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CONTROLLING TIETZE-URYSOHN EXTENSIONS

MARC FRANTZ

This paper explores some of the possibilities for con-
trolling properties of continuous extensions of continuous
functions. For example, particular attention is paid to
the problem of preserving some desirable common prop-
erty (e.g. pairwise disjointness, partition of unity, etc.)
of a collection of functions, when the entire collection is
extended simultaneously and continuously from a closed
subset A of a normal topological space X to the whole
space. The functions treated here are mainly real-valued,
but in the last section, a procedure introduced by Dugun-
dji is used to show how to preserve the equicontinuity of a
collection of functions whose ranges lie in a locally convex
metric linear space.

0. Introduction. If A is a closed subset of a normal topologi-
cal space X, and if / : A -» R is continuous function, then by the
extension theorems of Tietze [T] and Urysohn [U] (the combina-
tion of which we will refer to as [TU]), there exists a continuous
extension / of / to all of X. Several generalizations of these results
have been obtained, notably Katetov's result [K] for uniformly con-
tinuous functions on uniform spaces, and Dugundji's result [D] for
continuous functions into linear topological spaces. In this article,
we present some results which deal with the degree of control we
have over the extensions of continuous functions; that is, how we
may choose the sets where extended functions take on certain spec-
ified values, or satisfy some predetermined relationship.

In Section 1, we show that we may choose, with reasonable topo-
logical restrictions, any finite number of disjoint closed subsets of
X as level sets for / .

We show in Section 2 that if we have a continuous function /
and a nonnegative (or nonpositive) continuous function g defined
on a closed subset A of a compact metric space X, such that their
product fg satisfied fg = H\A for some continuous function h :
X —> R, then under suitable conditions / and g may be extended
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to continuous functions / and g on all of X such that fg = h. At
the end of this section we outline a much more general problem,
some aspects of which are treated in later sections.

Section 3 contains two propositions on extending pairwise dis-
joint continuous functions. The second one employs a construction
recently used by Mandelkern in [M].

In section 4, we show that a partition of unity defined on a closed
subset of a normal space may be extended to the whole space.

In section 5 we show that an extension procedure defined by
Dugundji in [D], when applied to functions from a closed subset A of
a metric space (X, d) to a locally convex metric linear space (Y, ρ),
preserves the equicontinuity of any pointwise bounded equicontin-
uous collection of functions. A related result (Corollary 9) states
that for any compact subset {/7} of C(A, F), there exists a compact
subset {/7} of C(X, Y), such that fΊ\A = fΊ for each 7.

1. Extending level sets. Let X be a normal topological space,
let A be a closed subset of X, and let / : A —> R be continuous.
By [TU], there exists a continuous extension / of / to all of X.
Moreover, if Ai := f~λ({ai}) for arbitrary real numbers au . . . , an

in the range of /, then observe that in extending / we have also
extended the level sets Ai of / to level sets Ai := f~ι({(k}) of /.
It is therefore reasonable to ask whether, starting with subsets A4
of X satisfying Ai Π A = Ai for each i, we can find a continuous
extension / of / such that /~1({θi}) = Ai for each i.

Clearly this implies that each Ai must be a closed G^-subset of
X. Moreover, if we assume that a\ < < αn, and let

Uo := /"'((-ex), ox)), Ux := r\(au α2)), • , C/n_χ

:= ΓHitn-l, On)), Un ~ Γ ' ( K i «>)),

then obviously the Ui are pairwise disjoint and X \ (UΓ=i Ai) =
UΓ=o U%' Notice that, generally speaking, Ai must separate X \ Ai
into two disjoint open sets.

It turns out that if the sets Ai satisfy these minimal requirements, "
then the desired extension / exists (Theorem 2). The following
theorem, used as an auxiliary result for Theorem 2, is in its own
right a reasonable extension of [TU] in the case when / is a bounded
function.
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THEOREM 1. Let X be a normal topological space, let A be a
closed subset of X, and let f : A -> [c, d) be a continuous function,
such that the sets C := f~ι{{c}) and D := f~ι{{d}) are nonempty.
IfC and D are disjoint closed Gs-sets in X such that CπA = C and
DΓ)A = D, then there exists a continuous extension f : X —> [c,d]
off such that C = f~ι({c}) and D = f~ι{{d}).

Proof Define the function fλ : A U C U D -> [c, d] by

f(x) iϊxeA

iϊxeC

d iΐxβD.

Clearly /i is an extension of / to AuCuD such that Λ~1({c}) = C
and /Γ1({cί}) = D. The fact that /i is continuous follows from the
"pasting lemma" ι of elementary topology applied to the functions
/ : A -> [c,d], c : C -> {c}5 and d : Z) -> {d}. Since AuCUD is
closed, it follows from [TU] that there exists a continuous extension
h X-t [c,d\ of Λ. Now if fc\{c}) = C and/Γ^ίd}) = JD, we
can set f = fι and be done. Therefore let us assume that the sets
Cι := /f ^{c}) \ C and Z?i := /f ^{d}) \ JD are nonempty (later we
will handle the case when exactly one of CΊ, Di is empty).

Our strategy is to define a continuous function φ on X such that
/ = fι + φ satisfies the conclusion of the theorem. Clearly we must
have φ(A U C U D) = {0}, ^ | c x > 0, and φ\Dι < 0 in order to
make the proper adjustments to f\. Moreover, ψ should not be too
large in magnitude, or else we will create unwanted points x where
f(x) < c or f(x) > d.

To begin, observe that by hypothesis, C is closed G$\ hence we
can write C = Π^Li Gn for a decreasing sequence {Gn} of open sets.
Moreover, by the normality of X, we may assume that G ^ n G n + i =
0 for each n, where Gc

n denotes the complement of Gn and Gn+i
denotes the closure of Gn+i It follows from Urysohn's lemma that
for each n, there exists a continuous function ηn : C U C\ —> [0,2~nY

1If g\ and g^ are continuous functions defined on closed sets C\ and C2,
respectively, and if g\ and #2 agree on C\ Π C2, then they can be used to define
a new function piecewise on C\ U C2 (in the obvious way) which is continuous
on d UC 2.
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such that

We now define the function 7 on C U C\ by

π = l

Since for each n, ηn is continuous and \ηn\ < 2 n , the above series
converges uniformly and thus 7 : C U C\ -> [0,1] is continuous.
Clearly 7 is zero on C and strictly positive on C\.

In a similar fashion, we can define a continuous function δ : D U
Z?i -> [-1,0] which is zero on D and strictly negative on Z?χ. It
follows from the pasting lemma that the function a : AuC UCiU
DUD1 -> [-1,1] given by

if z G C U d

if x e D U A

otherwise

is continuous. Our final step in the construction of φ is to use [TU]
to extend a to a continuous function ά : X —> [— 1,1], and define

c - /1 d - /1

Observe that if ίx < 0 < t2 for numbers ίx and t2, then (tιVt)Λt2 —
t\ V (ί Λί2) for any ί G R, so no parentheses are needed in the above
formula for φ. We claim that / := /1 + φ is the desired extension
of /. It is clear that / is continuous and J\A — /, because Ψ\A — 0.
The following implications are also easily verified:

(1) x βC => ά(x) = 0=ϊ φ{x) = 0 => /(x) = c

(2) xeD=> ά(x) = 0=ϊ φ{x) = 0
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(3)

(4) i e ΰ i 4 ά(x) < 0

ί. . , ί c — d Λ , N d — d
f(x) - d + ί — V α(a ) Λ - ^ ~

< /(x) <

(5)

Thus / maps X into [c,d], with /"Hίc}) = C' and Λ({d}) - I),
so / is the desired extension of /.

To treat the case when C\ (respectively, D\) is empty, we can
construct a so that a is zero on A U C U D and strictly positive on
C\ (respectively, zero on A U C U D and strictly negative on JDI);
the rest of the proof is essentially the same. D

THEOREM 2. Let X be a normal topological space, let A be
a closed subset of X, and let f : A -> R be continuous. Let
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αi,θ2,. . . , αn belong to f(A) with a\ < α2 < < an, let
f~ι({a>i}) for each i, and let

~Γι((an-Uan)),Un:=Γι((an,oo)).

If Aι,... ,An are disjoint closed Gβ-sets in X such that A*DA =
Ai for each i and X \ (U?=j^t) = UΓ=o &> w/*ere C/o,... , Un are

disjoint open sets satisfying UiΠA = Ui for each i, then there exists
a continuous extension f of f to all of X such that f~l({ca}) = Ai
for each i.

Proof For i = 1,... , n - 1, let /, := /UiUϋiu^+i By Theorem
1, there exist continuous extensions ft : Ai U Ui U Ai+χ -> [α*, ai+ι]
of each function ft, such that /i~1({αf}) = A and / i~

1({αι+i}) =
Ai+i. Moreover, / 0 := /UIUUΌ a n d / n j = /Unuc/n

 c a n similarly be
extended to continuous functions / 0 : A\ U Uo -> (—oo, oi] and / n :
i n U t/n -> [αn, oo) such that /^^{oi}) = i x and / ^ ( W } ) = ^n
To see that this is true, consider (say) fn. As in the proof of the
Theorem 1, we can extend fn to a continuous function (/n)i : An U

Un -> [θn,Oθ) SUCh that An C (/OΓ^ίOn}); if (/n)Γ1({«n» ^ i n ,
then we can remedy this by adding to (/n)i a continuous function
7 : An U Un :—>• [αn, oo) similar to that constructed in the proof of
Theorem 1, which is zero on An and strictly positive on Un, so that
fn '= (fn)ι + 7 is the desired extension of fn. The extension of / 0

is handled similarly, using a negative analog of 7.
To complete the proof, we can simply define / piecewise on X in

the obvious way (for example, let f\^oΠ(;Q = /o)? and note that / is
continuous on X by the pasting lemma. D

REMARK. It is easy to see that continuity in the above theo-
rems cannot be replaced by uniform continuity or bounded uniform
continuity. For example, let X := R 2 , A : = R x {0}, f{x,y) :=
|* | Λ 1, Ax := ΓHίO}) := {(0,0)}, λλ := Ax U {(x,y)\y = 1/x}.
Then / is bounded and uniformly continuous on A, but / cannot
be extended to a uniformly continuous function / on X such that
f-ι({0}) = A,.
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2. Extending products. Let X be a normal topological space,
let A be a closed subset of X, and let /, g : A —>• R be continuous.
By [TU], there exist continuous extensions / and g of / and g
to all of X. Obviously, in extending / and g, we also create a
continuous extension fg of the product fg. It is therefore natural
to ask whether, given a continuous function h : X —> R such that
fg = /ι|Λj we can find continuous extensions / and g to all of X
such that fg — h.

We begin with two examples which show that, in general, such
extensions may fail to exist. These examples are illustrated in Fig-
ures 1 and 2 below. In each case, we take X to be a square in R 2 ,
with A being the closed left half of X, and it is easy to see that we
can find continuous functions /, #, and h with the values indicated
in the figures.

f = g = h = O —

f > 0 ,

fg =

f<0

fg =

g >o
p -

h > 0

g<o

q -

h > 0

-% h > 0
\
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Suppose that continuous extensions / and g of / and g existed in
Figure 1. Since/(p) > 0 and f(q)<0 (with p and q as indicated),
there must be a point r outside A on the dotted curve at which
f(r) = 0. But then we cannot have f(r)g(r) = h(r) > 0.

For the second case, suppose that continuous extensions / and g
of / and g existed in Figure 2, such that fg = h. We could then find
points p and q as indicated, with f(p) > 0 and g(q) > 0 => f(q) < 0
since h(q) < 0. Again there must be a point r outside A on the
dotted curve such that /(r) = 0, which contradicts f(r)g(r) —
h(r) < 0.

In the first case, we had the simple relationship g~~ι{{0}) =
/""1({0}) between zero sets, but the mere fact that both / and
g were allowed to take on both positive and negative values allowed
us to preclude the possibility of suitable extensions. In the second
case, both / and g were nonnegative, but by choosing their zero sets
carefully, we were able to preclude the existence of the extensions
again. Thus even when X is a compact metric space, the desired ex-
tensions are not guaranteed. However, our next theorem shows that
the above cases are, roughly speaking, the worst possible; that is, by
requiring that at least one of /, g be nonnegative (or nonpositive),
and by demanding an inclusion relation on their zero sets, we obtain
a sufficient condition for the existence of the desired extensions.

THEOREM 3. Let (X,d) be a compact metric space, and let A
be a closed subset of X. Suppose that f,g : A-+R and h : X —> R
are continuous, with g > 0 (or g < 0), such that fg — h\A- If
g~ι({0}) C / - 1({0}) ; then there exist continuous extensions f of f
and g of g to all of X such that fg = h.

Proof. For definiteness we will consider the case g > 0. First note
that if g > 0 (i.e. if g is strictly positive on A), then we can apply
[TU] to extend g to a continuous function g > 0 on all of x (by using
g + d(x,A) if necessary). In the case, defining / := h/g completes
the proof.

Therefore let us assume that g"ι({0}) φ 0. Defining Z :=
1 ) , we have by hypothesis that

Using [TU], let 51 > 0 be a continuous extension of g to all of
X. Again, by adding the function d{x^A) to g\ if necessary, we
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may assume that gι > 0 on X \ A. The function gx is our first
approximation to a suitable extension of g; our first approximation
to a suitable extension of / is the function /i defined by

h{x)Γgγ{x) \

Since g\\& = <7, we have fι(x) = h(x)/gι(x) whenever g(x) φ 0, so
/i is continuous at all points of X \ g^dO})- Moreover, if a point
Xo G ̂ ~1({0}) belongs to the interior of AuZ, then /i is continuous
at xo? because /I\AUZ is continuous on AU Z (this follows from the
pasting lemma applied to the functions / : A -> R and 0 : A —» 0).
Hence the only type of point at which /i might not be continuous
is a point x0 £ 9~1({Q}) Π 3(̂ 4 U Z), where <9(A U Z) denotes the
boundary of A U Z.

From now on, we consider only those n large enough so that the
sets

Hn:= {xeX\\h(x)\>4-

are nonempty. SinceX is compact, h and gx are uniformly continu-
ous, and since each Hn is compact, gx is bounded away from zero on
Hn. It follows that h/gι is uniformly continuous on Hn. Moreover,
we can find a decreasing sequence of positive real numbers δn which
satisfy the following rules:

(1) δn < wf{d(x,y)\x eHn,ye (Hn+ι)
c}

(2) ίn<inf{d(x,i/)|xG/Γn, yeZ}

(3) (x, y e Hn+λ and d{x, y) < δn)

=>\h(x)/g1(x)-h(y)/g1(y)\<2-^ι\

Next, for each n, we define the set An by

An:={xeX\d(x,A)>δn/2}.

Now A U Z and An Π Hn are disjoint closed sets for each n, so we
can find a function j n : X —> [0,2~n] for each n which is zero on
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AUZ and equal to 2~n on An Π i/n. As in the proof of Theorem 1,
the function 7 : X -> [0,1] given by

n-\

is continuous, and j(A U Z) = {0}. We claim that the function /
and g given by

, . , , *, v ff(χ)
g:=gι+y and /(*) := \ v y

are the desired extensions of / and g.
It is easy to check that: g is continuous on X, g\A = #, /U = /

and /p = h. As in our previous remarks about /1, / is continuous
everywhere, except possibly at points of g~1({0})Πd(AuZ). There-
fore let x0 e g^dO}) Γl 9(A U Z), let e > 0, and choose n 6 N such
that 2~n < 6. Since /I|ΛUZ is continuous, we may choose n large
enough (δn small enough) so that

(4) d{x,x0) <δn=> |Λ(x)| = |A(x) - A(xo)| < φ

for all x e AUZ. Let Bo be a ball centered at #o with radius < δn/2.
Since η(A U Z) = {0}, we have / | Λ u z = ΛUuz, so by (4),

x e Bo Π (A U Z) =» | / > ) - />o) | = l/i(ar) - /i(*o)| < e/2 < e.

Suppose now that x e B0\(AU Z); then since Hm "[ X\Z, there
is a smallest m such that x G Hm, and m > n by (2), because
d(x,Z) < <Sn. We have 4~(m+1) < |Λ(x)| < 4"m. Suppose that x
also belongs to Am, and hence to Am Π i/m. Then since f(xo) = 0,

I J V " 9(X) Ίm(x) 2-m

= 2~m < 2~n < e.

On the other hand, if x $ Am, then there exists y € A such that
d(x,y) < δm/2. Moreover, δm/2 < inΐ{d(w,z)\w € Hm, z 6
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(i ί m +i) c } by (1), so y must belong to Hm+ι. Since also x G Hm c
i ϊ m + i , we have from (3) that

(5) \f(x) - f(xo)\ = \f(x)\ = \h(x)/g(x)\ < \h(x)/gi(x)\

< \h(x)/gι{x) - h{y)/h{y)\ + \h{y)/9i{y)\

To estimate |/i(j/)|, note that

d(y, XQ) < d(y, x) + d(x, x0) < δm/2 + δn/2

so (4) implies that |/i(y)| < e/2, and thus from (5),

Hence we have shown that x e Bo => \f(x) — /(^o)| < ?̂ so / is
continuous at XQ. It follows that / is continuous on X and that /
and g are the desired extensions of / and g. D

C O R O L L A R Y 4. Let (X,d),A and h be as in Theorem 3. Let

fi9u — i9n'A-ϊ'Rbe continuous functions with gi>0 or gι < 0

and

such that fgi gn = 1I\A Then there exists a continuous extension
f of f and a continuous extension g{ of each gι to all of X such that

Proof The proof goes by induction on n. Suppose the theorem
is true for any n — 1 functions # i , . . . , gn-\ as described above (we
know it is true for a single g by Theorem 3). Since each of the
gi is continuous and nonnegative (or nonpositive), their product is
also. Hence by Theorem 3, there exists a continuous extension / of
/ and a continuous extension G of the product g\ gn to all of X
such that fG — h. Then (#i - gn-ι)gn — G\A, and by hypothesis
there exist continuous extensions fa of each gι to all of X such that
gi '9n = G. Hence fgi- gn = h. D

REMARKS. The problems considered in this section are special
cases of a much more general problem, which we will now formulate.
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Let A be a closed subset of a normal topological space X, and let
P(wi, . , un) be a real-valued function of n real variables. Suppose
we have n continuous functions / i , . . . , fn : A —» R and a continuous
function h : X —>• R such that

(*) Λ(z) - P(/ i (x) , . . . , /n(a )) for each x e A.

The question we wish to pose is: Do there exist continuous exten-
sions / i , . . . , / n : X -^ R of the /$ such that (*) holds for all x G X?
As we shall see, certain special cases of this problem have interest-
ing interpretations. Let us note first that we have just explored
the cases when P(u\,u2) = U\u2 and P(uχ,... ,un) = U\U2 -un.
Also, the problem is an easy one if P(uχ,... , un) = u\ + + un.
We merely use [TU] to extend / 2 , . . . , fn to / 2 , . . . , fn and define

fι(x) := Λ(x) - (Λ(x) + h fn(x))' The case when P(uuu2) =

Uι/u2 is also easy if /2 is of constant sign (say /2 > 0) and A is a
G^-set; we extend f2 to / 2 > 0 and define fι(x) := h(x)f2(x). There
are many other cases, however, for which the answers are not clear.

Some important special cases occur if we put restrictions on h
and perhaps on the functions / i , . . . , fn and their extensions. For
example, suppose we have P(uι,... , un) = u\ + + un and h — 1,
and we demand that the functions / i , . . . , fn and their extensions
be nonnegative. Then the above question is equivalent to asking: If
a finite partition of unity is defined on A, can it be extended to a
partition of unity on all of XΊ Of course there is usually a topologi-
cal restriction on a partition of unity, namely that it be subordinate
to some predetermined open covering, and thus we might want the
extended collection {/i,... , fn} to be subordinate to some prede-
termined open covering of X. This problem is formulated more
precisely and solved in Section 4.

Another special case of interest is the case when P(uχ, . . . , un) =
Σiφj \uiUj\. If we take h = 0, then the condition is the same as
requiring that \fo\ Λ \fj\ = 0 whenever i ψ j , which is equivalent
to saying that the collection {/i,... , fn} of functions is "pairwise
disjoint", a property which is often useful in analysis. Our goal is
then to find a pairwise disjoint set of extensions {/i,... , fn}. This
problem is solved in the next section.
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3. Extending pairwise disjoint collections. Recall that two
continuous functions f\ and f2 are disjoint if |/ i | Λ I/2I = 0. An
equivalent statement in terms of their supports F\ and F2 is that
int(Fi Π F2) = 0. We have the following proposition for extending
finite collections of pairwise disjoint continuous functions:

PROPOSITION 5. Let A be a closed subset of a normal space X,
and let the functions / 1 , . . . , fn : A —> R be continuous and pairwise
disjoint. Then there exist pairwise disjoint continuous extensions
/ 1 , . . . , fn of the respective fc to all of X.

Proof It will suffice to consider the case when / 1 , . . . , fn > 0. For
each 1 < k < n we can find a continuous extension gk : X —> [0, 00)
of /fc, by [TU]. For each such A:, define fk by

fk(x):= \gk{x)- \/ Φ)) V0.
V

Clearly each fk is continuous. To show that fk\A = fk for each k,
let α G A. From the above definition, we see that

On the other hand, if fk(o) > 0, then by disjointness condition,

9i(o) = /i(α) = ° for a 1 1 i Φ h so fk(a) = pib(o) = Λ(α).

Finally, to show the pairwise disjointness of the /j, fix 1 < j , A: <
n with j φk. Then

Λ(a ) > 0 =» ^-(a;) < gk(x) =» ^-(a;) - 0.

An obvious question at this point would be whether we can extend
an infinite collection of pairwise disjoint continuous functions. The
answer is affirmative in the case of a countable collection, but the
proof is rather technical and will be included in a later work. For the
case of an arbitrary infinite collection we do not know the answer,
but we do know that arbitrary collections can be extended in the
case when X is a metric space. This is proved in the following
proposition, which employs a construction used by Mandelkern in
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[M], and which is similar to ones used by F. Riesz in [Ke], Tietze
in [T], and Hausdorff in [H].

PROPOSITION 6. Let A be a closed subset of a metric space

(X,d), and let {/7}7er be a set ofpairwise disjoint continuous func-

tions from A to R. Then there exists a set {fΊ}Ίer of pairwise dis-

joint continuous functions from X to R, such that fΊ\A = fΊ for

each 7 G Γ.

Proof. Again it will suffice to consider the case when fΊ > 0
for each 7 e Γ. For each 7, let φΊ : A -> [1,2) be the function
φΊ(x) := |arctan(/7(α;)) + 1, so that φΊ(x) = 1 <=> fη{x) = 0. We
are done if we can find a continuous extension φΊ : X —>• [1,2) of
each φΊ such that φa Λ φβ = 1 whenever a φ β\ for then we can
define fΊ by fΊ(x) := tan(f (07(a;) - 1)), and have | / α | Λ \fβ\ = 0
whenever a φ β.

Folowing the construction used in [M], we define φΊ for each 7
by φΊ{x) := φΊ(x) if x € A, and

It is clear that φΊ : X -> [1,2]. If φ~ι({2}) Φ 0, then we can remedy
this by taking the infimum of φΊ with a continuous function which
is equal to 1 and 2, respectively, on the disjoint closed sets φ~λ({2})
and A. Thus we may assume that φΊ : X —> [1,2).

Now in [M] it. is shown that if φΊ is uniformly continuous, then
so is φΊ. With only slight modifications, the same proof applies if
we replace uniform continuity with continuity. Hence we only need
show, as mentioned above, that φa Λ φβ = 1 whenever a φ β.

Clearly this true at all points of A, so fix x £ X \ A, and choose
two distinct α, β € Γ. For each 7 let GΊ be the set GΊ := {a G
A\ψΊ{a) > 1}. Let us fix x and a. Then d(x,Ga) > d{x,A). If
d(x, Ga) > d(x, A), then d(x, A\Ga) = d(#, >!), and since φa(o>) = 1
for each o 6 A \ G α , we have

ψa{x) < inf φ*(a)--γ—~- = inf -j—jr = 1,
V ^ α€Λ\G d(θ;, A) aeA\Ga d(x, A)

so ^α(α;) = 1. On the other hand, if d(α;, Ga) = d(x, A), then using
the fact that ψβ{a) = 1 for each a e Ga (by the pairwise disjointness
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of fa and //?), we have

(Pβ(x) < inf φβ{a)-j—jr = mf -77—jr = 1,

so φβ(x) = 1. Thus φa Λ φβ = 1, and the proposition is proved.

D

4. Extending partitions of unity. The following theorem af-
firmatively answers a natural question on extending partitions of
unity.

THEOREM 7. Let A be a closed subset of a normal topological
space X, and let / i , . . . , fn : A —» [0,1] form a partition of unity
subordinate to an open covering {Ui}^ of A. If {Ui}^ is an open
covering of X such that UiΓ\ A = Ui for each i, then there exists
a partition of unity {/i}™=i on X subordinate to {Ui}^ such that
MA = fi for each i.

Proof. Let us put Fi := supp(/i) for each i, and define A\ :=
Fi U (U2 U U Un)

c. Then A\ C U\ and we can find an open set
Vi with A\ C V\ C V\ C ΪJ\. Moreover, {VL,£/2? ,Un} covers
X. Inductively, given an open covering {Vi,... , 14_i, £4, - . , Un}
oΐX, let Ak := FfcU(ViU Ul4^iUC4+iU U£/"n)

c, and choose an
open set 14 with Ak C 14 C 14 C Uk- At the nth step of the process,
we obtain an open covering {ViliLi of X with Fi C Vi C Vi C Ui
for each i. Similarly, starting with {Vί}?=1, we can find an open
covering {WiJiLi of X such that Fi C Wi C W% C Vi for each i.

Next we extend each /,- to a continuous function # : X —>- [0,1],
and we choose a continuous function 7< : X -> [0,1] for each i such
that 7<(Wξ) = {1} ad Ίi{Vf) = {0}. Then it is easy to check that
Fi C supp(&7j) C Ui and PJ7<|Λ = /<• If we had Σgcϊi > 0, we
could define /* := gkΊk/(JlgiΊi) a n ( l be done. However, since this
may not be the case, we make the following adjustment.

Let B := (Σ5fi7i)~1({l}) Then B is a closed Gj-set containing
Λ and we can find, as in previous proofs, a nonnegative continuous
function β on X which is zero on B and strictly positive on Bc. For
each i, we now define



68 MARC FRANTZ

Since gι is a multiple of 7,-, we have supp & C Vi C Ui for each
i. To show that Σgi > 0, observe that if x G B then β(x) = 0, so
Σ f t W = Σ9i(x)Ίfi(x) = l O n the other hand, iΐ x & B, x still
belongs to W^ for some k, and thus Σ f t W > 9k(x) > 0> because
β{x)Ίk{x) = /?(*) > 0.

Finally, we can define, for k = 1,... , n,

Clearly fk is continuous and Σ /» = l Also, supp(/fc) = supp(pfc) C
£4, and fk is an extension of /fc, because A C B implies

U —
Σ9iΊi\A Σfi

D

REMARK. Again the obvious question: Does Theorem 7 hold
for an infinite partition of unity ?

5. Extending equicontinuous sets of functions. In this sec-
tion we will generalize the range space to be a locally convex metric
linear space (Y, ρ) over the real or complex field. Recall that for a
metrizable F, we can always make the additional assumption that
the metric ρ is translation-invariant, i.e., ρ(y + w,z + w) = ρ(y,z)
for all y,w,ze Y.

Let us recall that a collection {/7}7er of functions from a met-
ric space (X, d) to a metric space (Y, ρ) is called equicontinuous
at a point x G X if, for any e > 0 there exists δ > 0 such that
ρ(fΊ(x'),fΊ(x)) < e for all 7 G Γ whenever d(xf,x) < δ. The col-
lection is equicontinuous if it is equicontinuous at every point of X.
It is in keeping with the spirit of preceding theorems to ask: If A
is a closed subset of a metric space (X, d), and if JF := {/7}7Gr is
an equicontinuous subset of C(A,Y), does there exist an equicon-
tinuous subset T ~ {/7}7GΓ of C(XjY) such that / 7 |^ = fΊ for
each 7 G Γ ? A little thought reveals that some additional restric-
tion is needed. For example, let X := [0,1], Y := R, A := {0,1},
and T := {/n}ne;v, where for each n, /n is the uniformly contin-
uous function defined on A by /n(a;) := nx. Suppose by way of
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contradiction that {gn}neN C C(X) is an equicontinuous set of ex-
tensions of the / n . Then for each x G [0,1] we can find an interval
Ix := {x-δx, x + δx) such that for any n, \gn(y) — 9n(x)\ < V 2 when-
ever y G Ix. But [0,1] is covered by IXι,... , IXk for some # i , . . . , z*,
and this implies that n = gn(l) < k for each n, which is clearly a
contradiction.

Note that in the previous example, the set {fn(^)}neN was un-
bounded. To get the right restriction, we recall that a subset S
of a linear topological space Y is said to be bounded if for each
neighborhood V of 0 there exists m > 0 such that as G V for all
s € S whenever a scalar a satisfies |α | < m. If we require that for
each a e A the set {/7(α)}7er be bounded in Y, then the desired
extensions of the / 7 exist (Theorem 8).

Before presenting the theorem, we should point out that the proof
makes use of an extension defined by Dugundji in [D]. Indeed, in
the process of proving the equicontinuity of T on dA, we will almost
repeat the proof of Dugundji's extension theorem. We also need to
state a preliminary result from [D].

Recall that an open covering i l of a topological space X is called
locally finite if for each x G X, there exists a neighborhood V of
#, such that V meets only finitely many U £ i l (indeed, we may
assume that V is subset of each such U). If i l and QJ are two open
coverings of X, then QJ is refinement of i l if for each V G QJ there is
a set U e il containing it. We need the following result from [D].

If (X, d) is a metric space, and if A is a closed subset of X, then
there exists an open covering il of X \ A such that

(i) i l is locally finite,

(ii) any neighborhood of any a G dA contains infinitely many sets
from il,

(iii) given any neighborhood W of a G A, there exists a neigh-
borhood W of a with W C W such that the implication
UnW'φQ=ϊUcW holds for each Ueίl

Using the terminology of [D], we refer to such a covering as a
canonical covering. *•

THEOREM 8. Let (X,d) be a metric space, let (Y, ρ) be a lo-
cally convex metric linear space, and let A be a closed subset of X.
Suppose that T \— {/7}7er is an equicontinuous subset ofC(A,Y),
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and suppose that for each a € A, the set {/7(α)}7 er is bounded in

Y. Then there exists an equicontinuous subset T := {/7}7er °f

C(X, Y) such that fΊ\A = fΊ for each 7 G Γ.

Proof. Let it be a canonical covering of X \ A, and define for each
U € ί l a function λv : X \ A ->• [0,1] by

Since ί l is locally finite, there exists for each x e X \A a, neigh-
borhood Wx of x such that Wx meets only (say) t/ i , . . . ,Un G il,
and Wx C ί / i Π Π t/n. Thus the sum in the denominator of (**)
is finite and positive, so λu is well-defined. Moreover, λu is clearly
continuous on Wx (and hence at every point of X \ A), and for any

such x, Σueu λu(x) = λ ^ (x) + h XUn(x) = l
Next, for each t/ choose xc; G U. Then for each zt/ choose αu E A

such that </(#£/, au) < 2d(xu, A) (we assume of course that αu = αc//
whenever xc/ = xχj>). We define the extensions of the / 7 as follows:
for each 7 G Γ, let

ί if x $? ^

Clearly T := {/ 7} 7GΓ is equicontinuous on int(A), so let us first
choose XQ G dA and let e > 0. For each 7 let us write y7 := / 7(x 0) =
/ 7(x 0) If Bρ(yΊ, e) denotes the open ball of radius e centered at y7,
we can use the translation invariance of ρ to find a convex neigh-
borhood V of 0 in Y such that V + yΊ := {y + yΊ\y G V} satisfies
yΊ G V + y7 C Bρ(yΊ, e) for each 7 G Γ. Since there is a small ball
in V centered at 0, there is a ball of equal radius in each V + yΊ

centered at yΊ. Hence we may choose δ > 0 such that for any
7, fΊ(x) = fΊ(x) G F + y7 whenever α: G Bd(xo>δ)ΠA. Observe that
if xu G Bd(x0,δ/3),then

, x0) < 2d{xv, A) + d{xv, x0)

, x0) + d(xu, x0) < 25/3 + 5/3 = δ.

Hence for any 7 G Γ, xυ G Bd(x0, δ/3) => /7(αc/) eV + yΊ.
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Finally, using the fact that il is canonical, choose a neighborhood
Wo of x0, with Wo C Bd(x0,δ/3),s\ich that U ΠW0 ^ 0 => U C
Bd(xo, δ/3). Then x G Wo \ A implies that x belongs only to some
C/i,... ,Un and x\jι,... ,xun G 5 d (x 0 , £/3) Hence for any 7, /7(α;)
is a convex combination

fΊ(x) = λ c / l(x)/ 7(α c / l) + + Xun(x)fΊ(aUn)

of vectors /7(αt/J belonging to the convex set V + yΊ. Therefore

fΊ(x) G V + yΊ, which implies fΊ(x) G Bρ(yΊ,e). This proves that

JF is equicontinuous at each x G dA.
To finish the proof, let x0 E X \ A and let 6 > 0. As before,

let us write for each 7, yΊ := fΊ(x0) — Σ?=iλui(xo)f<γ(Q>Ui), where
C7i,... , Un are precisely those C7 G il which contain x0, and let WQ C
Uι Π Π Un be a neighborhood of x0 disjoint from every other U.
Again let V be a convex neighborhood of 0 satisfying yΊ G V + yΊ C
Bρ(yΊ) e) for each 7 G Γ. With n fixed, it is known that there exists
a neighborhood V7 of 0 contained in V such that ϋ\ + + ΰn G V
for any n vectors # 1 , . . . , ΰn G V7. Now since each set {/7(αc/J}76r
is bounded, so is the union of these n sets. Hence there exists a
number m > 0 such that for any 7, afΊ(au1),... ,θifΊ(aun) G V
for any a with |α | < m. Then since λ i , . . . ,λ n are continuous,
we can find a sufficiently small neighborhood WQ C WO of Xo such
that whenever x G W7,, we have (λf/.(x) — λt/̂ rro))./̂ (&£/») G V for
1 < i ^ ^ and for every 7 G Γ. Hence the vector

A0*0 ~ VΊ = (λt/i(^) ~ λ ^ (

belongs to V, so Aί^) G F + y7 => A ( x ) e Bρ(yΊ^e) whenever
x € WQ. Since the choice of WQ was independent of 7, this proves
that T is equicontinuous at #o Π

REMARK. It is clear that we cannot remove the requirement in
the above theorem that A be closed. For example, the set {/n(^) *-=
xn}neN of real-valued functions is equicontinuous on the interval
[0,1), but not on [0,1].

The following corollary is a slight variation of Theorem 8, and in
view of the Ascoli-Arzela theorem, it takes on a pleasing form.
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COROLLARY 9. Let (X,d) be a locally compact metric space,
let (y, ρ) be a locally convex metric linear space, and let A C X
be closed. Let us consider the compact-open topology on C(A,Y)
and C(X,Y), and suppose that T := {/7}7€Γ is a compact subset
of C(A, Y) for some indexing set Γ. Then there exists a compact
subset T := {/7}7er ofC(X, Y) such that }Ί\A = fΊ for each 7 G Γ.

Proof. We will show that the set T as defined in Theorem 8 is the
desired subset of C(X, Y). We already know that T is an equicon-
tinuous set of extensions of the fΊ. By the Ascoli-Arzela theorem,
we can show that T has compact closure by proving that for each
x0 G X\A, the set {/7(£o)}7er is compact in Y (clearly this true for
any x0 G A). To prove this, let x0 G X \ A and let {/jb(xo)}^=i be
any sequence (we assume that 0,1,2,... G Γ). Since T is compact,
the sequence {fk}%Lι has a convergent subsequence {fkm}m=ι s u c h
that fkm ^ /o 2 for some /o G T. We will prove the compactness of
{/7(#o)}7er by reindexing the convergent subsequence as {fm}m=i
and showing that /m(xo) -+ /o(^o)

As in the proof of Theorem 7, let J7 1 } . . . ? Un be precisely those
U G il which contain x0 and let α ^ , . . . , aχjn G A be the correspond-
ing points in A. Since convergence in the compact-open topology
on C(A, Y) implies pointwise convergence on A, we have

),-. . Jm(aUn) ^

in Y. Since scalar multiplication is continuous, we also have

λuΛxθ)fθ(θ>Ui), , λUn(xO)fm(aUn)

and since vector addition is also continuous,

which is equivalent to fm(xo) -> /o(#o)
We will finish the proof by showing that T is in fact closed. Let

{fδ}δeA be any net in T converging to a function in C(X, y ) , where

2 For brevity, we will hereafter use notation of the form Pi A Q to indicate
that Pi -> Q as i -> oo.
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Δ is a directed set. Since T is closed, we have fs —> /o for some
/o £ T. We are done if we show that fs —> /o, and this can be proved
by showing that for any x0 G X \ A, we have fs(xo) -> fo(%o) in
y, because the compact-open topology and the pointwise conver-
gence topology coincide on T. Having fixed x0, let U\,... , Un and
α ^ , . . . , aχjn e A be as described above. By an argument similar to
that used above, we have the following three results:

/i), 5 fδ(o>un) ->

the last result being equivalent to fs(ooo) ~^ /o(^o) Π

The author is indebted to Professor Yuri Abramovich for his ad-
vice and encouragement.
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