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KLEINIAN GROUPS WITH AN INVARIANT JORDAN
CURVE: J-GROUPS

RUBEN A. HIDALGO

We study some topological and analytical properties of
a Kleinian group G for which there is an invariant Jordan
curve by the action of G. These groups may be infinitely
generated.

1. Preliminaries. A Kleinian group G is a group of Mdbius
transformations acting discontinuously on some region of the Rie-
mann sphere C. The (open) set of points at which G acts discon-
tinuously is called the region of discontinuity of G and it is denoted
by ©(G). The complement (on the Riemann sphere) of Q(G) is
called the limit set of G and it is denoted by A(G). We will denote
the upper and lower half-planes by U = {z € C : Im(2) > 0} and
L = {z € C: Im(z) < 0}, respectively. If G is a group of Mdbius
transformations and D is a subset of the Riemann sphere, then the
stabilizer of D is defined by Gp = {9 € G : g(D) = D}.

J-Groups. A Kleinian group G is called a J-group if there exists
a Jordan curve v so that G, = G. We say that v is a G—invariant
Jordan curve. In this case, we have necessarily that A(G) C 7.
If A(G) = v, then we say that G is a J-group of the first kind;
otherwise, we say that it is of the second kind.

If G is a J-group and v is a G—invariant Jordan curve, then we
can associate to G a 3-tuple (v, Dy, Ds), where D; and D, are the
two topological discs bounded by . If the J-group G is of the
first kind, then such a 3-tuple is unique (modulo permutation of
the two topological discs). In any case, the stabilizers Gp, and
Gp, coincide. We have that Gp, is either G or it is a subgroup
of index two in G. Classical examples of J-groups are given by
Fuchsian groups, Z,—extension of Fuchsian groups, Schottky groups
and QuasiFuchsian groups.
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Let G be a Kleinian group and let D be a simply connected com-
ponent of Q(G). A parabolic transformation k£ € Gp is accidental if
there is a Riemann map w : U — D so that w™'okow is hyperbolic.
This definition is independent of the Riemann map w : U — D.

We need the following extension theorem for Riemann maps due
to Carathéodory. A proof can be found in the book of C. Pom-
merenke [10].

THEOREM 1.1 (Carathéodory Extension Theorem [3]). Let D
be a simply connected plane domain, conformally equivalent to the
upper half plane U, and so that the euclidean boundary of D is a
Jordan curve. If w : U — D is a Riemann map, then it has an
extension to the closure of U as a homeomorphism onto the closure
of D.

PROPOSITION 1.2. A J-group G of the first kind contains no
accidental parabolic transformations.

Proof. Let (v, D1, D;) be the 3-tuple associated to the J-group of
the first kind G. Let w : U — D; be a Riemann map. The group
F =w™loGp, ow is a Fuchsian group keeping U invariant. As a
consequence of Theorem 1.1., we can extend w to a homeomorphism
from the closure of U onto the closure of D;, that is, D; U~y. Denote
by @ : U — D; U+ such an extension. Let f € F be a hyperbolic
transformation with fixed points z and y (necessarily, z # y). We
must show that w o f o w™! is not parabolic. The injectivity of w
implies that w(z) # @(y). Since the points w(z) and w(y) are fixed
points of w o f o w™!, the transformation w o f o w™! is necessarily
loxodromic (it cannot be an elliptic transformation since G is a
discrete group). ]

Let G be a J-group of the first kind with associated 3-tuple
(v, D1, D;). Each component D; (i = 1,2) has a “natural” hy-
perbolic metric as follows. Set U; = U and U, = L. For each
i € {1,2}, let w; : U; = D; be a Riemann map. We transfer, under
the map w;, the hyperbolic metric on U; onto the disc D;. Since,
any Riemann map w; : U; = D; has the form w; = w; o A, where A
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is a conformal automorphism of U;, the hyperbolic metric induced
on D; is independent of the chosen Riemann map. We can define
axes for loxodromic elements of G as follows. Let g be a loxodromic
element in Gp, (= Gp,). Let A(g) C D; and B(g) C D, be the
images of the axes of wl“1 ogow; and w{l o gows under w; and wsy,
respectively. We call the sets A(g) and B(g) the axes of g. These
axes have common end points, these are the fixed points of g. If
g € G — Gp, is loxodromic, then we define the axes of g, A(g) and
B(g), to be the axes A(g?) and B(g?), respectively. The simple loop
L(g) = A(g9) U B(g) U {fixed points of g} is called the total azis of
the transformation g € G.

A sequence of simple loops L, C C is nested if the loop L, sepa-
rates L,_, from L,,;. We say that the above sequence nests about
a point z € C if each L, separates z from L,_; and, for every point
zn € Ly, the sequence z, converges to z.

Let G be a J-group of the first kind with associated 3-tuple
(v, D1, D7), and consider a sequence of loxodromic elements g, € G.
We say that the sequence of axes A(gy,) (resp., B(gn)) is nested (re-
spectively, nests about z) if the sequence of total axes L(g,) is nested
(respectively, nests about z).

PROPOSITION 1.3. Let G be a J-group of the first kind, and let
hn € G be a sequence of lozodromic elements such that L(hy) is
nested. Then the sequence L(hy) nests about x € A(G) if and only
if both fized points of the transformations h, converge to x.

Proof. Let (v, D1, D) be the 3-tuple associated to G. From our
definition of the total axes L(h,), we may assume h, € Gp,. Let
w : U — D; be a Riemann map. Extend it as a homeomorphism
from the closure of U onto the closure of D; (Theorem 1.1). Clearly
the sequence of total axes of the transformations w™! o h, o w is
also a nested sequence. The sequence L(h,) nests about z if and
only if the sequence of total axes of w=! o h, o w nests about the
point w~!(z) (consequence of the continuity of the extension of w).
The last sequence nests about w=!(z) if and only if the fixed points
of w™! o h, o w converge to w~!(z). This is equivalent to the con-
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vergence of the fixed points of h, to z (the extension of w is a
homeomorphism). O

PROPOSITION 1.4. Let G; and G4 be J-groups of the first kind,
and let h, € G| be a sequence of lozodromic elements so that the
total azes L(hy,) nest about some point x € A(Gy). Let f : Q(G1) —
Q(G3) be a homeomorphism defining an isomorphism ¢ : G; — G,
where ¢(g) = fogo f~'. Then the total azes L(f o h, o f~') nest
about some point y € A(G3).

REMARK. If the above homeomorphism f : Q(G,) — Q(G.) is
the restriction of a homeomorphism F' : C — C, then the continuity
of the map F' implies y = F(z).

Proof. Let (v;, D%, D) be the 3-tuple associated to G;, for i = 1, 2.
The isomorphism ¢ : G; — G is type preserving, that is, ¢(h) € G,
is loxodromic if and only if h € G is loxodromic. In fact, assume
there is a loxodromic element h € G; so that ¢(h) € G, is parabolic
with fixed point ¢ € ~,. The set f(A(h)) U {q} is a simple loop
which is invariant under ¢(h). Denote by a and r the attracting
and repelling fixed points of h. Then 7y, — {a,7} consists of two
arcs, say I; and l;. We can find loxodromic elements k and t in G,
so that both fixed points of k£ are in /; and both fixed points of ¢
are in [, (see Proposition E.5 of Chapter V in [8]). In particular,
k and ¢ cannot commute with h (see Chapter I in [8]). The image
f(A(k)) (resp., f(A(¢))) is a simple path which is invariant under
the action of ¢(k) (resp., ¢(t)). It follows that the end points of
f(A(k)) (resp., f(A(t))) are the fixed points of ¢(k) (resp., ¢(¢)).
Now, either ¢(k) or ¢(t) must be a parabolic element with fixed
point g. Without lost of generality, let us assume ¢(t) is parabolic.
In particular, ¢(h) and ¢(t) commute. This is a contradiction to
the facts that ¢ and h do not commute and ¢ is an isomorphism.

As a consequence, we can extend f to the set of fixed points as
follows. If ¢ is the fixed point of a parabolic element h € G, then
define f(q) as the fixed point of the parabolic element ¢(h) € Gs.
If a and r are the attracting and repelling fixed points, respectively,
of a loxodromic element k € G, then we define f(a) and f(r) to be
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the attracting and repelling fixed points, respectively, of ¢(k) € Gs.
This extension is one-to-one. In fact, if there are two non-elliptic
transformations k; and k; in G; so that the images of the fixed
points intersect, then the discreteness of G, implies that ¢(k;) and
#(k2) have the same fixed points (see Chapter II in [8]). It follows
that ¢(k;) and ¢(k2) commute. Since ¢ is an isomorphism, we must
have that k; and k; commute and, in particular, they have the same
fixed points.

We denote by f the above one-to-one extension of f. Let us now
consider a sequence of loxodromic elements h, € G; so that the
sequence L(h,) nests about some z € ;. Proposition 1.3 asserts
that the sequence L(h,) nests about z if and only if the sequence
of fixed points of h,, converges to . The image under f of the axes
A(h,) and B(h,) are invariant under the transformation foh,o f1.
It follows that the end points of these axes are exactly the fixed
points of f o h, o f~1. The sequence of images f(L(h,)) is again
nested. The fact that the end points of the axis A(f o h, o f71)
are exactly the end points of the image under f of the axis A(h,)
implies that the sequence of total axes L(f ohyo f~!) is also nested.
We must show that this sequence in fact nests about some point.
Let us assume this is not the case. In this situation, there exists a
geodesic L in D?, with different end points v and v, to which the
axes A(f o h, o f!) converge (see Proposition 1.3). Let (u,v) be
the arc of v, determined by the points v and v and not containing
the fixed points of f o h, o f~1. It is possible to find two different
loxodromic elements s and ¢ in G5 both of them with fixed points
in (u,v) and not commuting. Let k be either s or ¢. In this case the
fixed points of f~! o k o f are contained in the arc of ; containing
z and bounded by the fixed points of h,, for all n. In particular,
f~'oko f must be a parabolic element in G; with z as its fixed
point. The discreteness of the group G; implies that f~'oso f and
f~loto f commute, obtaining a contradiction with the fact that ¢
is an isomorphism. O

It is known (see [8] and [9]) that a finitely generated Kleinian
group G with exactly two components is an extended quasi-Fuchsian
group, that is, there is a finitely generated extended Fuchsian group
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F (either Fuchsian or Zy—extension of a Fuchsian group) and a
quasiconformal homeomorphism w : € — € such that wFw™! = G.
In particular, G is a J-group. In general, an infinitely generated
Kleinian group with exactly two components is not necessarily a
J-group as it is shown by an example in [6]. In the same paper can
be found necessary and sufficient conditions for a Kleinian group
with exactly two components to be a J-group. We prove that cer-
tain infinitely generated J-groups (for example, of the first kind
with invariant components) are topological deformations of Fuch-
sian groups (see Theorem 2.4.).

CoNJECTURE 1. If G is a J-group, then there exist a possible
extended Fuchsian group F' and a homeomorphism W : C —+ C so
that G =W o Fo W1

2. Main Results. In this section we present some topologi-
cal and analytical properties satisfied by J-groups. These are ex-
tensions of some properties satisfied by finitely generated Kleinian
groups. Theorems 2.1 and 2.3 are generalizations of the main re-
sult of Maskit in [7]. Using a result of Tukia (see Theorem 3.3),
we prove that certain infinitely generated J-groups are topological
deformations of Fuchsian groups (see Theorem 2.4). Theorems 2.5
and 2.6 are extensions of two theorems in [4].

THEOREM 2.1. Let G be a J-group of the first kind and let
[ Q(G) = Q(G) be a (conformal, anticonformal) homeomorphism
such that fogo f7! = g, for all g € G. Then there ezists a
(conformal, anticonformal) homeomorphism F : C - C, such that
Floe = [ and F(z) = z, for all z € A(G). Moreover, if [ is
anticonformal, then F? = I and G is either a Fuchsian group or a
Zo—extension of a Fuchsian group.

COROLLARY 2.2. Let G be a J-group of the first kind and let
f: QG) = QG) be an anticonformal homeomorphism such that
fogo f™t =g, forall g € G. Then f is the restriction of an
anticonformal involutory fractional linear transformation F (that
is, F(z) = (az +b)/(cz + d), F? = 1), and G is either a Fuchsian
group or a Zo— extension of a Fuchsian group. Further, the mapping
F unth the above properties is unique.
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The following result is a natural extension of Theorem 2.1.

THEOREM 2.3. Let Gy and Gy be J-groups of the first kind and let
f:QG,) = Q(G2) be a homeomorphism inducing an isomorphism
fe : G1 = G, defined by f.(9) = fogo f~'. Then there ezists a
homeomorphism F : C — C such that Flog)y = f-

THEOREM 2.4. Let G be a J-group with a 3-tuple (v, Dy, D)
so that Gp, = G. Then there ezist a Fuchsian group F' and a
homeomorphism W : C — C such that Wo Fo W1 =@G.

Examples 36 and 37 in [5] show that we cannot expect to have a
quasiconformal conjugation of a J-group G with a Fuchsian group
(as in the situation of finitely generated J-groups [9]). It is possible
to construct two Fuchsian groups either of the first or second kind
(necessarily infinitely generated) which are topologically conjugated
but not quasiconformally conjugated (see [1] and [2]).

THEOREM 2.5. Let F' be a Fuchsian group operating on Uy = U
and Uy = L. For each i € {1,2}, let f; : U; = C be a one-to-
one analytic map defining an isomorphism (f;)« : F — G onto a
Kleinian group G, where (fi).(k) = fioko f7', for k in F. If f
and f can be extended continuously to RU {oo} so that fi = fo on
QF)N(RU{oc}) and (f1)« = (f2)«, then f1 and fo are restrictions
of the same fractional linear transformation. In particular, G is a
Fuchsian group of the same kind as F'.

THEOREM 2.6. Let F' be a Fuchsian group of the first kind acting
onU; =U and Uy = L. For each i € {1,2}, let f; : U; — fi(U;) be
a holomorphic cover mapping defining a surjective homomorphism
(fi)« : F = G onto a Kleinian group G, defined by fiok = (fi)«(k)o
fi, for k € F. If we can extend f; and fy continuously to RU {oo}
and (f1)« = (f2)«, then G is a Fuchsian group.

REMARK. We observe that Theorem 2.5, for Fuchsian groups of
the first kind, is a special case of Theorem 2.6.

3. Proof of Theorems. We proceed to prove the theorems of
the last section. First, we need some lemmas.
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LEMMA 3.1. Let G be a J-group of the first kind with associated
3-tuple (v, D1, Ds). If x belongs to vy, then there erists a sequence
of lozodromic elements g; in Gp, such that the total azes L(g;) nest
about x.

Proof. Choose an orientation for the loop . Let z_; and 2z,
be limit points of G, so that z_; and z,, are on the left and right
sides of x, respectively. Since the limit set of G and Gp, are the
same, we can find a loxodromic element g; in Gp, with attracting
fixed point z_; lying between x and z_;, and repelling fixed point
x4, lying between z and z;, (see Chapter V, Proposition E.5. in
[8]). In a similar way, we can find a loxodromic element g, in Gp,
with attracting fixed point x_, between z and z_;, and repelling
fixed point z,, between z and x,;. We proceed inductively to
obtain a sequence of loxodromic elements g; € Gp,, with attracting
and repelling fixed points z_; and z,;, respectively, both of them
converging to the point z, such that x_; lies between z and z_(;_,),
and z; lies between z and z,;_1). As a consequence of Proposition
1.3., the sequence of axes L(g;) nests about z. 0

LEMMA 3.2. Assume the hypotheses of Theorem 2.3. Let {g;}
and {h;} be two sequences of loxodromic elements in G, with total
azes L(g;) and L(h;), respectively. If both sequences nest about a
point z € 7y, then the sequences L(f.(g;)) and L(f.(h;)) nest about
the same point in 7y,.

Proof. We denote by g* the transformation f,(g), for all g € G;.
As a consequence of Proposition 1.4, the sequences of total axes
L(g;) and L(h}) each nests about some some point. Assume that
L(g;) and L(h}) nest about different points, say z1 and 22, respec-
tively (21 # 22). Denote by D(g;) and D(h}) the closed topological
discs bounded by the total axes L(g;) and L(h}), respectively, so
that 2, is contained in D(g;) and z; is contained in D(h}). For suf-
ficiently large value of ¢, the sets M(g;) and M (h;) are disjoint. We
may assume that this holds for all values of i. The (only) four pos-
sibilities for the configuration of the total axes of g; and h;, denoted
by cases (1), (2), (3) and (4), are shown in Figure 1. In cases 3 and
4, L(g;) and L(h;) have common points. In this case, since the end
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points of A(g}) (respectively, A(h})) are the same as for f(A(g;))
(respectively, f(A(h;))), we must have that L(g}) and L(h}) have
also common points, a contradiction to our assumption. Let us now
assume we are in case 2 (similar to case 1). There are only two
possibilities (see Figure 2):

(1) Given 1, there exists n; such that L(g;) separates L(h,,) from
L(hni+1); or

(2) Given j, there exists m; such that L(h;) separates L(gm,)
from L(gm;+1)-

The sequence of simple loops
f(A(g:)) U F(B(g:)) U {the fixed points of g}

is necessarily nested. We claim that it nests about z;. If this is
not the case, then there exists a sequence of points w; € f(A(g:))
converging to some point w € Q(G;). Let ¢, € A(g;) be such that
f(t;) = w; and let t € Q(G;) be such that f(¢) = w. The fact
that f : Q(G;) = Q(G,) is a homeomorphism implies that there
exists a subsequence of ¢; converging to t. This is a contradiction
to the fact that ¢; converges to z € v = A(G;). Since the end
points of f(A(g;)) are the same as for A(g}), we must have that the
sequence L(g?) nests about z; (Proposition 1.3). Now, the above
possibilities ensure that the sequence L(h}) also nests about z;.
This is a contradiction to the facts that L(h}) nests about 2z, and

21 75 29. D

To prove theorem 2.4, we need a result due to Tukia (see [12]).
Suppose that K and H are Kleinian groups, each one preserving
a domain A and B, respectively. Suppose also there is an isomor-
phism ¢ : K — H. We say that ¢ is geometric, if there exists a
homeomorphism f : A — B such that

d(k)(2) = foko f7!(z), forall k € K and z € B.

In the case A = B = U, U the upper half-plane, we say that the
isomorphism ¢ preserves the relation of being crossed if the following
holds:

(1) k in K is hyperbolic if and only if ¢(k) is hyperbolic; and
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(2) the axes of hyperbolic elements k and ¢ in K intersect if and
only if the axes of ¢(k) and ¢(t) intersect.

THEOREM 3.3 [12]. Let K and H be Fuchsian groups with in-
finitely many limit points. Then an isomorphism ¢ : K — H 1s
geometric if and only if it preserves the relation of being crossed.

LEMMA 3.4. Assume the hypotheses of Theorem 2.5. Then f
and fy coincide on the limit set of F'.

Proof. We consider two cases.

CASE 1. Assume Q(F)NRU {oo} # ¢. We have by hypotheses
that fi = f, on a dense subset of R U {oo}. Since f; and f, are
continuous on R U {co}, both agree on all of RU {oo}.

CASE 2. Assume Q(F) NRU {0} = ¢. The group F is a
Fuchsian group of the first kind. Since A(F') is the closure of the
fixed points of the hyperbolic elements of F', we only need to check
the equality of both functions at these points. Let k be a hyperbolic
element of F'. Denote by p its repelling fixed point and by ¢ its
attracting fixed point. Let g be the transformation in G given by
frokofi ! = g = fookof;'. Inthis way, the points fi(p), f1(q), f2(p)
and f»(q) are fixed points of the transformation g. Since the map
k — f;oko 7! is an isomorphism, for i = 1,2, the transformation g
is different from the identity. In particular, ¢ has at most two fixed
points.

SUBCASE 2.1. Let us assume fi(p) = fi(g). Since fi(U;) is
necessarily G—-invariant, its boundary must contain all of the limit
set of G. If g has another fixed point, say z, different from f;(p),
then z is in the boundary of f;(U;). Let {2,} be a sequence of
different points in f;(U;) converging to z. The property that f;
is a one-to-one map on U; implies that there are unique points
wy, € U; such that z, = fi(w,). The sequence w, has a subsequence
converging to some point w in the closure of U;. We denote such a
subsequence again by w,. The continuity of f; implies f;(w) = z,
and w must be a fixed point of k. Since z is different from the image
of p and ¢ under f;, we have that z is different from p and ¢ (f; is
one-to-one on the closure of U;). Hence k has three fixed points and
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it must be the identity transformation, a contradiction. We have
shown that in this case ¢ must be a parabolic transformation with
fi(p) as fixed point. In particular, f; and f, have the same value at
p and gq.

SUBCASE 2.2. Assume fi(p) # fi(q). Using the same kind of
arguments as in the previous case, we obtain the following two pos-
sibilities.

(1) fi(p) = fo(p) and fi(q) = f2(g); or

(2) f1(p) = fa(q) and fi(q) = fa(p).

Since fi(p) and f,(p) are the attracting fixed points of g, the
second case cannot happen. U

Proof. (Theorem 2.1.) First, we proceed to show the topological
part of the theorem. Let G be a J-group of the first kind with
associated 3-tuple (v, D1, D;). Define the transformation F': C —
C by

| f(2),if z € Q(G) = Dy U Ds;
F(z) = {z, if ze A(G) =7

The function F : C — C is a bijection and it is continuous on
Q(G) = Dy U D,. If we prove the continuity of F' on 7, then we
obtain that F'is a continuous bijection and, since Cis compact, the
desired homeomorphism. Now we proceed to check the continuity
of F' at a point z € . Consider a sequence of different points z,
converging to z. If we show the existence of a subsequence z,,, such
that F'(z,,) converges to z, then we obtain the continuity of F' at
x.
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We consider three cases:
(1) z, belongs to =, for all n.
(2) z, belongs to D; U D,, for all n.
(3) z, may belong to any of the above sets for different values of n.

Case (1) is trivial by definition of F.. Case (3) can be reduced
to one of the cases (1) or (2) by choosing a suitable subsequence.
From now on, we assume that z,, belongs to D; U D5, for all n.

As a consequence of Lemma 3.1., we have the existence of a se-
quence of loxodromic elements ¢g; € Gp, so that their total axes
L(g;) nest about z. Denote by L; the axis L(g;). We claim that
the sequence of simple loops F(L;) nests about z. In fact, denote
by z_; and z,; the attracting and repelling fixed points of g;. Set
A; = A(g;) and B; = B(g;). Since fog; = g;o f and f is one-
to-one, we must have that f(A;) and f(B;) are g; invariant and, in
particular, the end points of f(A;) and f(B;) are the fixed points
of g;. The fact that the sequence of axes L; is a nested sequence
implies that the sequence of simple loops F'(L;) is again nested. Let
us assume the sequence F(L;) does not nest about z. Denote by
K; the compact topological disc bounded by F'(L;) containing z. If
we have T = NK; # {z}, then the convergence of z_; and z4; to
x implies the existence of some point y in D; NT. It follows that
we can find a sequence of points z; € L; (in particular, z; converges
to z) such that f(z;) converges to y. Let us consider z = f~!(y),
which belongs either to D, or D,. Denote by D the disc D, or D,
containing 2. Choose a compact disc X; in D with center z and a
compact disc X, in D; with center y, so that f(X)) is contained in
X> (continuity of f on Q(G)). Since f is one-to-one, we must have
that z; = f~!(f(z)) belongs to X;, for large i. It follows that z
must also belongs to X;. This is a contradiction to the fact that z
belongs to 7.

We choose a subsequence z,, from the sequence z, such that
Zn, belongs to the disc bounded by L; and containing the point
z in its interior. The image f(z,,) also belongs to the interior of
the topological disc bounded by f(L;) containing z. The fact that
the sequence F'(L;) nests about z implies that f(z,,) necessarily
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converges to z. At this point, we have proved the topological part
of our theorem.

Now we proceed to prove the conformal part. We must prove
that our topological extension is conformal provided its restriction
to D; U D, is. We have two situations, either F'(D;) = D; or
F(D;) = D,. Let us recall that the map F restricted to the Jordan
curve v is the identity. In particular, basic topological arguments
(and the fact that F preserves orientation on D; U Dy) imply that
the last situation cannot occur and we must have that F/(D;) = D,
for i = 1,2. Consider a Riemann map w : U — D;. By Theorem
1.1., we can extend this Riemann map to a homeomorphism o :
U — D; U~. Denote by F; the restriction of F to D; U~y. Then
h = @' o F; o w is a homeomorphism of U which is a conformal
automorphism on U and acts as the identity on the boundary of U.
That can only happen if A is the identity. In particular, F} is the
identity. In the same way one shows that F' restricted to D, is the
identity. Now, F' = I and it is trivially a conformal automorphism
of the Riemann sphere.

Let us assume now that the homeomorphism f is anticonformal.
We have again two possibilities; either F'(D;) = D; or F(D;) = D,.
If we have F(D;) = D;, then we can use a Riemann map and
argue similarly as in the conformal case to show that in this case
F =1 on D; which is a contradiction. In particular, we must have
F(D;_;) = D;, for i = 1,2. Observe that F? is conformal and
keeps invariant both discs. It follows from the conformal part above
that F?2 = I, that is, F is an involution. Choose a Riemann map
w: Uy — Dy, where Uy = U. Set U, = L and j(z) = z. Define a
map L : C — C as follows:

_Jw(=), if 2 € Uy;
L(z) = {Fowoj(z),ifzé(]g

Observe that L is a conformal automorphism of the Riemann
sphere and it satisfies F = LojoL~!. In particular, F' is an anticon-
formal involution. Since the set of fixed points of an anticonformal
involution of the Riemann sphere is a round circle, we have that v
is a circle and G is either a Fuchsian group or a Z,—extension of a
Fuchsian group of the first kind. ]
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Observe that in the above proof, in the anticonformal part, we
have obtained Corollary 2.2.

Proof. (Theorem 2.3) Let (v;, Di, D}) be the 3-tuple associated
to Gy, for j = 1,2. Define F : C — C as follows.
(1) F(z) = f(2), if z belongs to Q(G,).
(2) If z belongs to 7, then we consider a sequence of axes L; of
loxodromics elements g; € Gj, nesting about z (the existence of
such a sequence is given by Lemma 3.1.). Let w be the point in 7,
to where the sequence of axes L(f o g;o f~!) = L(f.(g:)) = L(g})
nests about (see Proposition 1.4.), and define F(z) = w.

Lemma 3.2 asserts that F' is well defined. The above function
satisfies the following properties:

(1) F(Q(Gh)) = QUG2).

(2) F(A(Gl)) = A(Gy).

(3) F/awy = f-

(4) F is a bijection.

Properties (1), (2) and (3) are direct consequence of the definition
of F. We only need to check (4). Lemmas 3.1 and 3.2 applied to
the function f~!: Q(G2) — Q(G;) permit the construction of an
inverse function for F : C — C.

The continuity of ' on (G, ) is trivial by hypotheses. We proceed
to check the continuity of F' on 7,. Let x € 7;, and choose a sequence
of loxodromic elements g; in G; with axes L(g;) nesting about z
(Lemma 3.1). The axes L(g}) of the transformations g} € G nest
about F'(z) as a consequence of Lemma 3.2. and the definition of F'.
Since the end points of A(g}) are the same as for f(A(g;)), it follows
that the sequence of simple loops F(L(g;)) also nests about F'(z).
Now we can proceed, in a similar way as in the proof of Theorem
2.1, to show the continuity of F' at z and, by compactness of the
Riemann sphere, that F' is the desired homeomorphism. O

Proof. (Theorem 2.4) CASE 1. Let G be a J-group of the first
kind with associated 3-tuple (v, Dy, D;), so that Gp, = G. Let w:
U — D, and v : L — D, be Riemann maps. Denote by w : U — U
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the homeomorphic extension of w given by Theorem 1.1., and by F'
and H the Fuchsian groups, necessarily of the first kind, given by
w™l oG ow and v~ o G o v, respectively. Denote by 9, : F = G
and @, : H — G the isomorphisms defined by ¢, (k) = wo ko w™!
and ¢,(t) = votouv™! respectively. Consider the isomorphism ® :
F — H given by ®(k) = ¢, (¢ (k)). This isomorphism preserves
the relation of being crossed and, by Theorem 3.3., there exists a
homeomorphism 7" : U — U such that TokoT~! = &(k), for all &
in F. The map W : Q(F) =U UL — Q(G) = D; U D, defined by:

(1) W(z) = w(z), for z € U,

(2) W(z) =vojoToj(z), forz € L,

is a homeomorphism inducing the isomorphism % : F' — G. Now
the result, in this case, follows from Theorem 2.3.

CASE 2. Let G be a J-group of the second kind with a 3-tuple
(v, D1, D) so that g(D;) = Dy, for all g € G. If we can construct
a J-group K of the first kind with invariant components, so that G
is a subgroup of K, then the result will follow from the above case.
The existence of such a J-group K is as follows. Let 7y, 7s,...., be a
maximal set of non-equivalent (under G) maximal arcs in yNQ(G).
Denote by u; and v; the ends of the arc ;. We consider on D; the
complete hyperbolic metric induced from U via a Riemann map.
Let o; C Dy and B; C D, be the unique geodesics with end points
u; and v;. Denote by @; the interior of the topological disc bounded
by o; U §; and contained in Q(G). In the disc Q; we can construct
an infinite sequence of circles C;, j € Z, satisfying the following
properties (see Figure 3):

(a) C} is tangent to Ci_; and C},,.

(b)yC:nC: =0, forng {m—1,m,m+ 1}.

(c) The euclidean centers of C} approach u; and v; as j approach
oo and —oo, respectively.

Now we consider a sequence of parabolic elements P; such that
P}(C3;_1) = Pj; and sends tangencies to tangencies, that is,
P}(C3;_, N C5;_1) = Gy N Cy;,y. The circles may have different
radii, but necessarily converging to zero as j approaches either +o0o
or —oo.

Let K be the group generated by G and all the parabolic trans-
formations P; By construction, there is a Jordan curve invariant
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under the group K. Each of the topological discs bounded for such
a curve is also invariant under the group K. O

Proof. (Theorem 2.5.) Let us denote by ¢ : FF — G the isomor-
phism (f;).. Lemma 3.4 and the fact that fi/omrr = fo/a(F)nr
imply that f; and f, coincide in RU {oo}. Define a map as follows:

_ [ Ai(2), if z € Uy
L(z)“{f;(z), z’fzelj;,

where the bar represents the Euclidean closure of sets.

The map L is clearly analytic on the Riemann sphere minus the
extended real line and continuous on all the Riemann sphere. It
follows that L is analytic on all of the Riemann sphere. One can
also observe that necessarily the image of a limit point of F' is again
a limit point of G. In fact, if x € A(F'), then we can find a point
u € U; and a sequence of different elements 7y, in F so that y,(u)
converges to z. Since ¢(v,)(f1(u)) = fi(ya(u)), ¢ is isomorphism
and, by hypothesis, f; extends continuously to the extended real
line, we have that fi(z) is a limit point of G. The group G is non-
elementary as can be seen from the following argument. Since the
group F' is non-elementary, we can find three different hyperbolic
elements in F', say i, 2 and 3, no two of them commuting. The
fact that ¢ : F' — G is an isomorphism, asserts that g, = ¢(71), g2 =
#(72) and g3 = ¢(73) are three different non-elliptic transformations
no two of them commuting. The set of fixed points of these thre
transformations are disjoint and they are contained in the limit set

of G.

If we have fi1(U1) N fo(Uz) = O, then the map L must be one-
to-one on the extended real line. In fact, if there are two different
points on R, say z and y, so that L(z) = L(y), then the same
holds for f; and f,. The image of both arcs determined by z and y
are common boundary points of both fi(U;) and f,(Uz). It follows
that one of these arcs must project onto the point L(z). This is
impossible for a non-constant analytic map as it is the case of L.
As a consequence, the map L is one-to-one on all the Riemann
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sphere and, in particular, is a fractional linear transformation and
G is a Fuchsian group.

Let us assume f;(U;) N fo(Us) # 0. Denote by A the connected
(invariant) component of the region of discontinuity of G containing
fi(U;). First, we proceed to show that fi(U;) = fa(U2). If F is
of the first kind, then the boundary points of f;(U;) are necessary
limit points (the boundary points are images of boundary points of
U; and, as shown above, the image of limit points are again limit
points). As a consequence, f;(U;) = A and the desired equality
follows. If F' is a Fuchsian group of the second kind and f,(U;) #
f2(Us), then the path-connectivity of f;(U;), for i = 1,2, implies
the existence of a point z either in both f;(U;) and the boundary
of f5(Us) or in both f5(Us;) and the boundary of f;(U;). Without
lost of generality, we may assume the existence of a point z in both
f1(U1) and the boundary of fo(Us). It follows that there is a point
y in the extended real line so that fo(y) = z. Since z is a regular
point for G, the point y is also a regular point for F. Let z € U,
be so that f;(z) = z. We can find open neighborhoods R of z and
T of z with fi(R) = T and such that there is a neighborhood N
of y which does not intersect R. The continuity property of the
extension of f; to the extended real line implies the existence of a
point w € N so that fi(w) € T. This gives a contradiction to the
injectivity of f; on Uj.

Since we have the equality f,(U1) = f2(Uz), we are able to define
a transformation K : C — C as follows:

_ [ fito fa(2), if z € Uy
K(z) = {f;*lofj(z), if z € U*f,

The transformation K is a conformal map acting as the identity
on the real line and, as a consequence, the identity map. We ob-
tain a contradiction to the fact that K must permute both U; and
Us. (W]

Proof. (Theorem 2.6.) The images f,(U;) and f2(Us) are invariant
sets for the Kleinian group G. Since f; is continuous at the boundary
of U;, the boundary of f;(U;) is contained in the image under f; of
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RU {00} = R. On the other side, if we denote by N the kernel of
the homomorphism induced by f;, then we have either N is trivial
or N is a non-trivial normal subgroup of F. Assume that N is non-
trivial. In this case N is a Fuchsian group of the first kind. Now,
for each point y in the boundary of U; we can find a point u € U;
and a sequence of different elements of N, say g,, so that g,(u)
converges to y. The equation f; = (f;)«(gn) © fi = fi o g, implies
that f;(u) = fi(gn(u)). Now the continuous extension property of
fi to the boundary of U; implies that f;(u) = f;(y). In particular,
the image of the boundary points of U; are interior points of f;(U;).
The above implies that f;(U;) is a hyperbolic surface on the Riemann
sphere without boundary points, a contradiction. As a consequence,
the group N must be trivial and the maps f; are necessarily injective.
Now we are in the hypothesis of Theorem 2.5. O

REMARK. The continuity extension hypothesis of Theorems 2.5
and 2.6 can be removed for the class of Fuchsian group of divergence
type (see [11]).
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