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The main results in this paper concern the minimal
sets of periods possible in a given homotopy class of torus
maps. For maps on the 2—torus, we provide a complete
description of these minimal sets. A number of results
on higher dimensional tori are also proved; including cri-
teria for every map in a given homotopy class to have all
periods, or all but finitely many periods.

1. Introduction. In dynamical systems, it is often the case that
topological information can be used to study qualitative properties
of the system. This article deals with the problem of determining
the set of periods (of the periodic orbits) of a mapping given the
homotopy class of the mapping. To fix terminology, suppose / is
a continuous self-map on the manifold M. A fixed point of f is a
point x in M such that f(x) = x. We will call x a periodic point of
period n if x is a fixed point of fn but is not fixed by any /*, for
1 < k < n.

Denote by Per(/) the set of natural numbers corresponding to
periods of periodic orbits of /.

Even for circle maps / : S1 —> S1 the relation between the degree
of / and the set Per(/) is interesting and nontrivial (see [5], [3]
and, for more details, [1]). Let N, Z, and R denote, respectively the
natural numbers, integers, and reals. Suppose that / is a circle map
of degree d. Then we have
(1) For d = 1, / may have no periodic points.

(2) For d > 2 or d < - 3 , Per(/) = N.

(3) For d = 0 oτ d = — 1, / has a fixed point.

(4) For d = - 2 , Per(/) D N \ {2}.
One of the objects of this paper is to study the set Per(/) for

continuous self-maps defined on the m-torus T7 1 = Sιx xS 1 .
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Our aim is to provide a description of the minimal set of periods
(see below) attained within the homotopy class of a given torus map
/ : Ί™ —y T771. We also present a few results, described below, in a
more general setting.

Toward this end, it is convenient to distinguish among several
subsets of the natural numbers N. First, there is the set of periods,
Per(/), mentioned above. When the mapping g : M —> M is homo-
topic to /, we shall write g ~ /. Define the minimal set of periods
of / to be the set

MPer(/) - Π Perfo).

In order to determine MPer(/), one can use Nielsen fixed point
theory (see Sections 2 and 3 for details). To each map / : M —>
M, where M is a compact "Euclidean neighborhood retract", we
can assign the Nielsen number N(f). This number is a homotopy
invariant such that

N(f) < φ{x : f{x) = x}.

In Section 4, in the case of torus maps / : T 7 1 -» T7 1, we estimate
the sets MPer(/) in terms of the numbers N(fk), k > 1 . To
make this clear, let /*χ : #1(1™,Z) -> Hι(Ίm,Z) denote the first
induced homology map, corresponding to some m x m matrix A
of integers. Then the linear map A : E m -> Rm covers a unique
algebraic endomorphism fA : T 7 1 -> T71 with /Λ — /• In Section 3
we show (Proposition 3.4) that

MPer(/) = Per(/Λ) \ {k G N : N(fk

A) = 0}.

Moreover, if no eigenvalue of A is a root of unity then MPer(/) =

Per(/Λ).
In fact, the above equality was conjectured by Halpern [6], who

proved the result in the case of all eigenvalues equal to roots of
unity.

One of the goals of this paper is to show in detail how MPer(/)
can be determined solely from the knowledge of the sequence of
Nielsen numbers {N(fk)}k>ι Thus, when the Nielsen number is
easily computable, it provides a good tool for investigating the set
of periods common to a given homotopy class. This approach was
used by Halpern [6] for torus maps.
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To compute Nielsen numbers on the m-torus, we proceed as fol-
lows. Given a map /, the Nielsen number of / equals the absolute
value of the Lefschetz number: N(f) = \L(f)\ by a theorem of
Brooks, Brown, Pak and Taylor [4]. Recall that the Lefschetz num-
ber is given by

where f*k : ^ ( I ^ Z ) -> / ^ ( I ^ Z ) is the A;th order homology
homomorphism of /. With A as above, one can show

L(/) = L ( / A ) = d e t ( / - A ) .

Thus, for each k > 1

N(fk) = \det(I-Ak)\,

and if N(fk) φ 0, the mapping f\ : T™ -> T71 has exactly the
number of fixed points given by N(fk) (see Lemma 2 of [6]).

We now describe the main results of each section (2-6) of this
article. In Section 2, we obtain results on the set of periods of a
map / from a compact Euclidean neighborhood retract into itself
by studying the behavior of the sequence {N(fk)}k>i> In Sections 3
and 4, we specialize to torus maps / : T™ -» T 7 1. There we prove
that if the sequence of Nielsen numbers {N(fh)}k>ι is strictly in-
creasing, then Per(/) — N (Theorem 4.8). In addition we show that
if the homology map /*i has an eigenvalue of modulus greater than
one and no eigenvalue equal to a root of unity, then Per(/) is cofinite
in N (Corollary 4.2). A useful tool for determining the set Per(/)
in many cases is the following result (Theorem 4.14):

THEOREM A. // / : T71 -» V71 is continuous, τ > 1, and

N(fn+ι)/N(fn) > T for alln > n 0, thenPeτ(f) contains all integers

greater than or equal to the maximum o/2n0 and 4 ί l + Γ°wr )•

The most general result of Section 4 (Corollary 4.3) can be sum-
marized as follows:

THEOREM B. Given any torus map f : T7 1 ->• T 7 1 then one of
the following must occur:
(1) All eigenvalues of /*χ are equal to zero or a root of unity and,

hence, the sequence of Nielsen numbers {N(fk)}k>ι is peri-
odic.
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( 2 ) There exists a cofinite subset C C N such t h a t P e r ( / ) D C \

{n: N(r) = O}.
Except for the trivial case when 1 is an eigenvalue o//*i, exactly
one of the above statements occurs.

At the end of Section 4, we completely describe all the possibili-
ties for the sets MPer(/) in dimension 2. In this fashion, we obtain
results much in the spirit of those cited above for circle maps. The
role of the degree is now played by the trace t and determinant d
of the first homology homomorphism /*i : # i ( T 2 , Z ) -> # i ( T 2 , Z ) .
When d = 0, the situation reduces to the circle case. We can de-
scribe our results entirely in terms of the "position" of /*χ in the
(ί, d) coordinate plane. The periodic structure, up to homotopy,
is determined by four key lines and nine exceptional cases. The
exceptional cases are:

(-1,2), (0,0), (0,1), (0,2), (1,1)}

and are analyzed in the table at the end of Section 4.
With the exception of those 9 specific values, we can conclude the

following
(1) If t - d = 1, then MPer(/) = 0.

(2) If t Φ 0 and t + d = - 1 , then MPer(/) = {n : n is odd }.

(3) If t + d = 0 or t + d = - 2 , then MPer(/) = N \ {2}.

(4) If (ί, d) does not lie on one of the four lines in (1) — (3), then
Per(/) = N.

2. Periods and Nielsen numbers. The goal of this section is
to obtain sufficient conditions to determine if a given period occurs
for a continuous map in terms of its Nielsen numbers.

The Nielsen fixed point theory is defined for continuous self-maps
of Euclidean neighborhood retracts (ENR). These are spaces which
can be embedded in some W1 in such a way that the image of the
embedding is a retraction of a neighborhood to itself.

Let / : E —> E be a continuous map of a compact ENR. The
Nielsen number N(f) of / is defined as follows. First an equiva-
lence relation ~ is defined on the set F of fixed points of /. Two
fixed points x, y are equivalent, x ~ y, provided there is a path 7 in
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E from x to y such that / 0 7 and 7 are homotopic and the homo-
topy fixes endpoints. The set of equivalence classes F/ ~ is known
to be finite and each equivalence class is compact. Each of these
equivalence classes will be called a fixed point class. Using a fixed
point index, we may assign an index if(C) to each fixed point class
C. An essential class is a fixed point class C such that ij{C) φ 0.
Then the Nielsen number is the number of essential classes. For
more details on the Nielsen number see [8] or [9].

Notice that from the definition of Nielsen number, / has at least
N(f) fixed points. The main difference between the Lefschetz and
the Nielsen numbers is that, in general, the Lefschetz number only
gives existence of fixed points, while the Nielsen number provides a
lower bound for the number of fixed points.

The following result explains the importance of the Nielsen num-
ber in fixed point theory. // / : E —» E is a continuous map of a
compact ENR, then each map g : E —» E homotopic to f has at
least N(f) fixed points. Furthermore, N(f) = N(g).

Until further notice (i.e. after the proof of Theorem 2.12), / will
be a continuous self-map of a compact ENR. Also any divisor of
n G N different from n will be called a proper divisor of n.

As it is well known, a fixed point of fn need not have period
n, so it is often useful to have a method for telling the difference
between "real" and "false" periodic points of period n (i.e., points
having period some proper divisor of n). Given /, let NFP(/) be
the number of fixed points of /. Then, if for example NFP(/ 6 ) is
finite, it is easy to see that / has a periodic point of period 6 if
and only if NFP(/ 6 ) > NFP(/ 3 ) + NFP(/ 2 ) - NFP(/). One of the
main goals of this section is to get similar results when "NFP" is
replaced by "JV". Since we only know that N(fn) < NFP(/ n ) , this
replacement is not a trivial one. As we only have an inequality, we
concentrate on sufficient conditions for / to have a periodic point of
period n. This is the motivation for the next lemma and the index
assumption below.

LEMMA 2.1. Each fixed point class of fk is contained in a fixed
point class of fn if k divides n.

Proof. Let x and y be points of a fixed point class of fk. Then
there is a path 7 from x to y such that fk o 7 and 7 are homotopic
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by H and H fixes endpoints. It is easy to see that the paths fn o 7
and fn~k o 7 from x to y are homotopic by fn~k o H, and fn~k o H
fixes endpoints. D

The following assumption, which we call the "index assumption",
is somewhat restrictive but it is a simple property, true on the torus,
which assures the validity of the results of this section. Also, as
pointed out to us by B. Jiang, the index assumption is true for all
orientation preserving homeomorphisms of surfaces.

INDEX ASSUMPTION FOR /. For each k,r e N let C be a fixed
point class of fk and let C be the fixed point class of fkr which
contains C. If C is essential then C is essential.

In the rest of the section we assume that our map f satisfies the
index assumption.

The next result gives sufficient conditions to assure that n G
Per(/) in terms of the Nielsen numbers of the iterates of /.

PROPOSITION 2.2. Assume that

N(fk)
jprime

Then f has a periodic point of period n.

Proof. Let r = N(fn) and let CΊ, C 2 , . . . Cr be the essential classes
of fn. For each j , 1 < j < r, pick Xj 6 Cj. If some Xj has period
n, then we are done. So assume no Xj has period n. Then, for
each j , there is a kj so that n/kj is prime and fkj(xj) = Xy For
each j , the fixed point class of Xj for /*>, C^, is contained in Cj
(see Lemma 2.1). But the index assumption implies that Cj is an
essential class of fkj. This contradicts

N(Γ) > Σ N(fk)
jprime

(since the C/s are pairwise disjoint). D

For each n > 2, we define an to be the unique root of the poly-
nomial xn — Σ χk which lies in [1,2).

i
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REMARK 2.3. If n is a prime or a power of a prime, then an — 1
(since there is exactly one k such that Ψ is prime).

LEMMA 2.4. If N(fn) > a^~kN(fk) for each | prime, then f
has a periodic point of period n.

Proof. Since

1) = f i Σ °ti Σ t) (n
f prime ) n ̂

= Σ ίM )Jv(Γ) > Σ
jprime jprime

from Proposition 2.2 we are done. D

Next we shall obtain sufficient conditions in order that a set of
the form {n G N : n > n 0} be contained in Per(/).

For each r, 1 < r < 2, and each integer j > 1, we define jτ(j) to
be the least integer 7 > 1 such that τ 7 > Σfco τ% We also define
Γτ(j) by the formula [log(τJ — 1) — log(r — l)]/logτ. Since Γτ(j) is
just the result of solving the equation τ 7 = (τj — l )/(r — 1) for 7, it
is easy to see that 7 r(j) is always the least positive integer greater
than or equal to Γ r (j). Moreover, Γ τ(j) — j is an increasing function
of j and l i rn^o^Γ^j) — j) = — log(r — l)/logτ. Thus, for each
such r there is an integer nτ such that jτ{j) < j + ?V for all j .

In what follows K will denote c*6 = 1.22074408..., i.e. the root of
the polynomial x4 — x — 1 which is contained in (1,2). The next two
results show the basic properties of the number K.

LEMMA 2.5. We have 7 ί ς ( l) = 1, 7 l ς(2) = 4, 7 l ς(3) - 7, 7 Λ ( 4 ) =
9, 7 / ς(i) = i + 6 /or i = 5,6, 7«(i) = z + 7 /or i = 7,8,9,10,11 and

Ίκ(i) = i + 8 fori > 12.

Proof The first twelve values of 7 / c are obtained by direct compu-
tation. Since Γ^^') — j is an increasing function of j and converges
to — log(κ; — 1)/ log Ac < 8, the lemma follows. D

As usual, [x] denotes the integer part of x G R.
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LEMMA 2.6. For any positive integer n, K > an.

Proof. Since jκ(j) < j + 8 for all j > 1 (see Lemma 2.5), we have
that jκ(n - 8) < n and n - 9 > [§] for all n > 18. Therefore,

n-9 [n/2]

κn > (̂n-8) >Σκl>Σκl> £ ft\
i=0 i=0 jprime

Thus, ft > α n for n > 18.
If n G {1, 2,3,4, 5, 7,8,9,11,13,16,17} then an = 1 and if n e

{10,12,14,15} then it follows that K > an by direct computa-
tion. D

THEOREM 2.7. If the ratio N(fn+ι)/N(fn) is well-defined and
greater than or equal to K for all n>l, then Per(/) = N.

Proof In view of Lemma 2.6, for n > 2 we have

N(fn) > κn~kN(fk) > al~kN(fk).

Then the theorem follows from Lemma 2.4. D

We note that since K is irrational, the hypothesis N(fnJhl)/N(fn)
> ft is equivalent to N(fn+ι)/N(fn) > ft.

We shall prove that the constant ft appearing in the assumptions
of Theorem 2.7, in some sense, is the best possible in order that
Per(/) = N (see Theorem 4.15). Because the result depends on
information concerning tori, we postpone it until after we have in-
vestigated maps on these spaces in Section 4.

Now we are interested in studying what can be said about the set
of periods if in Theorem 2.7 we replace the assumption n > 1 by
n > no for some no > 1. To do this we need the following result.
For each n G N we denote by ξ(n) the number of distinct prime
factors of n.

LEMMA 2.8. Let n > 2 be a positive integer and let k be the
greatest proper divisor of n. Then n — Jκ(ξ(n)) + ξ(n) — 1 > k

Proof From Lemma 2.5 we have 7,c(£(n)) — ξ(n) < 8. Then

rc ~ 7*(£(n)) + ξ(n) - I > n - 9 > n/2 > k if n > 18. The
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remaining cases (n < 18) are easily checked because ξ(n) < 2 and

THEOREM 2.9. Suppose that the ratio N(fn+1)/N(fn) is well-
defined and greater than K for all n > n 0 ; and N(fn) < N(fn°) for
all n < ΠQ. Then f has periodic points of all periods n such that

Proof Suppose n > n0 + 7κ(£(n)). Note that if i > k > n 0, then
N(f) > ^~kN(fk), and if i > n0 and j < n0 then N(f) > N(p).
Set j = ξ(n) and 7 = 7 ^ ) . Then

Z=0 2=0

because n — 7 > n 0. Since the number of fc's such that x is prime
is j , from Lemma 2.8 it follows

ΣN(fn~7+i)> Σ W)>
i=0 ^prime

and from Proposition 2.2 the result follows. D

From Theorem 2.9 we obtain the following characterization of the
set Per(/) for small values of n 0. Note that in particular we get a
new proof of Theorem 2.7.

THEOREM 2.10. Suppose that the ratio N(fn+ι)/N(fn) is well-
defined and greater than or equal to K, for all n > no- Then, the
following statements hold.

(1) //n 0 - 1, then Per(/) = N.

(2) 7/n0 = 2, then Per(/) D N \ { 2 } .

(3) If n0 G {3,4}; thenPeτ(f) D N \ { 2 , 3 ; 4 , 6 } .

(4) //no G {5,6}; then Per(/) D N \ {2,3,4, 5,6,8,10}.

Proof For each n 0 > 1 let n — n(no) be the smallest integer k such
that n 0 < k and there is a multiple of each z < no in [no, k] (if no = 1



10 L. ALSEDA ET AL

we set n = 1). Clearly, n < 2n0. We claim that N(fn) < N(f") if
n <n.

To prove the claim suppose first that n0 < n < n. Prom the
hypothesis, N(f") > κn-nN{fn) > N(fn). Now, assume n < n0.
If k is the multiple of n in [no,ή] then N(fn) < N(fk) < N(f").
Hence, the claim is proved.

From the claim and Theorem 2.9 we get that / has periodic points
of all periods n such that n > n + 7K(£(n)). From Lemma 2.5 we
have n + 7K(£(n)) < n + 8 + ξ(n) < n + 8 + rc/2 if n > 2. Therefore,
n G Per(/) if n > 2n + 16. Note that for n0 G {2,3,4,5,6} we
have n(nQ) = 2n0 — 2 and hence n(n0) < 10 for ΠQ G {1,2,3,4,5,6}.
Thus, n G Per(/) for all n > 36 if n0 G {1,2,3,4,5,6}. If n < 35
we have 7Λ(£(n)) G {1,4,7} because ξ(n) < 3. Hence, again from
Theorem 2.9, n G Per(/) if n > n + 7 and n0 G {1,2,3,4,5,6}.
Thus, n G Per(/) for all n > 17 if n0 G {1,2,3,4,5,6}. If n < 16
we have 7/ς(£(n)) G {1,4} because ξ(n) < 2. Therefore, n G Per(/)
if n > n + 4 and n0 G {1,2,3,4,5,6}.

Note that if 1 < n < n, then n < n + 7*(£(n)) and we cannot
use Theorem 2.9. So we cannot assure that {2,3,..., n} is contained
in Per(/). In short, for a given n0 G {1,2,3,4,5,6} we only have
to check which are the n G N such that n + l < n < n + 3 and
n > n + Jκ{ζ(n))' We subdivide the rest of the proof into the
following cases.

Case 1: n0 = 1. For n = 2,3,4 we have n > n + 7fc(£(^)) = 2
because 7*(£(n)) = 1. So Per(/) = N.

Case 2: ΠQ = 2. For n = 3,4,5 we have n > n + 7/c(£(^)) = 3
because jκ{ξ{n)) = 1. So Per(/) D N \ {2}.

Case 3: n0 = 3. For n = 5,7 we have n > n + 7fc(£(^)) = 5 (and
6 < n + 7.(^(6)) = 8). So Per(/) D N \ {2,3,4,6}.

Case 4: n0 = 4. For n = 7,8,9 we have 7*(£(n)) = 1 and, as in the
above cases, we obtain Per(/) D N \ {2,3,4,5,6}. However, since
N(f) < 7V(/4) < κN(f*) < N(f6) we get that 5 G Per(/).

Case 5; n0 = 5. For n = 9,11 we get 7κ(£(n)) = 1, so Per(/) D
N\ {2,3,4,5,6,7,8,10}. From N{f) < N{fe) < κN(f) < N(f)
it follows that 7 G Per(/).

Case 6: ΠQ = 6. In a similar way we get Per(/) D N\ {2,3,4,5,6,7,
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8,9,10,12}. From

N(f)<N(f6)<κN(f6)<N(f),

N(f)<N(f*)<κ3N(f*)<N(f%

N(f) < κ6iV(/12),

it follows that {7,9,12} c Per(/). D

3. Periods and Nielsen numbers for torus maps. In this
section we shall prove that the results obtained in Section 2 can be
used in the study of the minimal sets of periods for torus maps.

Let A be an m x m matrix of integers. We shall denote by fA •
T™ -> T71 the map covered by the linear map A : Rm -» Rm. We
note that then A is a matrix representative of the induced homology
homomorphism (fA)*i ' #1(1™, Q) -> H^V^Q). Hence, from
the introduction we have that N(f%) = |det(/ — An)\. From this
equality it follows immediately.

LEMMA 3.1. The Nielsen number N(fA) vanishes if and only if
1 is an eigenvalue of An.

The following result is a rewriting of Lemma 2 of [6].

PROPOSITION 3.2. //I is not an eigenvalue of A, then each fixed
point of fA is a distinct essential fixed point class of fA.

Since f\ = fAk for each k > 1, from Lemma 3.1 and Proposi-
tion 3.2 we get immediately:

COROLLARY 3.3. The index assumption holds for fA-

Now we consider the situation in which / is a torus map and A
is a matrix representative of the induced homology homomorphism
Λi : tfiCΓ^Q) -> i/i(ir,Q). Of course , / ~ fA. We recall that
MPer(/) was defined to be Π ~̂/ Per(p). The next result shows how
to study the set MPer(/) by using the set

PROPOSITION 3.4. The following equalities hold: MPer(/) =
Per(/A) \ {k G N : N(fi) = 0} - Per(/A) \ {n G N : 1 is an
eigenvalue of An}.

Proof From Lemma 3.1, we know that {n e N : N(f%) = 0} =
{n G N : 1 is an eigenvalue of An}, which proves the second equality.
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For a torus map g we denote by Pn(g) the number of periodic
points of period n of g. We define MPn(f) by min{Pn(g) : g ~ /}.
Assume that n is such that 1 is not an eigenvalue of An. From
Proposition 2.2(ii), Remark 3.6 and Theorem 3.7 of [7], it follows
that

MPn(f) > Σ (-l)# τWn : τ),
τCP(n)

where P(n) is the set of all distinct primes which divide n, # τ
denotes the cardinality of the set T, and n:τ — n(Y[peτp)~ι. Fur-
thermore, in [11], given N, a map f c^ fA is constructed, such that

τCP(n)

for all n < N. We note that since the empty set is a subset of P(n),
the above sums always include the term N(fn).

By Proposition 3.2 it follows that

Σ (-V*TN(fXr) = Pn(fA).
rCP(n)

Since the Nielsen numbers are invariant under homotopy we get
MPn(f) = PΠ(/Λ) Hence, the proposition is proved. D

We note that from the above proposition, in particular, we get
that if no eigenvalue of A is a root of unity then MPer(/) = Per (/A).

To study the set MPer(/) we shall analyze the set Peτ(fA) \ {n G
N : NUA) = °} This will be done in the next three sections. To
develop this study we shall use the results obtained in Section 2.
This will be possible in view of Corollary 3.3.

4. On the set of periods for torus maps. In this section we
shall prove some results on the set of periods for the m-dimensional
torus maps.

Let / be an m-dimensional torus map and let A be a matrix
representative of the induced homology homomorphism /*!. From
now on A will be called a matrix associated to /. As usual we denote
by /A the torus map covered by the linear map A : Rm -» Rm. Then
/ ~ fA Since the Nielsen numbers are invariant under homotopy,
we have N(fn) = N(f%). Moreover, from the introduction



MINIMAL SETS OF PERIODS 13

where λ l 5 ...,λm are all the eigenvalues of A (in this sequence the
eigenvalues are repeated according their multiplicity). In the rest of
the paper the number | det(/ — An)\ will also be denoted by N(An).

We denote by TA the set {n G N : 1 is not an eigenvalue of
An} = { n e N : N(An) φ 0} (see Lemma 3.1). The main result of
this section is the following.

THEOREM 4.1. Let f be an m-dimensional torus map, and let
A be a matrix associated to f. If A has an eigenvalue of modulus
greater than 1, then Per(/) is cofinite in TA; that is, there is an
n 0 G N such that Per(/) D TA \ {1,..., n 0 } .

Proof We divide the set E of all eigenvalues of A into four subsets
Gj, for jf = 1,2,3,4, by setting

Gι = {λeE:\λ\>l],

G2 = {λeE:\λ\<l},

G3 = {λ G E : |λ| = 1 and λ is not a root of unity},

£?4 = {λ G E : λ is a root of unity}.

The cardinal of Gj will be denoted by kj for j = 1,2,3,4.
Then we have

We shall study separately the four factors of this equality. We begin
with the first factor.

We denote by p a real number such that 0 < p < 1, | λ | < p i f
λ e G2, and |A| - 1 < p if λ G G\. There exists nγ G N such that
ρn < 1/2 if n > u\. Thus for n > n\ we get

Π |i-λ-| =
1

>
JL •• • , . _, J .

2k

where M = ΠλeGi |λ| > 1 (in fact, M is the Mahler size of the
characteristic polynomial of A). On the other hand, for each n G N
we have

Π ι i - λ n ι = π <2klMn.



14 L. ALSEDA ET AL

In a similar way for the second factor we obtain

-^ < Π | l - λ n | < 2 A ; 2 if n > n 2 .
2 2 λeG2

Now we bound the third factor. Since A is a m x m matrix
with integer entries, its eigenvalues are algebraic numbers of degree
less than or equal to m. On the other hand, each n e N \ { 1 } is
an algebraic number of degree 1 and height n. Suppose now that
λ 6 G3. Since nlogλ φ 0, applying Theorem 3.1 of [2] we have

where the positive constant c\ depends only on m and on the height
of λ. If

K = max I — : z = tλn + (1 - t) with t G [0,1] [ ,

then we have

I logλΛ | = | logλn - log 1| =

1 d

log(ίλn + (1 - t))
t-\

ί = 0

-t))dt <

Therefore

< | λ n - i | .

If Reλn > 0 then K > >/2. If Reλn < 0 then obviously |λn - 1 | > 1.
So we get

if n is sufficiently large, say n > n 3(λ). Hence

i f

where C = max{cλ : A G G3} and n^ = max{n3(λ) : λ E G3}. On
the other hand, we have the trivial inequality

| l - λ n | < 2 * 3 .
λ<ΞG3
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Finally we obtain the bounds for the last factor. Since the set
{λn : λ e G4 and λn φ 1} takes finitely many values, we have

ηk4< Π | l - λ n | < 2 f c 4 ,
λ<ΞG4

for some η > 0. Then putting together the bounds for the four
factors we get

\kA-^ηrMn < N(An) < 2kι+k*+M*Mn,' nck3 - v ) -

if n > n4 = max{ni, n2, n3} and n e TA In short

L—Mn < N(An) < 2mMn

if n > n 4 and n 6 ΓΛ, where L = ^ i W ( T ^ ) ^ a n d r =( )

Notice that, in fact, the above upper bound of N(An) holds for every

neK

Now, for each n e N we shall find an upper bound oΐ^nprimJV(Ak).

Note that for each k such that n/k is prime we have k < | . Then

Since
Mn/2

hm — — = oo,
n^oo n r + 1

there exists n0 > n4 such that

Mnl2 2m

> — ,
TL LJ

if n > no . Hence,

L—Mn = n2mMnl2—^— > n2mMn'2

nτ 2m n Γ + 1

for each n> ΠQ. In short, we have

N(An) > L^Mn > n2mMn/2 > ^ N(Ak),
fprimek
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for each n>rto and n G Γ^ Then, by Proposition 3.4, Corollary 3.3
and Proposition 2.2 the theorem follows. D

COROLLARY 4.2. Let f be an m-dimensional torus map, and let
Abe a matrix associated to f. If A has no eigenvalue which is a root
of unity and has some eigenvalue different from zero, then Per(/)
is cofinite in N.

Proof. Let k be the multiplicity of the eigenvalue 0 of A. Then the
characteristic polynomial of A is of the form λ f c(λm~ f c+αm_jt_iλm"/ c~1

+ .... + αo) with αo φ 0 (because A has an eigenvalue different from
zero). Since A is a matrix of integers, αm_^-i, ...,αo are integers.
Let λi, ...,λm_fc be the eigenvalues of A different from zero. Then

K l = | λ i | « . . . | λ m _ * | .
Suppose that |λj| < 1 for i = l,...,ra — k. Then |α o | — 1 &nd

|λί| = 1 for i = 1,..., m — k. It is known [10] that if all the roots of a
monic polynomial with integer coefficients have unit modulus, then
they all are roots of unity, which contradicts the hypotheses. Thus,
A has an eigenvalue of modulus greater than 1, and the corollary
follows from Theorem 4.1 and the fact that TA = N. D

By using the same techniques as in the proofs of Theorem 4.1 and
Corollary 4.2 we have the following

COROLLARY 4.3. Let f be an m-dimensional torus map, and let
A be a matrix associated to f. Then one of the following must occur:
(1) All eigenvalues of A equal zero or a root of unity and, hence,

the sequence of Nielsen numbers {N(fk)}k>ι is periodic.

(2) The set Per(/) contains a cofinite subset ofT^-
Except for the trivial case when 1 is an eigenvalue of A, exactly one
of the above statements occurs.

REMARK 4.4. Assume that the hypotheses of Theorem 4.1 are
fulfilled. From the proof of this theorem we have LMn/rf < N(An)
for n £TA sufficiently large. Therefore lim^oo N(An) = oo. Hence
Theorem 4.1 improves Theorem 1 of [6].

In view of Theorem 4.1 a natural question is if there exists a
lower bound for ΠQ independent on the dimension of the torus. The
negative answer is given by the following proposition.
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PROPOSITION 4.5. Let m > 1 be any integer, and suppose A is
an m x m matrix of integers having p(x) = xm + 2 xm~ι + 2 xm~2 +
• + 2 x + 2 as its characteristic polynomial. Then Per(/*A) is cofinite
in N \ {k : k > 1 and k\(m + 1)}.

/. Notice that (x - l)p(x) = xm+ι +xm-2. So, if z is a root
of p(x), then zm+ι + zm = 2. Clearly, if |z| = 1 then z = 1. But 1
is not a root of p(x). Thus, p(x) has no zeros of modulus 1. On the
other hand p(x) has a root with modulus larger than one (because
the product of all roots of p(x) is 2). By Theorem 4.1 it follows that
Per(/,4) is cofinite in N. Now we shall prove that m + 1 £•
Let λ; with i — 1, 2,..., m be all roots of p(x). Thus,

N(An ι+lλ

N(A)

m

=π
1

777,

π
|λr+i(

m

AA
m

l - λ™+1

l - λ i

ΛΓ + 2ΛΓ

detA

2

m

777,

=π

- + .

\ 777, I \ 7 7 7 — 1 |

1 m

• + 2 ) l = 5

• Λ

\ 777

2Λ*

Since deti4 = 2, we have 7V(,4m+1) = N(A). Then the proposition
follows from Corollary 3.3. D

Now we shall present some sufficient conditions in order that a
torus map has periodic points of all periods.

THEOREM 4.6. Let f be an m-dimensional torus map and let A
be a matrix associated to f. Suppose that all the eigenvalues of A
are real, positive, different from 1 and detA > 1. Then Per(/) = N.

To prove the theorem we need a lemma.

LEMMA 4.7. Let a G R with \a\ φ 1 and n e N. Then

I _ an+ι I max{l, a} if a > 0 ,

L — | α | | if a < 0 .-an
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Proof. Suppose α > 0. Then

1 + a -\ \-an

l - a n
1 + a + + aπ - l

> max
f α + + α n l + α + + α * - 1 ! r -
< -, r > = maxi α, 1 \
\ 1 + a + - - + α""1 ' 1 + a + - - + an~ι f x ' s

Suppose now — 1 < a < 0. If n is even, then

1 - α n+l

l - α n

|n+l
> 1 > 1 - |α|.

If n is odd, then

- an+1

l-an 1 + |α|"

> 1 -

|α|" + |α | " + 1

= 1

Finally, suppose that a < —1. If n is even, then

If

1

n

L-
1

is ode

-an+ι

-an

1
1

, then

a n

a

- α n + 1

- α n

+ l

= η^Γ>\a\>\a\-l.

|α | " + 1
> H - i .

D

Proof of Theorem 4.6. Let λi, λ2,..., λ m denote all the eigenvalues
of A. By virtue of Lemma 4.7, we have

iv(/n+1) = π
N(fn) L\ 1 - λ ? ? 1} > JJ χi = d e t A > 2

Since K < 2, by Proposition 3.4, Corollary 3.3 and Theorem 2.7 we
get the desired result. D
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T H E O R E M 4.8. Let f be an m-dimensional torus map such that
its sequence {N(fn)} of Nielsen numbers is strictly increasing. Then
Per(/) = N.

To prove the theorem we need two lemmas.

LEMMA 4.9. Suppose f : T 7 1 —> T 7 1 is a group homomorphism.
If f has periodic points of relatively prime periods k and j , then f
has a point of period kj.

Proof. Let x and y be points of period k and j , respectively. Let
z — x*y where * denotes the group operation on T 7 1. Clearly,
fki(z) = z. Therefore, z is a periodic point of / of period r which
is a divisor of kj. Thus, either r = kj and we are done or there is
a prime p such that p divides kj and r divides kj/p. Since k and j
are relatively prime, p divides at most one of them. So either k or
j divides kj/p but not both. Suppose j divides kj/p. Then,

X * y = z = fki/P(Z) = fW*(χ) * fkj/p(y) =

Hence, fki/p(moάk)(χ) = #, which is a contradiction because k does
not divide kj/p. D

LEMMA 4.10. Zeί / be an m-dimensional torus map such that

N (fp J < N (fp + 1J for each prime number p and for each k > 0.

Then f has periodic points of period pk for all k > 1.

Proof. This follows easily from Proposition 3.4, Corollary 3.3 and
Proposition 2.2. D

Proof of Theorem 4.8. Let A be the matrix associated to /.
The map /^ : V71 -> V71 is a group homomorphism. In view of
Lemma 4.10 we conclude that /^ has periodic points of period pk

for each prime p and each k > 1. Let n be a natural number. We
write n — p\ιp^2 pks where Pι,P2> ->Ps are distinct primes and
ki > 1 for i = 1,2,..., s. By the inductive use of Lemma 4.9 we get
n 6 Per(/,4) which implies n e Per(/) by virtue of Proposition 3.4*.

D

REMARK 4.11. From the proof of Theorem 4.8 we see that
strict monotonicity is only required in the subsequences of the form
{N(fpk)} for each prime p.
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Let A be an m x m matrix and let E be the set of all eigenvalues

of A (each of them repeated according to its multiplicity). Denote

by

GΊ = {λ € E : X € R and λ > 1} ,

G2 = {λe E : XeR a n d λ < 0 } ,

G3 = {X e E : X e R and 0 < A < 1} , and

Define

Π | i -
\λeG2

Π I i -

Then we have:

THEOREM 4.12. Let f be an m-dimensional torus map and let
A be a matrix associated to f. If A has no eigenvalues of modulus
1 and AA > 1 then Per(/) = N.

Proof. As in the proof of Theorem 4.6 we shall look for a lower
bound for N(fn+1)/N(fn) for all n e N. We have

N(fn+1) - λ n + 1

l - λ Λ Π
j=\ \xeGj l - λ n

Now we are going to estimate from below each factor in the brackets.
By Lemma 4.7 we obtain

π
\eGι

π
λeG2

Π

1

1

1

—

1-

—

1 -

—

1 -

λ n+l

-λ n

λ n+l

-A"

λ n+l

-A"

>

, and
λ6G 2

> 1.
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Let λ G G 4 and set λ = re ι β . Then,

1 - 2 r n + 1 cos(n + 1) θ + r2<n + 1)

- 2 rn cos nθ + r
2

2n

because

Thus,

_ rn+l

1 + r n

π
A6G4

> Π
λ€G4

Putting together the above inequalities we get

= AΛ > 1.

Thus, the theorem follows from Proposition 3.4, Corollary 3.3 and
Theorem 4.8. D

Next, we prove a result which, in many cases, gives an effective
algorithm for computing the minimal set of periods of a torus map.

PROPOSITION 4.13. Let f be an m-dimensional torus map, let
n G N and S C N be such that any proper divisor of n is also a
divisor of some element of S. Assume in addition that N(fk) > 0
for each k G S. Suppose

kes

Then f has a periodic point of period n.

Proof Since N(fk) > 0 for each k € 5, from Corollary 3.3 it
follows that each essential class of fA with j a proper divisor of n is
contained in an essential class of f\ for some k G S. Since

N{fn
A) = N(Γ) > £ N(fk) = Σ N(fk

A),
keS
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by Corollary 3.3, there is an essential class of f\ which does not
contain any essential class of f\ with j a divisor of n. Such an
essential class contains periodic points of period n for }A- Then the
statement follows from Proposition 3.4. D

THEOREM 4.14. Suppose that the ratio N(fn+ι)/N(fn) is well-
defined and greater than or equal to r for all n > n0 and for some
1 < r < 2. Then Per(/) is cofinite in N, in fact, f has periodic
points of all periods greater than or equal to the maximum of

( | M l | )

[f ]]Proof. Suppose k > max J2n0, 4 (l + l ' 0 ^; 1 ^)}. Let j = l + [f
(we recall that [x] denotes the integer part of a; G R). Then since

k > 2no, every proper divisor of k is also a divisor of one of the

numbers ra0, n 0 + 1 , . . . , j - 1. Since k-j> l ' 0 ^ " 1 ^ > Γτ(j) - j we

have that jτ(j) < k (here we use the notation from Section 2). So

T > Σ i " ' Therefore
i=0

' i=0 ' i=n0

— rr-k ί S V

T
' 1=710

Since N(fn) > 0 for all n>n0, Proposition 4.13 implies that / has
a periodic point of period k. D

Note that, if A has no eigenvalues of modulus 1, and at least one
non-zero eigenvalue, then there will be an n 0 and r satisfying the hy-
potheses of Theorem 4.14 (see Corollary 4.21), and such n 0 and τ can
be easily calculated if the dimension is reasonable small. The finitely
many Nielsen numbers below k = max J2no,4 ί 1 + °^τ~x'\)\ can
then be calculated directly to see which periods below k are present
in MPer(/).

The following theorem shows that the constant K calculated in
Theorem 2.7 is the best possible among all spaces satisfying the
index assumption.

THEOREM 4.15. For every real number a with 1 < a < K, there
exists X, a finite disjoint union of m—tori, and a continuous map
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/ : X -> X such that the ratio N(fn+ι)/N(fn) is well-defined and
greater than or equal to a for alln>l, but f has no periodic points
of period 6 so that Per(/) φ N.

Proof Let 1 < a < K. Pick a rational β such that a < β < K
and (β + 1 - β4)-"1 > K. Notice that since K + 1 + κA = 0 and
x + 1 - xA > 0 for 1 < x < K, the inequality (β + 1 - βA)~ι > K can
be attained by taking β sufficiently close to K.

By Proposition 4.5, there is an m x m matrix A of integers such
that it has no eigenvalues of modulus 1, detA = 2 and Per(/^) Π
{2,3,4,5,6} = 0 (notice that a 61 x 61 matrix will suffice, although
smaller examples probably exist). For each n > 0 let Mn = N(An).
Since det^4 = 2 and A has no eigenvalues of modulus 1, it is not
difficult to show that limn_>oo ^ ^ = μ exists and is at least 2. Also,
Mn = Mi for 1 < n < 6 because Mn is exactly the number of fixed
points of f% (see Proposition 3.2).

Now we define rational numbers Pk by induction on k in the
following way. Set Pi = P 6 = 0, P2 = aβ2 - Mu P3 = α/?3 -
Mx, P 4 = α/?4 - P2 - Mi and P 5 = α/?5 - M 1 ? where a = Mi/(/?3 +
β 2 ~ /?6) Suppose now that j > 7 and that the numbers Pk have
been defined for k < j . We set

I ) j
k\j

Since lim^oo ^ ^ ^ = μ, then M n = O(μn). Thus, since μ>2>β,
from the definition of the numbers Pj one can show by induction
that Pj = O(β j ). Therefore, there exists j 0 6 N such that Pj = 0
for all j > j 0 .

Now, set

for all j G N. We note that ΛΓX = Mx, Nk = α/5* for 2 < A; < 6 and
that

for all j > 7. Hence, for j > 7 we have P, > /3(JV, _i - (iV, - Pj))

which is equivalent to Nj > βNj-i. Therefore, ^jfr > β for j > 2.
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Furthermore,

N2 β2

Let r be the smallest positive integer such that rP3 G Z for all
j G N. Note that such an r exists because Pj = 0 for j > j 0 and
P7 G Q for j < Jo.

Now let X be a disjoint union of r j o \ - (1 + P2 + P3-\ h P^)
copies of T7 1. We define the map / : X -> X as follows. We
choose r jo' components CΊ, C2, 3 CV-jo? °f ^ a n c ^ w e define /
on these components such that f(Ci) = C; and / \Ci = /Λ |c» f° r

i = 1,2, , r j o ! Now let us fix k G {2,3,... ,jQ}. Notice that
r ' Jo' * Pk £ N and A; divides r jo' * ^ Then we take (r jo' * Pk)/k
groups of A: connected components of X. On each of these groups we
define / in the following way. Let K\, K2,..., K^ be the connected
components of one of these groups. We set f(Ki) = ϋQ+i for i =
1, 2, . . . , k — 1 and f(Kk) = i^i in such a way that / | ^ is constant
for each z.

In that way, each group of k components gives a unique periodic
orbit which has period k. This ends the construction of the map /.

We note that:
(1) Each periodic point of period k oΐ f forms an essential class

of fk (see Proposition 3.2).

(2) N (fk Luc2u...uc r,0,) = r Jo\ N(f%) - r jQ\ Mk for all
keK

(3) TV (/* \x\{Cluc2u υcr.i0l}) = Σ r ' Jo' P r

3<jo

Therefore, since Pj — 0 for j > jf0, in view of (*) we get that
N(fk) = r-jo

].'Nk for all k G N. Hence, N(fk+1)/N(fk) > β for all
A;. On the other hand, the number of periodic points of period 6 of /
is N(f6) - N(fs) - N(f2) + N(f). By straightforward computation
this number turns out to be zero. So / has no periodic points of
period 6. D

REMARK 4.16. We note that the map constructed in The-
orem 4.15 depends on moving around the very numerous compo-
nents of X. So, if 1 < a < /€, does there exist a compact connected
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manifold X and a continuous map / : X —> X such that the ratio
N(fn+1)/N(fn) is well-defined and greater than or equal to a for
all n > 1, yet Per(/) φ N.

Now we give a complete characterization of all the sets MPer(/U)
corresponding to all two-dimensional torus maps.

Region 5

λ < -1

0 < μ < 1

t-d= 1
(eigenvalues l,d) (eigenvalues — 1,—rf)

FIGURE 1. The regions under consideration in the (ί, d)-plane.

The characterization of the sets MPer(/^) will be achieved by
studying the sequences {N(An)}. Matrices having the same pair
of eigenvalues have the same sequence {N(An)} (and therefore the
same set MPer(/^)). Since in this section A is a 2 x 2 matrix, these
sequences depend on the two eigenvalue parameters only. A more
convenient choice of parameters is the trace and the determinant of
the matrix A, because they take only integer values.

In the sequel we denote by t = t(A) and d = d(A) the trace and
determinant of the matrix A, respectively. Then the eigenvalues of
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A are λ = (t - yjt2 - Ad)/2 and μ = (t + Λ/*2 - 4d)/2.
If TA = 0, i.e. all of the Nielsen numbers N(An) are 0, then

1 is an eigenvalue of A. Since d is then the other eigenvalue we
have t = d + 1. Thus on the line t — d = 1 we have TA = 0 and
MPer(/A) = 0. Similarly, if —1 is an eigenvalue, then t + d = —1,
and we have that TA is the set of positive odd numbers (except
where the two lines intersect at (0,-1)). In Figure 1, we see the
(ί, d)-plane divided into several regions, in which the arguments
will be somewhat different. The d-axis is not the boundary of any
region. The ί-axis (for \t\ > 1) and the line t2 = Ad (for \d\ > 1)
are each included in one of the regions which they bound (indicated
by small arrows in Figure 1). Thus, for example, the ί-axis for
|ί | > 1 is included in Region 2. The origin (t = d = 0) and the
points on the lines t + d = —1 and t — d = 1 are not in any region,
and will be discussed as separate cases. The two lines t + d = —1
and t — d = 1 and the three points (±1,1) and (0,1) correspond to
matrices having roots of unity as eigenvalues, and therefore TA φ N.

Now we shall analyze the sets MPer(/A) for each of the regions
in Figure 1.

PROPOSITION 4.17. Suppose (ί,d) is not on either of the lines
d + t = -l ort-d = l. Then 2 ft MPer(/A) if and only ifd + t is
either 0 or —2.

Proof Clearly, N(A) φ 0 and N(A2) φ 0. Then,

N(A2)

N(A) =

=|1 + λ + μ + λμ\ = |1 + t + d\.

Thus N(A2) = N(A) if and only if t + d is either 0 or -2. D

In short, we have two lines which are parallel to the —1 eigenvalue
line t + d = — 1, on which period 2 is missing from the canonical
torus map /Λ

Our next proposition shows that for the case of real eigenvalues,
any values of t and d which do not satisfy one of the above restric-
tions automatically gives us periodic points of all periods.
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PROPOSITION 4.18. Suppose A has real eigenvalues, neither of
which are ±1. If d + t is neither 0 nor —2, then M P e r ^ ) = N.

Proof. Note that if A satisfies all of the hypotheses of the propo-
sition, then (ί, d) is in one of the Regions 1 through 7 in Figure 1.

Since the hypotheses imply that A has no roots of unity as eigen-
values, N(An) φ 0 for all n > 1 (see Lemma 3.1). Thus,

ί - λ n + 1 ) ( l -N{An+1) _

N(An)

for all n. Since λ and μ are real and neither is ±1, we can use
Lemma 4.7 (with a replaced by λ and μ ) to get a simple expression
for a lower bound E for Nj^\n)\ which will differ depending on
the region under consideration. For example, in Region 3, we have
- 1 < λ < 0 and μ > 1. Then, E = (1 - |λ|)|μ| in that region.
Similar expressions can be obtained for the other regions.

Thus, N(An+1) > E - N(An) in each case. By Theorem 4.8,
we know that if the sequence {N(An)} is strictly increasing, then
MPev(fA) = Per(/A) = N. Thus, it is enough to show that E > 1.
For Regions 1 and 2 this is the case but in Regions 3 through 7, one
sometimes has E < 1 (because of the lines t + d — 0 and t + d = —2;
see Proposition 4.17). Then the proposition follows because, in
those regions, the assumption t + d φ 0, — 2 implies E > 1. D

We now need to examine the special case where d +1 is 0 or — 2.
Those giving complex eigenvalues will be dealt with later. First, a
special and easy case is considered separately.

PROPOSITION 4.19. If d = t = 0, the TA = 0 and MPer(/Λ) =

We are left with the values of (ί, d) in which d + t = 0, — 2 and
(ί, d) is in one of the Regions numbered 3 through 7. Since, by
Proposition 4.17, there are no period 2 points for these values, we
are left with the possibility of using results such as Theorems 2.7, 2.9
and 2.10. Thus, we would like to find integers ΠQ (which will depend
on t and d) such that ^fΛn\ > /̂  for n > no, (where K is as in
Section 2), and no is as small as possible. Since K ̂  1.22, we will use
5/4 instead of K for ease on the computations. In general,
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not monotone, so knowing that Nj^An^ > ft for a particular value of
n does not tell us about larger values. To deal with this, we will find
a lower bound estimate for NχΓAn) which is monotone with respect
to n, so that proving this estimate is greater than K for some n
automatically gives us the same fact for all larger values of n. Thus
our basic strategy will be:

(1) Find an estimate En such that N^ΓAn\
> > En for all n (and all

suitable A), and such that En+ι > En for all n.

(2) Find an ΠQ such that Eno > 5/4, which will guarantee ^(An\
> K, for all n > no.

(3) Use Theorems 2.7, 2.9 and 2.10 in order to find a finite set F
such that Peτ(fA) D N \ F . If n 0 is 1 or 2, then MPer(/Λ) = Peτ(fA)
is either N or N \ {2}, and Proposition 4.17 can be used to decide
which. If no > 3 then we still have a fixed finite set F , and a direct
calculation of all of the Nielsen numbers up to the largest element
of F tells us which periods are or are not there. This must be done
separately for each matrix A such that n 0 > 3.

If the above strategy is going to work, there is one key thing which
must happen. If we try this strategy on a given class of matrices,
then we must have n 0 = 1 or 2 for all but finitely many pairs
(£, d) and have a fixed n 0 for each of the finitely many remaining
ones. Only then will this strategy result in reducing the problem
to a finite number of calculations. This can be done so that the
total number of calculations is relatively small. In the sequel we
will omit the proofs of all the steps towards the characterization of
the sets MPer(/^) for two-dimensional torus maps. Some of these
proofs are omitted because they are straightforward computations
and the other ones because they are tedious repetitions of previous
arguments. We start with the following technical lemma.

LEMMA 4.20. The following statements hold.
(1) Let a be a complex number such that \a\ φ 1. Then for all

- an+ι

l-an

a
(2) Letr>0 be real, rφ\. Then for all n > I,

1 - Γ n+2 1-r
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(3) If a is a complex number such that \a\ φ 1, then for alln> k > 1

1 - an+1

l-an >
1 - a k+l

1 + \ak

Noting the above results, if B is an m x m matrix with eigenvalues
,..., λm with \\i\ φ 1 for all i, we define

Ek(B) =
i.\k

Then we get:

COROLLARY 4.21. If B has no eigenvalues having modulus 1,
then for all n > k > 1

N(Bn+1)

N(Bn)
> Ek{B).

Going back to our 2 x 2 matrix A described at the beginning of
this section, let us abbreviate Ek(A) by E^.

The following result allows us to compute easily the Nielsen num-
bers N(An) for a 2 x 2 matrix A. To state it we set Nn = (1 -
λ n )( l — μn) for n > 0. We note that, for n > 1, the Nielsen number
N(An) is simply the absolute value of 7Vn.

PROPOSITION 4.22. We have

Nn = dn~ι)

for all n > 2.

PROPOSITION 4.23. Suppose t + d is either 0 or - 2 , (ί,d) Φ
(0,0), and λ and μ are real. Then MPer(/Λ) = N \ {2}.

The following result takes care of the cases in which complex
eigenvalues occur, except for a finite number of cases which will be
considered later.

PROPOSITION 4.24. If d > 2 and X and μ are not real, then
MPer(/^) is N, unless the pair (ί, d) is among the following four
exceptions:
(1) // (t,d) = (-3,2), then MPer(/A) = N\ {2}.
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(2) // (t, d) = (-2,2), then MPer(/Λ) = N \ {2,3}.

(3) // (t, d) = (-1,2), then MPev(fA) = N \ {3}.

(4) // (t, d) = (0,2), then MPer(fA) = N \ {4}.

This takes care of all values of (t, d) in which no roots of unity
occur as eigenvalues. We now turn to the roots of unity case.

PROPOSITION 4.25. Suppose t+d = —1 (i.e. —1 is an eigenvalue
of A). Then the following hold:
(1) Ifd= - 1 , then TA = Φ and MPer(/Λ) = 0.

(2) If d € {0,1}, then TA is the set of all odd natural numbers and
MPev(fA) = {1}.

(3) If deZ\{-l,0,1}, then TA = MPer(fA) is the set of all odd
natural numbers.

All that is left is the three values where d = 1 and the eigenvalues
are complex.

d*

Line 1
Line 4 \ τ . L i n

o

e 2

Line 3

Line 1: t + d = 0; MPer(/Λ) = N \ {2}.

Line 2: t + d = - 1 , and t φ 0 MPer(./U) = {n € N : n is odd }.

Line 3: t + d = -2 ; MPer(/Λ) = N \ {2}.

Line 4: t - d = 1; MPer(fA) = 0.
FIGURE 2. If (ί, d) is off the four special lines (t + d =
0, —1, —2, t — d = 1) and the nine exceptional cases
(marked as •) then Peτ(fA) = MPer(/A) = N. The set
MPeτ(fA) for the exceptional cases is given in Table 1.
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(M)

(-2,1)

(-2,2)

(-1,0)

(-1,1)

(-1,2)

(0,0)

(0,1)

(0,2)

(1,1)

MPer(/Λ)

{1}

N\{2,3}

{1}

{1}

N\{3}

{1}

{1,2}

N\{4}

{1,2,3}

TABLE 1. The set MPev(fA) in the nine exceptional cases.

PROPOSITION 4.26. Suppose d=l and - 1 < t < 1. Then
(1) If t = - 1 , then TA = {n G N : n φ 0 (mod3)} and

MPer(/Λ) = {1}.

(2) If t = 0, then TA = {n € N : n ψ 0 (mod4)} and MPer(/Λ)

(3) // < = 1, then TA = {n G N : n
= {1,2,3}.

0 (modβ)} αnrf MPer(/Λ)

If we put all the above propositions together, we can summarize
the results in Figure 2 and Table 1. Note that if in this figure and
table we set d = 0, then the above results just reduce to the already
known results on the circle (mentioned in the introduction).
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