplicity at 0 if

(1.7) mult.?/ = dime C[[z]]/(F(z, 0)) < oo.

Note that 1.7 implies 1.6 by standard algebra ([12]). It is known
that these two definitions are independent of the choice of normal
coordinates ([3]). For germs of real analytic hypersurfaces which
are ra-essential at 0, we have the following theorems which extend
the results obtained in [3] and [4].

THEOREM 1. Let (M,MI,Ή,) satisfy the hypothesis of the reflec-
tion principle. Then Ή, extends holomorphically to a neighborhood
ofO in C n + 1

; if one of the following conditions holds:
(1) M is m-essential at 0,G φ 0, and W not totally degenerate at

0.

(2) M' is m!-essential αί 0; G ψ 0; and % of finite multiplicity at
0.

(3) M' is m!-essential at 0 ; G φ 0 and Ή, not totally degenerate

atO.

Write

oo

(1.8) G(z) = E Gj(z)w^

with ko minimal so that Gko(z) ψ 0. We shall see that ko is inde-
pendent of the choice of normal coordinates.
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THEOREM 2. Let (M,M','U) satisfy the hypothesis of the reflec-
tion principle. If either
(1) M is m-essential at 0, G φ 0, % is not totally degenerate at

0, or

(2) M1 is m! -essential at 0; G φ 0, and Ή, is of finite multiplicity
atO,

then

(1.9) m — ess. type M — (mult. Ή)(m' — ess. type M'),

with all three integers finite, and

(1.10) m-l = ko(mf - 1 ) .

Let {M,M',Ή) satisfy the hypothesis of the reflection principle.
Write

(1.11)

where F*(z) = (Fj\(z), F*2(z),... jF*n(z)) are formal power series
in 2.

Define / to be minimal such that

(1.12) F*(z) ψ *Γ(0).

We shall see that / is independent of the choice of normal coordinates
if M is not flat, M' is of infinite type and G φ 0. We introduce the
following definition.

DEFINITION 1.13. Let (M, M', Ή) satisfy the hypothesis of the
reflection principle, with M not flat, M' of infinite type, and G φ 0.
We say that Ή, is l-tangentially finite at 0 if

(1.14) / - tang.mult.Ή = dimcC[[z]]/(F;(z) - F;(0)) < oo.

Note that % is 0-tangentially finite if and only if Ή is of finite
multiplicity. We shall see that the above definition is independent
of the choice of normal coordinates. For Ή Z-tangentially finite, we
get the following extension result.
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THEOREM 3. Let (M,M',Ή) satisfy the hypothesis of the reflec-
tion principle, with M1 of infinite type. Then Ή extends holomor-
phically to a neighborhood of 0 in C1"1"1, n > 1, if any one of the
following conditions holds
(1) M is non flat, M1 is m'-essential, W is l-tangentially finite

and G^O.

——(z) I ψ 0 and
dzk J

GφO.

As for mappings of finite multiplicity, there exists a relationship
between m-ess.type M and /-tang.mult.Ή. Indeed we have:

THEOREM 4. Let (M,M',H) satisfy the hypothesis of the re-
flection principle, with M m-essential at 0, M' of infinite type,

( dF* \
—^-(z) J φ 0, j , k = 1,... , n. Then U is l-tangentially
ozk J

finite and

(I — tang. mult. Ή) divides(m — ess. type M).

Note that under the assumptions of Theorem 4, M1 need not be
ra'-essential at 0 as it is shown in the following example.

EXAMPLE 1.15. Consider, in C 3, M given by

w - w = 2i\w\6(\zι\
2 + \z2\

2) + 2 i |^ | 1 8 | z 1 | 1 6

M' given by

w' - wf = 2i\wf\z[\lβ + 2i|tι/4 2

Here M is 6-essential but M ; is not m'-essential.

REMARK 1.16. Our proof of part (3) of Theorem 1 in the finite
type case is different from that given in [3] and [4]. The proof of
Theorem 3 for C2 is also different from that given in [5],

Section 2 deals with invariants associated to germs of real analytic
hypersurfaces and holomorphic maps; we introduce new numerical
invariants associated to germs of real analytic hypersurfaces and
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holomorphic maps. In Section 3, we give the proofs of Theorem 1
and Theorem 3. The proofs of Theorem 2 and Theorem 4 are given
in Section 4.

The results of this paper were part of the author's Ph.D. disserta-
tion at the University of California, San Diego. The author wishes
to thank Salah Baouendi and Linda Rothschild for their help and
support during the completion of this work.

2. Invariants associated to germs of real analytic hyper-
surfaces and holomorphic maps. Let M be a germ of a real
analytic hypersurface given in normal coordinates by 1.1. Put w =
s + it. We have the following lemma:

LEMMA 2.1. The integer ko defined by (1.8) is independent of the
choice of normal coordinates.

This is easily shown by observing from the definition of normal co-
ordinates that we have G(z, w) = wGι(z, w), with Gλ(z, w) another
formal power series.

PROPOSITION 2.2. Let (M,M',Ή) satisfy the hypothesis of the
reflection principle, with M1 of infinite type, and G φ 0. Then the
following is true:
(1) Gko(z) = Gko(0)^R-{0}.

(2) // % is not totally degenerate, then

m — 1 = ko(mf — 1),

where m and m! are defined by (1.2).

We have the following corollary:

COROLLARY 2.3. The integer m defined by (1.2) is independent
of the choice of normal coordinates.

The proof is immediate by using (2), since &o = 1 in this case.

Proof of Proposition 2.2. Applying Proposition 3.16 of [4], we
obtain that M is of infinite type. Let M given by 1.2 and M1 given
by ί' = s'mV(*',2',s'). Write G(z,w) = wk°Gko(z,w), with fc0 > 1.
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As H(M) C AT', we get

(2.4) _

(s + ismφ(z, z, s))koGko - (s - ismφ(z, z, s))koGk°

ismφ{z,z,s))koGko + (s-ismφ(z,z,s))k°Gk°

where

Qko = Qkofo s + isrnψ(z^ 2^ s )) a n d Qko =

Using the binomial formula, we can rewrite 2.4 as

(2.5) sko(Gko - Gko) + csm+k°-ιφ[Gko + Gko + a(z, z, s)]

Gk° + β(z, f, s)]m> ^F, F, ̂ y

with c, c' constants ^ 0.

(2.6) α(0, z, s) = α(z, 0,5) = 0, /?(0, z, 5) = /?(z, 0,5) = 0.

Dividing 2.5 by sfc°, and putting 5 = 0, z = 0, we obtain (1).
In order to prove (2), we first assume that m + k0 — 1 <
Differentiating 2.5 m + ko — 1 times with respect to s and putting
5 = 0, we get

βm-lQko Qm-lQko

_
+ Cψ(Gko(z, 0) + G*o(ί, 0) + α(z, z, 0)) = 0,

with C constant φ 0.
Using (2.6) and the fact that we work in normal coordinates, we

get that φ{z, z, 0) = 0, which is impossible by 1.2.
Suppose that m + k0 — 1 > kom

f. Differentiating 2.5 kom' times
with respect to s and putting s = 0, we get

Qhom'-hoQko Qkom'-koQko

Qwkom>-ko Vz> 0) Qwkom'-ko (Z> ^

= C'(Gko(z,0) + G^(z,0)

> , 0), F(z, 0), 0),
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with C a constant Φ 0.
Using 2.6 and the fact that we work in normal coordinates, we

get that

(2.7) <ψ(F(z,0),F(z,0),0) = 0.

Since Ή, is not totally degenerate by assumption, it is easily shown,
differentiating 2.7 with respect to z^ k = 1,... ,n, and using
Cramer's rule, that 2.7 is impossible. Hence we get the desired
equation (2) of Proposition 2.2.

We have the following proposition:

PROPOSITION 2.8. Let (M,M',Ή,) satisfy the hypothesis of the
reflection principle, with M' of infinite type, G φ 0 and % not
totally degenerate. Then GkQ,Gk0+ι, , GkQ+m-ι ar^ constant and
real.

Proof. Dividing 2.5 by sko, we get

(2.9) (Gko - Gko) + csm-ιψ[GhQ + Gko + a(z, z, s)]

= c'sm-ι[GkQ + Gko + β(z, z, s)]m'<ψ (F, F, ^ y ^ )

Differentiating 2.9 j times with respect to s, j < m — 1, and putting
s = 0, we get

Gko(z,0) -Gko(z, 0) = 0

as we work in normal coordinates. Putting z = 0 in these equations,
we get the desired conclusion. D

COROLLARY 2.10. If % is a local biholomorphism at 0, and M1

is of infinite type, then G\,... , Gm are constant and real.

We have the following proposition:

PROPOSITION 2.11. Let (M,M',U) satisfy the hypothesis of the
reflection principle, with M m-essential, G φ. 0 and % not totally
degenerate. Then M1 is m! -essential, Ή is of finite multiplicity and

(2.12) m - ess. typeM = (mult.Ή)(m/ - ess. typeM').
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Before giving the proof, we state the following corollary:

COROLLARY 2.13. Definition 1.4 and the number defined by 1.5
is independent of the choice of normal coordinates.

The proof of the Corollary is immediate from Proposition 2.11.
Note that, unlike the finite type case, the conditions M m-essential
and G ψ 0 are not enough to guarantee 7ί not totally degenerate, as
it is shown in the following example (considered in [5] for another
purpose).

EXAMPLE 2.14. Consider in C2 T(z,w) = (1 + z)w, G{z,w) =
—z{\ + z)ws, M' given by wf — w' = z'z2 — z'z'2, and M given
by t = sψ(z,z), with ψ(z,0) = ψ(0,z) = 0, and ψ chosen such
that % = {T,Q) maps M into M1. Here, we have M is 1-essential,
G φ 0, M1 is 0-essential, but Ή is totally degenerate.

Proof of Proposition 2.11. The case m = 0 has been considered
in [3] and [4]. Assume m > 0. By Proposition 3.28 in [4], we have
m! > 0. Differentiating 2.5 m + k0 — 1 = kom

f times with respect to
5, and putting s — 0, we obtain

(2.15)
_

Cφ(z, z, 0) (Gk° (z,0) + G«« (z, 0) + a(z, z, 0))

+ β{z,z,0))m'φ(F(z,Q),7(z,0),0), C,C constants ^ 0 .

Using 2.6 and (1) of proposition 2.2, we can rewrite 2.15 as

h(z, z)φ(z, z, 0) = φ(F(z, 0),F(z, 0), 0),

where h(z, z) is a formal power series with h(0) φ 0. Inspecting the
proof of Theorem 3 in [3], which uses tools of commutative algebra,
we conclude that Ή, is of finite multiplicity, Mr is ra'-essential and
that 2.12 holds. This completes the proof of Proposition 2.11.

We denote by 1^, k = 1,... , n, the antiholomorphic vector fields
tangent to M given by

(2.16) I , β - ^ J S S *
ozk 1 + ιφs 9s

Let I be defined by 1.12. We have the following propositions:
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PROPOSITION 2.17. Let {M.M'.Ή) satisfy the hypothesis of the
reflection principle, with G ψ 0 and M1 of infinite type at 0. Then
we have:

(2.18) m > 2/,

(2.19) G k o + j ( z ) = G k o + j ( 0 ) , 0 < j < L

Proof The proof is similar to that of 2.5 and 2.6 in [5], and is left
to the reader. D

PROPOSITION 2.20. Let (M,M',Ή) satisfy the hypothesis of the
reflection principle, with G φ 0, M not flat and M1 of infinite type
atO. Then

(2.21)

Ljf(z, z, s) = sιfj(z, z, s), j = 1,... , n,

where p is minimal such that F*(z) φ 0; /o = (/oi>/o2> ?/on);

with /o smooth, and fj = (/ji, ̂ 2 , . . . , fjn), with fj smooth.

Furthermore, there exists an index jo such that

(2.22) I j 0 / ( ^ z, s) = sιfj0(z, z, s),

with fj0(z,z,0) ^ 0 .

Proof The proof is similar to that of Theorem 3 in [5] and is left
to the reader. D

PROPOSITION 2.23. Let (M.M'.Ti) satisfy the hypothesis of the
reflection principle, with M not flat, Mr of infinite type at 0 and
G φ 0, Then the number I is independent of the choice of normal
coordinates.

Proof Let H = (/1, /2, - - , fn-,9) &nd consider H*, the pushfor-
ward of tangent vectors from M to M'. We have for i = 1,... , n,

H*(LiZtS) =
3=1
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with Cij smooth. Write (cio(z, z,s)) — sa(δij(z, z1 s)) with c^ smooth,

(cij(z,z,Q)) φ (0). Using standard tools of linear algebra, it is
easily shown that a is independent of the choice of normal coordi-
nates. Using the chain rule, it is easy to show that (cij(z,z,s)) —
(Lifj(z,z,s)). Hence, by 2.22, we conclude that the number I is
independent of the choice of normal coordinates. D

REMARK 2.24. It is easily shown that the number / is also an
invariant if M is of finite type and G =£ 0. It would be interesting
to know whether / is again a biholomorphic invariant in the case M
of infinite type, M' of finite type and G φ 0. It should be noted as
shown in Theorem 2 in [5] that I is an invariant in C2 for this case.
Also, if k0 — oo, i.e. G Ξ O , then I is not a biholomorphic invariant,
even for the C2 case, as it is shown in Remark 2.30 in [5].

We have the following proposition:

PROPOSITION 2.25. Let (M, M'.Ή) satisfy the hypothesis of the
reflection principle, where M is not flat, M1 of infinite type at 0
and G ψ 0. Then the number defined by (1.14) is independent of
the choice of normal coordinates.

dιF
Proof We have Ff(z) = l\—7(z,0). The case I = 0 has been

considered in [3]. Let / > 1. Considrer θ : (z,w) —ϊ (z,w) a
holomorphic change of normal coordinates in the source, and let
p = F o θ~ι. By Proposition 2.23, we have to compare

dιF dιF
( 0 ) d ( ί 0 )

We have
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By definition of /, we have that 2.26 is of the form -—τ(z.O)

fdw V dkF
7—-(z,0) + a sum of terms which are product of ——r(z,Qι)

\ow ) owk

daw
and o-^fo 0), 1 < a < /, 1 < k < I - 1. Using Corollary 2.10 and

2.18, we conclude that

dιF dιF (dιF dιF \
^ ( , , 0 ) - ^ ( 0 , 0 ) = 0 ( ^ ( ^ , 0 ) - ^ ( 0 , 0 ) ) ,

with C constant φ 0. This completes the proof for a holomorphic
change of normal coordinates in the source.

Consider κ~ι : (zf,wf) —> (z'^w') a holomorphic change of normal
coordinates in the target space, and let H — κ~ι o H. We have
Fj(z, w) = Kj o H(z, w), where K — («i, K2,... , ̂ n+i) As / > 1, we

have

(2.27) ^(z,0)

We get

Using the definition of /, 2.19 and 2.27, we obtain that 2.28 is of the
form

with C constant. Therefore

-—^(0) 1 Φ 0. This com-
dzf

k J
pletes the proof in the case of a holomorphic change of normal co-
ordinates in the target. D
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3. Proof of Theorem 1 and Theorem 3. Let a = (e*i,... , an)
e IS1. Define La to be La = Lx

aiL2

a2... Ln

an. We have the follow-
ing propositions:

PROPOSITION 3.1. Let (M,M\W) satisfy the hypothesis of the
reflection principle. Then the following is true:
(1) // % is not totally degenerate at 0, then there exists a multi-

index aQ such that

LaQ(detLjfk)(O)φO, j,Λ = l , . . . ,Λ.

(2) // M is not flat, Mf is of infinite type at 0, G ψ 0 and

( flip* \
——(z) 1 ψ 0, then there exists a multi-index βo such
ozk )

that

(3.2) Lβ° (det JΓ) (0) φ 0, j , k = 1,... , n,

t/Λere /jfc is ^iί en 6y (2.21). Furthermore, if

(3.3) £>(z, z, 5) - det L. Λίz, z, 5),

ί/ien /or every multi-index a,

(3.4) LQ2)(^, z, s) = 5 n ^ α ( z , z, 5),

wiί/i Da(z, z, s) smooth and Dβo(0) Φ 0.

Proo/ 0/ (1). See Proposition 3.18 of [3].

Proof of (2). We can assume I > 1. Let M be given in normal
coordinates by 1.2. By 2.21, we have

(3.5) fk(z,z,s) = spfok(z,z,s),

with /ojfc smooth, k = 1,... , n. We claim that sp~ιLjfok is smoothr
and

(3.6)
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Indeed, using 2.18, 2.21, and 3.5, we obtain

Ljfk(z, z, s) = sιfjk(z, z, s)
(3.7) _

= spLjfok(z, z, s) + s2lh(z, z, s),

with h(z,z,s) smooth. Therefore, dividing 3.7 by sι, we get that

sp~ιLjfok is smooth; putting s = 0 in 3.7, we get 3.6. Hence the
claim is proved. On the other hand, as m > 1, we have

[L°(detJ~k)}(0) = [ L a ^
(3.8)

where

Using 2.18, we have, for w = s — ism (̂ (z, ̂ , 5),

(z, z, 0)

= (psp-lF;k(l - is™-iφγ-\-is™-'φ-Zj)) (z, 2,0) + .

( ^ ( l - w " 1 " 1 ^ (z,z,0) =

Therefore,

(3.9) L"(det fjk)(0) = L>« I det ^ 1 (0).

By assumption, we have

(3.10) det
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Using 3.9 and 3.10, we get the desired conclusion 3.2. On the other
hand,

D(z, z, s) = det Ljfk(z, z, s) = det sιfjk(z, z, s) = snl(det fjk)(z, z, s).

Hence, we have

LaD(z, z, s) = L"(snί(det /^))(z, z, s)

= ^ ( L " ( d e t fjk)(z, z, s) + sk(z, z, s)),

with k(z, z, s) smooth. Using 3.2, we get the desired conclusion 3.4.
Let M given in normal coordinates by 1.2. Solving for w in 1.2,

it is easily shown that M is also given by

(3.11)
OO

w = Q{z,z,w) — w + wmS(z:z,w) — w + ^ Rj(z,z)wj,

with Rj(z, 0) = Rj(0, z) = 0.
Let ko be defined by 1.9 and g be the CR function obtained from

Q by restriction to M. We need the following lemmas:

LEMMA 3.12. Let (M,M',Ή) satisfy the hypothesis of the reflec-
tion principle, where M1 is of infinite type at 0 and G ψ 0. Then
we have

(3.13) g(z,z,s) = skQ

9l(z,z,s),

with gι(z, z, s) smooth and #i(0) Φ 0.

Proof. See Proof of Theorem 3 in [5]. D

LEMMA 3.14. Let (M,Mf,Ή) satisfy the hypothesis of the re-

flection principle, where M' is of infinite type and G φ 0. //

/ι(z, z, s + it) is holomorphic in R — {s + it such that \s\ < r, 0 <

t < r}, C°° in RU (-r, r) for \z\ < e, if J(s, z, s) is C°°(-r, r) for

\z\ < e, then ~(z,z,s) extends to R, for \z\ < e.

Using Lemma 3.12, the proof of Lemma 3.14 is similar to that of
Corollary 4.8 in [5]. We shall say that a function t(z,z,s) extends
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down (resp. up) if s -» t(z, z, s) extends continuously to a function
s + it —y T(z, z,s + it), holomorphically for small t < 0 (resp. small
t > 0), uniformly in z.

We have the following proposition:

PROPOSITION 3.15. Let (M,M',7ί) satisfy the hypothesis of the
reflection principle. If either
(1) Ίί is not totally degenerate at 0, or

(2) M is not flat, M1 is of infinite type at 0 given by (3.11), G ψ 0
and

then Rm'ζK* (/, /) satisfies the following equation:

(3.16) Rm>ζ>°(f,f)+Ka{f,u) = 0,

where a is any multi-index, with \a\ > 1, Ka is holomorphic at
(0, ^(0)) ; u is a set of functions which extend down, and Ka(Z1 u(0))
ΞΞO, Z eC1.

Proof We shall prove Proposition 3.15 in the case (2). As %{M) C
M1, we have

(3.17) g = 9 + 9m'S(fJ,g).

First, consider the case \a\ = 1. Applying LJ 5 j — 1,... , n, to 3.17,
and using the fact that Ljg = Ljfk = 0, k = 1,... , n, we get

(3.18) ^ = Σ« m ' 5 <i(/./^)V*

Considering the n equations 3.18 with unknown gm'Sζ' (/, /, g) and
using Cramer's rule, we obtain

(3.19) Dgm'SCk(fJ-,g) = hk,

where hk extends down, and D given by 3.3. Choose β0 of minimal
length satisfying 3.4. Taking the complex conjugate of 3.17, and
raising to the ra'th power, we obtain

(3.20) gm> = gm\l +9m'
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Replacing 3.20 in 3.19, and using Lemma 3.14, we obtain

(3.21) D(l+rf-lS(f,f,9))nfSζ}ι(fJ,g)

= —̂7 = hk, hk extending down.
gin

Applying I/0 to both sides of 3.21, we get

(3.22)

+ Γ'-'Stf, f, g))m'SCk (/, /, g)

* ((1 + ~9m'-1S(f,f,g))m'Sζ,(f,f,g)))

Dividing 3.22 by LβoD = snlDβo, we get

(3.23)

Σ
71+72=^0,72^0

Taking the complex conjugate of 3.17 and using 3.11, we get

(3.24) SCk(fJ,g) = Rm ck(f>f) + 9Tk(fJ,g),

with Tfc holomorphic near 0. Since we work in normal coordinates^
we have

(3.25)
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with b holomorphic near 0. Multiplying 3.23 by 3.25, and making
use of 3.24, we obtain

(3.26) Rm'ζ'k(fJ)

= -b(f,f,g)

+ Hf, f, g)

Put

u =

Σ snlD βo.

-9Tk(fJ,9)

-,H\β\<βo}.

By 3.23,

snlDβo

is smooth and hence extends down by Lemma 3.14. Hence, u is a
set of functions which extend down. Using 3.23, the minimality of
βo, we obtain that

(3.27)
snlDβo

(0) = 0.

Using the minimality of β0, 3.26, and 3.27, we obtain the desired
conclusion 3.16 for \a\ = 1. Consider the case |α| = 2. Dividing 3.19
by D, and applying Lj, j = 1,... , n, to both sides of the obtained
equation, we get

with hlj smooth, extending down. Therefore

p = l
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Hence, by Cramer's rule, Dgm''S^(/, /, g) = -^|, with a^v smooth,

extending down. Using 3.20, and Lemma 3.14, we obtain

(3.28) D\\ +gm'-1S(f,f,g)Γ'Sς,ζ,(f,f,g) = ~akp,

with άkp extending down. Define

B° = {β e Zn of minimal length such that Dβ(0) Φ 0 }.
with Dβ defined by (3.4)

Define

£12...; = {/? = (ft } . . . , /?n) e β 1 2 - ^ 1 such that # is minimal}.

There exists jo such that |i?1 2-J O | = 1. Take β0 to be the unique
element of B12-*>. Applying L3βo to both sides of 3.28, we get that

(3.29) (L^Dγ(l + r'-'SU, f,g)Γ'SCkζlp(f, /,g)

+ Σ (L 7 1D)(L 7 2Γ>)(L 7 3D)L 7 4

71+72+73+74=3^0
( ) ( )

f1g))m'SCLζίUJtgή =L3β°~akp.

By the choice of /?o, a term of the form

((1 + cΓ '- 1 ^/, /, ̂ ) ) m '5 < ; ς (/, /, g)) ,

with |7χ| = |72 | = |73 | = \βo\ cannot occur unless 71 = 72 = 73 = βo-
That means that

^ i ( 0 ) = 0 , 71+72 + 73 + 74 = 3/?,),

by 3.4 and by minimality of β0. We divide both sides of 3.29 by
(LβoD)3 and we put
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We can apply the same process as for \a\ = 1, in order to get the
desired conclusion for the case |α | = 2. For the general case, i.e. for
a multi-index a of any length, we observe that

with da extending down. We apply the same proof as in the case
of |α | = 1,2 to get the desired conclusion 3.16. This completes the
proof of Proposition 3.15. D

We need the following lemma:

LEMMA 3.30. Let M be given by (3.11). Suppose that M is in-
essential. Write

Then for every z$ sufficiently small, there exists a multi-index αo
such that bao(zo) φ 0.

The proof is left to the reader.

PROPOSITION 3.31. Let (M,M',Ή) satisfy the hypothesis of the
reflection principle, withM nonflat, Mf m1-essential at 0, of infinite

( β \
type, det -rr-^iz) φ 0 and G φ 0. Then each fj, j — 1,... , n,

V 9zk )
satisfies a polinomial equation with analytic coefficients depending
on functions which extend down.

Proof. Let M' given in normal coordinates by 3.11. Using Lemma
3.30 and the Nullstellensatz, we can find N and r such that

\o.OΔj Z j — / v Lja\z )V(x\z )•) J — 1 , . . . , /«-,

α = l

with Cja(z') convergent power series. We also have

(3.33) Rm>c«{z',z') = a\ba{zf) + T das{z')z'\

with das(zf) convergent power series. As fj(O) = 0, we can substi-
tute fj in 3.32 and we get

(3-34) f« = £ c,
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Using Proposition 3.15, 3.33 and 3.34, we obtain

(3.35) fJ

N + Hj(f,u) = 0,

with Hj holomorphic at (0,u(0)),Hj(Z,u(0)) = 0,Z 6 C1, and u
a set of functions which extend down. Using 3.35, the Weierstrass
Preparation Theorem and the classical Newton's Theorem for sym-
metric functions, we claim that fj, 1 < j < n, satisfies a polyno-
mial equation with holomorphic coefficients depending on the set
of functions u which extend down. The proof of the claim follows
by inspecting the very end of Lemma 6.1 in [3], Hence, we get the
desired conclusion. D

We have the following proposition:

PROPOSITION 3.36. Let (M,M',U) satisfy the hypothesis of the
reflection principle. If either
(1) % is not totally degenerate at 0, or

(2) M is not flat, M1 is of infinite type at 0 given by (3.11), G ψ 0

( dF* \

then there exists r > 0 such that for every z0 G C 1 fixed, \ZQ\ < r
and every multi-index a, there exist functions a(s + it) and b(s + it)
holomorphic in the domain

R= {s + it such that \s\ < r, - r < t < 0},

smooth in R\J(—r,+r), such that

Qζ«(fJ,9)(zo,zo,s) = ^ y , |s| < r.

The proof is similar to that of Lemma 5.3 in [3] and is left to the
reader.

Proof of Theorem 1 and Theorem 3. By Proposition 2.11, (1)
implies (2) in Theorem 1. Therefore we only have to prove Theorem
1 for condition (2) or (3). As 1.7 implies 1.6, we only have to prove
Theorem 1 for condition (3) and Theorem 3 for condition (2). Using
Proposition 3.31 and Lemma 7.1 in [3], we conclude that for each
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α, Qζa (/, /, g) satisfies a polynomial relation with coefficients which
are analytic functions depending on functions which extend down.
Using Proposition 3.36, Lemma 7.1 in [3] and Lemma 8.15 in [1],
we conclude that Qζ<* (/, /, g) extends down for every a, and that

Therefore, following the proof of Theorem 1 in [3], we can conclude
that

α=0

extends up and down, uniformly in λ. Taking λ = 0, we get that g
extends down, as we work in normal coordinates. Consider

By Lemma 3.14, 5(/, λ, g) extends up and down. Again, inspecting
the proof of Theorem 1 in [3], using the Weierstrass Preparation
Theorem, we obtain that / extends down. We are able to complete
the proof of (3) of Theorem 1 and the proof of (2) of Theorem 3 by
using the following Criterion proved in [2]: % extends holomorphi-
cally through 0 in C 1 ^ 1 if and only if the function s -» H(z, z, s)
extends holomorphically through 0 in C, uniformly in z.

4. Proof of Theorem 2 and Theorem 4.
Proof of Theorem 2. The case m = 0 has been considered in [3]

and [4]. Assume m > 0. Using Propositions 2.2 and 2.11, Theorem
2 is proved for condition (1). We have to prove Theorem 2 under
condition (2). Inspecting the proof of Proposition 2.11, and using
Proposition 2.2, we conclude that

Λ(z, z)φ(z, z, 0) = ψ(F(z, 0), F{z, 0), 0),

with h(z, z) a formal power series such that h(0) Φ 0. Inspecting the
proof of Theorem 2 in [3], which uses tools of commutative algebra,
we conclude that M is ra-essential. Using condition (1), we get the
desired conclusion.
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Proof of Theorem 4. By 3.11, M1 can be parametrized by

3=1

w i t h Pj(z',0) = Pj(0,z') = 0.M c a n b e p a r a m e t r i z e d by

w = tϋ(l + wm~ιR(z, z, w)) = sλ,

where s = w and A = 1 + wm~1R(z, z, w), with

(4.1) R(0, z, w) = R(z, 0, w) = 0.

As U{M) C M', we have

(4.2) G(z,sλ)-G(z,s) =

Putting z = 0 in 4.2, we get
oo

(4.3) G(z, s) = G(0, 5) + £ P,(F(z, 5), F(0, s))G(0, a)*.

Taking the complex conjugate of 4.3, we get (s taken to be real)

00

G(z, s) = G(0, s) + ^ ^ ( ^ > s), F(0, β))G(0, s) j.

Substituting for G(z, s) in the right hand side of 4.2, we get

(4.4) G(z, sλ) - G(z, s)

From

(4.5)

oo

q=l

4.4, we get

(sλ)koGko{z,sλ)-
CO

J = l

CO

9=1

\

y

•sk°Gko(z,s)

•,sλ),F(z,s))(skoGko(0,s)

\j

%z,s),F(0,s))sko<1Gko(0,s)<1)
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By the binomial formula,

(4.6) (s + smR)koGko(z,sλ)

= sk°Gko{z, sλ) + Csm+k°-1R(Gk0{z, sλ) + a(z, z, s)),

with C a constant different from 0, and a(z, z, s) another formal
power series such that a(0, z, s) = a(z, 0, s) = 0. Hence, we get
from 4.5

(4.7) sk°Gko(z, sλ) - sk°Gko{z, s)

+ Csm+k°-ιR{Gko(z, s\) + a(z, z, s))

°° — (
,sλ),F(z,a)) sfe°Gfco(0,s)

3=1

f+ f; pq(F(z, s), F(O, s) )

On the other hand,by Taylor's expansion, we have

(4.8) F(z, sλ) Ξ F(z, s) + smR(z, z, s)T(z, z, s),

with T another formal power series. Therefore, 4.7 becomes

(4.9) sk°Gko(z, sλ) - sk°Gko(z, s)

+ Csm+k°-ιR{Gko{z, sλ) + α(z, z, s))

\3

Pq(F(z, a), F(0, s))sk^Gko(0, s)"
9=1 /

+ Σ smTj(z, z, s) (skoGko(0, s)
3=1 V
oo \ 3

+ Σ Pq(F(z, s ) , F ( 0 , s ) ^ Λ

9=1
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where Tj is another formal power series. We can rewrite 4.9 as

(4.10) sk°Gko(z, s + smR) - sk°Gko(z, s)

+ Csm+k°-1R(Gko(z,sλ)

+ a(z, z, s)) + sm+k°U(z, z, s)

j=ι

oo

q=l )

with U(z, Zj s) another formal power series.
Write F(z,s) = aps

p + . . . + Ff(Q)sι + sιF\ with T*(z,s) =
Fΐ(z)—i^*(0)+57, where 7 is another formal power series. Therefore
the right hand side of 4.10 can be written as

sn'hx(s) + sn*h2{T\T^, s) + sn*h3(F\Tϊ, s),

where hi, h2, /13 are formal power series and hι(0) φ 0, h2(x, y, 0) φ
0, h2 contains only pure power of T* and J7*, h^(x, y, 0) φ 0 and h$
contains no pure power of J7* and J7*.

We claim that m+k0 — 1 = n 3. The proof of the claim is similar to
that of (2) of Proposition 2.2 and is left to the reader. Differentiating
4.10 with respect to s m + ko — 1 = n^ times and putting s = 0, we
get

Λ(z, z, 0)R(z, z, 0) = h3(Fΐ{z) - Fΐ(0),Tξ{z) - 77(0), 0),

with h a formal power series such that h(0) ψ 0, by (1) of Proposi-
tion 2.2. The rest of the proof is similar to that of Proposition 2.11
and is left to the reader.
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