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ON BANACH SPACES Y FOR WHICH

S.I. ANSARI

Let Ω be a compact Hausdorff space. In this paper we
give some necessary conditions and some sufficient con-
ditions on a Banach space Y in order that all continuous
linear operators from C(Ω) into Y are compact. We prove
that for a nonscattered compact Hausdorff space Ω, for Y
belonging to a large class of Banach spaces all operators
from C(Ω) into Y are compact if and only if all operators
from I2 into Y are compact.

Introduction. In this paper by the word "operator" we will
mean a "continuous linear operator." E. Dubinsky, A. Pelczynski,
and H.P. Rosenthal [8] have given a characterization of all Banach
spaces Y for which all operators from £<*> into Y are absolutely 2-
summing. Here, our aim is to characterize all Banach spaces Y for
which all operators from a C(Ω)-space into Y are compact. We no-
ticed that such a characterization depends on whether the compact
Hausdorff space Ω is scattered (dispersed) or nonscattered (nondis-
persed). So we consider two cases separately.

Case 1: Ω is an infinite scattered compact Hausdorff space. In
this case, from some known results we deduce that all operators
from C(Ω) into a Banach space Y are compact if and only if all
operators from a closed subspace of c$ into Y are compact if and
only if Y does not contain a copy of c0.

Case 2: Ω is a nonscattered compact Hausdorff space. In this
case, we present a necessary condition on a Banach space Y for all
operators from C(Ω) into Y to be compact. Specifically, if each
operator from C(Ω) into Y is compact, then each operator from I2

into Y is compact. Consequently, for a Banach space Y for which
each operator from C(Ω) into Y is absolutely 2-summing, each opz
erator from C(Ω) into Y is compact if and only if each operator
from I2 into Y is compact. Another necessary condition is given by
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a theorem of T. Terzioglu. Namely, if each operator from C(Ω) into
Y is compact, then each operator from C(Ω) into Y factors through
a closed subspace of CQ. Next, we see that the above two necessary
conditions together are also sufficient. Putting together: Each oper-
ator from C(Ω) into Y is compact if and only if each operator from
I2 into Y is compact and each operator from C(Ω) into Y factors
through a closed subspace of c$.

In order to prove that another related condition is also sufficient
we first generalize a theorem of N. J. Kalton. Then, employing this
generalization, and a result of L. Drewnowski we prove: Each opera-
tor from C(Ω) into Y is compact if and only if each operator from I2

into Y is compact and each operator form C(Ω) into Y has a weak
unconditional compact netted expansion (Definition 3.5). Conse-
quently, for a Banach space Y with an unconditional basis consist-
ing of finite dimensional subspaces all operators from C(Ω) into Y
are compact if and only if all operators from I2 into Y are compact
The conclusion is that the class of all Banach spaces Y for which all
operators from C(Ω) into Y are compact if and only if all operators
from I2 into Y are compact is big (see Conclusion 3.12).

In the way we present a necessary and sufficient condition on a
Banach space Y for all operators from lp into Y to be compact for
each p e [l,oo). We conclude this paper with some results that
relate the space of all compact operators on C(Ω) with the space
ΦC0(C(Ω)) for all operators factoring through c0.

1. Notations. Suppose X and Y are Banach spaces. We will
denote the space of all bounded linear operators, compact operators,
and absolutely 2-summing operators from X into Y by B(X, F ) ,
K(X,Y), and U2(X,Y), respectively. By "X -> Yn we will mean
UY contains a copy of X."

1.1. Scattered-Compact Spaces. Recall that a topological
space S is said to be scattered or dispersed if every nonempty
closed subset of S has an isolated point in its induced topology (see
[22]). In this section we will assume that S is a scattered compact
Hausdorff space.

PROPOSITION 1.1. Suppose X is an infinite dimensional closed
subspace of CQ and Y is a Banach space. Then, B(X, Y) = K(X, Y)
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if and only ifY does not contain any copy of CQ.

Proof. Suppose Y does not contain any copy of co Let T €
B(X, Y). Let {xn} be any norm bounded sequence in E. We
will show that {Txn} has a norm convergent subsequence. Since
Co does not contain any copy of Z1, the space E does not contain
any copy of Z1. So by the celebrated Z1-theorem of H.P. Rosenthal
[20], a subsequence of {xn} is weakly Cauchy. By passing to the
subsequence we can assume that the {xn} itself is weakly Cauchy.
Let ym,n = xn — xm. Then the net {ym,n} is weakly null. So is
the net {Tym,n}. We claim that | |Γj/m j n | | —> 0. To arrive at a
contradiction suppose this is not the case. Then there exists an
e > 0 and sequences {rrik} and rik] of natural numbers such that
mh > mfc_χ > k - 1, nk > nfc_χ > k - 1, and ||Tt/mjb>flJ| > e. Now
by a theorem of C. Bessaga and A. Pelczynski [4] a subsequence
of Tymkink itself is a basic sequence. Since ymk,nk is a weakly null
sequence in c0 such that inf ||ί/mfclnj| > 0, a subsequence of this se-
quence is a basic sequence and a subsequence of the basic sequence
is equivalent to a block basis of the standard basis of c0. Since ev-
ery normalized block basis of the standard basis is equivalent to the
standard basis, it follows that a subsequence of {ymk,nk} is equiva-
lent to the standard basis. By passing to the subsequence we can
assume that {ymkink} itself is such a sequence. That is, {ymk,nk}
is equivalent to the standard basis of CQ. NOW it is easy to verify
that Σa>kymk,nk converges if and only if ΣakTymkink does. So, the
subspace [Tymfc)TlJ of Y is isomorphic to c0. This contradicts the
hypothesis. The converse is obvious. D

The next result is a corollary of some known results and Propo-
sition 1.1.

COROLLARY 1.2. For a Banach space Y the following are equiv-
alent
(a) For all infinite scattered compact Hausdorff spaces S, we have

B(C(S),Y) = K(C(S),Y).

(b) For some infinite scattered compact Hausdorff space S, we

have B(C{S),Y) = K(C(S),Y).

(c) Y does not contain a copy of c0.

(d) For all infinite dimensional subspaces X of c0, we have
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) = K(X,Y).

(e) For some infinite dimensional subspace X of c0, we have
) = K(X,Y).

Proof, (a) =Φ> (b) This is obvious.
(b) =Φ (c) By way of contradiction, suppose that Y contains a

copy of c0. Since 5 is an infinite scattered space, there exists a com-
plemented subspace M of C(S) isomorphic to c0 see [19, p. 201]).
Let P be the projection of C(S) onto M and T be an isomorphism
of M onto an isomorphic copy of c0 in Y. Then TP 6 B(C(S), Y)
is a noncompact operator. This contradiction proves (c).

(c) => (a) Let S be an arbitrary infinite scattered compact Haus-
dorff space. Let T e B(C(S),Y) be arbitrary. Since Y does not
contain any copy of c0, by a result of A. Pelczynski [17], the op-
erator T is weakly compact. So, its adjoint T* : Y* —> C(S)* is
weakly compact. By a well known theorem of W. Rudin [21], or
(see [22, Corollary 19.7.7]), we have C(S)* = lλ(S). By a theorem
of Schur (see [22, p. 338]), the space lλ(S) has the Schur property.
So, T* is compact. Hence, T is compact.

(c) 4Φ (d) <& (e) This is Proposition 1.1. D

COROLLARY 1.3 (Pitt). For 1 < p < oo, we have B(c0J
p) =

Proof. We know that c0 = C(S) for the infinite scattered compact

Hausdorff space S = JO, 1, | , | , . . . | . We also know that lp does not

contain any copy of c0. So, by Corollary 1.2, we have B(CQ,IP) =

1.2. /^-Sequences. This section gives a complete characteriza-
tion of all Banach spaces Y (in terms of /^-sequences) for which
B(X, Y) = K(X, Y) for X = c0 or P (1 < p < oo). The results for
X = Co and Z2 are already known. We fill in the gap by giving the
characterization in the case X = P for 1 < p < oo. This ties the
results for c0, Z2, and Zp (p φ 2) together.

Recall that a sequence {yn} of elements in a Banach space Y is
said to be a weak /^-sequence, or in short an /^-sequence in Y,
where p 6 [1, oo), if for every / e Y* we have X ^ |/(t/n)|p < oo.
The set of all /2,-sequences of a Banach space Y is denoted by
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(see [6]). For any real number p > 1, we denote the number p/(p—l)
by q. Note that 1/p + 1/q = 1.

REMARK, (a) If {yn} e lp

w(Y), p > 1, then {yn} e lr

w{Y) for any
r > p.

(b) If {en} is the standard unit vector basis of lp, 1 < p < oo,
then {en} 6 %(/*).

(c) If {en} is the standard unit vector basis of Co, then {en} G

The next proposition is motivated by [3] and [4].

PROPOSITION 2.1. // {yn} is a sequence in a Banach space Y
and 1 < p < oo, then the following three conditions are equivalent
(a) The sequence {yn} G lp

w{Y)

(b) The series Σ£Li anVn converges unconditionally for all {an} G

(c) ΓΛere ea iθte an operator T G B(lq,Y) such that Ten = yn,
where {en} is the standard unit vector basis of lq.

Proof (a) =* (b) We suppose that {yn} e lp

w(Y), that is, {f{yn)} €
ίp for each f eY*. First define a linear operator S : Y* —> lp by
5 / = {f(yn)} for / G Y*. We will use the closed graph theorem
to prove continuity of 5. So suppose {fn Θ Sfn} is a Cauchy se-
quence in the product space Y*(Blp. Then both {fn} and {Sfn} are
Cauchy sequences in Y* and /p, respectively. Let fn —> f G Y*.
We will show that Sfn —> Sf. For every e > 0 there exists a
natural number no such that ||5/j — Sfj\\ < e for all i,j > ΠQ.
That is, Σn=ι\fi(yn) - /j(yn)|p < & for all i , j > π 0 . In par-
ticular, ΣίLi |/<(!/n) - fj{yn)\p < cp, for all natural numbers iV
and all natural numbers z,j > n 0. By letting j —> oo we get
Σn=i ifiiVn) — f(yn)\p < ^P Since this holds for all natural numbers
N we get

n=l

for all i > n 0 . So, 5/ n —> Sf in norm. Hence, S is continuous.
Now let {αn} € Z9 be arbitrary, / € Y* be such that | | / | | = 1, and
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, j be any natural numbers. Then

where (0,..
So,

Since

we obtain

(1)

, 0, dij... , ay, 0,0,...) is treated as an element of i

sup

sup
ιmι<i

Σ
n-1

for all natural numbers i, j . Since {αn} G Ẑ , (Σn=» l α rι | g ) 9 —> 0

oo. So, 0 as n oo. Hence, theas n
series Y^^Lianyn converges. Since {an} € lq implies {enan} € lq

y

for any sequence {en} of numbers +1 and — 1, we certainly have
that the series Σ^Li ^n^nVn converges. That is, the series Σ^LX αnyn

converges unconditionally in Y.
(b) =» (c) Define the operator T : lq —> Y by T({αn}) =

Σ ^ r i anVn- Clearly, T is linear and T(en) = t/n. We will prove
that T is bounded. Let S be the bounded linear operator de-
fined above. By letting i = 1 and jί —> oo in (1), we obtain

Σ S s i n i Λ . I I l l { » } l ! I W > | | | | | | | |
(c) => (a) Suppose T € β(/«, F) and T(en) = yn, for n = 1,2,.. ..

We need to prove that {yn} e lζ(Y). Let / G Y* be arbitrary. Then
Σ ~ i !/(2/n)|p = ΣSLi !/ o T(e n ) | p < oo, because / o Γ G (/«)• and

€ £(J«). D
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REMARK. On replacing "J&" by %» and "lq" by "c0" in the
statement of Proposition 2.1, we obtain a result of C. Bessaga and
A. Pelczynski [4], whereas on replacing "Z£" by "/£" and lq by I2 we
get a result given in the paper of R. Anantharaman and J. Diestel
[3]

The next proposition is motivated by a paper of L. Drewnowski
[7]. Part (c) of the proposition is well known and is included here
for the sake of completeness.

PROPOSITION 2.2. For a Banach space Y and an arbitrary 1 <
p < oo, the following statements are true.
(a) The equality B(lp, Y) = K(lp, Y) holds if and only if every

l^-sequence in Y is a norm null sequence.

(b) The equality B(co,Y) = K(CQ,Y) holds if and only if every
l^-sequence in Y is a norm null sequence.

(c) The equality B(l\Y) = K(l\Y) holds if and only ifY is of
finite dimension.

Proof, (a) Suppose B(P, Y) = K(lp, Y). Let {yn} be an arbitrary
/^-sequence in Y. By Proposition 2.1, there is an operator T €
B(lp, Y) such that T(en) = yn for all n = 1,2,..., where {en} is the
standard unit vector basis of lp. By way of contradiction, suppose
that {yn} is not norm null. So, there exists a subsequence, say {ynk},
such that \\ynk\\ > e f°Γ some e > 0 and for all k = 1,2, Since
{e nk} is a norm bounded sequence, and T is a compact operator, the
sequence {Ten^}, (i.e., {ynk}) has a norm convergent subsequence,

say {ynki} Suppose ynkl —> y eY. Then ynld -^ y inY. Since
{yn} is an /^-sequence, it is a weakly null sequence. So, ynki -^> 0.

Thus, y = 0. Hence, \\ynki\\ —> 0? a contradiction.
For the converse, suppose that every /^-sequence of Y is a norm

null sequence and take an arbitrary Γ € B(lp,Y). Let {xn} be any
norm bounded sequence in lp. We will show that {T(xn)} has a
norm convergent subsequence. Since lp is reflexive, the sequence
{xn} has a weakly convergent subsequence. Without loss of gener-
ality we can assume that {xn} itself is weakly convergent. Suppose
xn - ^ x G lp. If liminf \\xn — x\\ = 0, then {xn} has a norm conver-
gent subsequence, and consequently, {T(xn)} has a norm convergent
subsequence. So suppose that lim||xn — x\\ > 0. By the Bessaga-
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Pelczynski theorem (see [6]), there exists a subsequence of {xn — x}
which is a basic sequence. Since {xn — x} is a basic sequence in lp

and liminf \\xn — x\\ > 0, by a theorem of A. Pelczynski [16, p. 7],
there is a subsequence of {xn — α:}, which is equivalent to a block ba-
sis of the standard basis of lp. Again by passing to a subsequence,
we can assume that {xn — x} itself is equivalent to a block basis
of the standard basis. Since every block basis of the standard ba-
sis of lp is equivalent to the standard basis (see [16]), {xn — x} is
equivalent to the standard basis. Since the standard basis is an
/^-sequence, {xn — x} is an /^-sequence. And so {T(xn — x)} is
an /^-sequence. Consequently, by the hypothesis, {T(xn — x)} is a
norm null sequence. That is, Txn —> Tx in norm. In other words,
for every norm bounded sequence {xn} the sequence {Txn} has a
norm convergent subsequence.

(b) Suppose B(co,Y) = K(co,Y). Let {yn} e lι

w(Y) be arbitrary.
By Proposition 2.1 there is an operator T € B(CQ,Y) such that
T(en) = yn. Note that {yn} converges weakly to zero. So, every
subsequence of it converges weakly to zero. Since T is compact,
every subsequence of {Ten} (i.e., of {yn}) has a subsequence which
converges to zero in norm. So, {yn} itself converges to zero in norm.

For the converse, suppose that every /^-sequence of Y converges
in norm to zero. Notice that the standard unit vector basis {en}
of c0 is an /^-sequence, which does not converge to zero in norm.
So, Y does not contain any copy of CQ. Since CQ = C(5), for some
infinite scattered compact Hausdorίf space 5, Corollary 1.2 implies
that all operators from c0 into Y are compact.

(c) This follows from the well known fact that every separable
Banach space is a quotient of I1. D

N O T E 2.3. For the comparison we mention now the following
result that follows from Corollary 3.11. If a Banach space Y has an
unconditional basis of finite dimensional subspaces (or more gener-
ally, a weak unconditional compact netted expansion of identity),
then B(Zoo,y) = if(/oo,y) if and only if every /^-sequence in Y is
a norm null sequence.

COROLLARY 2.4. Suppose Y is a Banach space and suppose p e
[l,oo). IfB{lp,Y) = K(lp,Y), then
(a) B(/ r, Y) - K{lr, Y) for all r e [p, oo) and
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(b) B(co,Y)=K(co,Y).

Proof, (a) For p = 1 the result follows from Proposition 2.2(c).
Suppose now that 1 < p < r < oo and B(lp,Y) = K{lp,Y). Then
by Proposition 2.2(a) every /^-sequence of elements in Y converges
to zero in norm. Since p < r implies that the conjugate number r'
satisfies r' < q, we see that every /^'-sequence of elements in Y is
an /^-sequence. So, every /^-sequence of elements in Y converges to
zero in norm. By Proposition 2.2(a), we get B(lr,Y) = K(lr,Y).

(b) Since B(lp,Y) = K(lp,Y) for some 1 < p < oo, the space
Y does not contain any copy of c0. Since CQ = C(s), for some
infinite compact scattered Hausdorff space, by Corollary 1.2 we get
B(co,Y) = K(co,Y). D

We conclude this section with the following remark.

REMARK 2.5. For a Banach space Y the following are equiva-
lent.
(a) For all infinite dimensional Hubert spaces H we have

B(H,Y)=K(H,Y).

(b) For some infinite dimensional Hubert space H we have
B(H,Y)=K(H,Y).

(c) We have B(l2, Y) = K(l2, Y).

(d) Every /^-sequence in Y is a norm null sequence.

3. Nonscattered-Compact Spaces. Recall that a topological
space Ω is said to be nonscattered or nondispersed if Ω contains
a nonempty closed set which has no isolated point in its induced
topology. In this section we assume that Ω is a nonscattered com-
pact Hausdorff space. We begin with a note whose proof is left to
the readers.

N O T E 3.1. If Y is a Banach space with the Schur property, then

B(C(Ω),Y)=K(C{Ω),Y).

THEOREM 3.2. Let Ω be a nonscattered compact Hausdorff space,
Ybea Banach space. IfB(C(Ω), Y) = K{C{Ω), Y), then B(l2, Y) =
K(12,Y). Furthermore, if B(C(Q),Y) = K(C(Ω),Y), then
B{lp,Y) = K{lp,Y) forp>2.

Proof. By Corollary 2.4 only the case p = 2 needs a proof. We pro-
ceed by contradiction and assume that B(12,Y) φ K(12,Y). Then
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there is a noncompact operator T in B(12,Y). From the proof of
Proposition 2.2 it follows that there is a basic sequence {un} in I2

equivalent to a block basis of the standard basis of I2 such that
{Tun} is an /^-sequence with no norm convergent subsequence.

Now we will define a bounded linear operator Φ(T) : C(Ω) —» F
which is not compact. Since Ω is a nonscattered compact Hausdorff
space, by a theorem of A. Pelczynski, W. Rudin, and Z. Semedeni
(see [22, Theorem 19.7.6]) there exists a purely nonatomic Borel
probability measure μ on Ω. Let {rn} be a sequence of Rademacher
like functions in L2(μ). Then the sequence {rn} is a basic sequence
of orthonormal functions. Observe that since μ is a regular Borel
measure, for each function rn and for each natural number k there
exists an fnk G C(Ω) such that \\fnk\\ = sup {|/nA:(^)| '• w G Ω} = 1
and \\fnk — rn | | 2 < | . Let M be the closed subspace of L2(μ)
spanned by the sequence {rn} and the sequences {fnk} for n —
1,2,.... Let Mi be the closed subspace of M spanned by the se-
quence {rn} and Mo be the orthogonal complement of Mi in M.
Then M is the internal direct sum of Mi and Mo (i.e., M = {xχ+x2 :

zi G Mi, z2 G M2} and ||xi + x2\\ = (||xi||2 + H^ll2)^). Let Λ̂  be
the closed linear subspace spanned by {un}. We have

C(Ω) A L2(μ) A M - A M i θ M o Λ i V ^ F ,

where Λ(/) = / = the equivalence class of / in L2(μ); the operator
P is the orthogonal projection from L2(μ) onto M; / is the identity
map from M onto Mi θ Mo; and J : Mi φ Mo -> Λ̂  is the operator
defined by J(rn) = un for n = 1, 2,... and J(a ) = 0 for each x e Mo.
(Since {un} is a basic sequence in ί2, J is an isomorphism from M\
onto N.) Let Ψ(T) = T\NJIPA. Clearly, Φ(T) maps C(Ω) into
F. We claim that Φ(T) is not compact. For this it is enough to
show that {Tun} C {Φ(Γ)(/) : / G C(Ω) and | |/ | | = 1}. To this
end, note that

\\Tun - Φ(T)/n,| | = | |TJPr n -

<\\T\\\\JPrn-JPfnk\
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COROLLARY 3.3. IfY is a Banach space such that B(C(Ω), Y) =
Π2(C(Ω),F) ; then B(C(Ω),Y) = K(C(Ω),Y) if and only if

Proof. In view of Theorem 3.2 we need only to prove that if
B{12,Y) = K(12,Y), then £(C(Ω),F) = K(C(Ω),Y). This fol-
lows from Remark 2.5 and the factorization theorem of A. Pietsch
[18], which states that every absolutely 2-summing operator factors
through a Hubert space. D

COROLLARY 3.4. For any compact nonscattered Hausdorff space
Ω and any Banach space Y, the following are equivalent
(a) B(C(n),Y) = K(C(Ω),Y).

(b) 5(/2, Y) = K(l2, Y) and each T 6 B(C(Ω), Y) factors through
a closed subspace of CQ.

Proof. (a)=> (b) This follows from a theorem of T. Terzioglu [24]
(or see [1, Theorem 16.5]) and Theorem 3.2.

(b)=*(a) Since B(12,Y) = K(12,Y), Y does not contain any
copy of c0. So, every operator from c0 into Y is compact. Now (a)
is clear. D

To present Theorem 3.9 we need some discussion on the spaces
of compact operators. Recall [11] that an operator T G B(X,Y) is
said to have an unconditional compact expansion if there is a
sequence {Tn} of compact operators from X into Y such that for
each x 6 X we have Tx = Σί£=i Tnx, where the series converges
unconditionally in Y. Recall also that Γ is said to have a finite
dimensional expansion if the operators Tn are of finite rank. We
shall now formulate the following definitions.

DEFINITION 3.5. An operator Γ e B(X,Y) is said to have a
weak unconditional compact netted expansion if there is a
net {Tμ} of compact operators from X into Y such that for each
xeX

where the series converges weakly unconditionally in Y

DEFINITION 3.6. A Banach space B is said to have a weak
unconditional compact netted expansion of identity if the
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identity operator /# on B has a weak unconditional compact netted
expansion.

Recall that if /# in the above definition has an unconditional finite
dimensional expansion, then B is said to have an unconditional
finite dimensional expansion of identity.

REMARKS. Suppose T in B(X, Y) factors through a Banach
space E.
(a) If E has a weak unconditional compact netted expansion of

identity, then T has a weak unconditional compact netted ex-
pansion.

(b) If E has an unconditional finite dimensional expansion of iden-
tity, then T has an unconditional finite dimensional expansion.

The part (a) of the next proposition is motivated by a result
of N.J. Kalton [13] and is slightly more general than other known
generalizations of the same result.

PROPOSITION 3.7. Suppose Co does not embed in K(X,Y) and

TeB(x,Y).
(a) // T has a weak unconditional compact netted expansion, then

T is compact.

(b) // T has a weak unconditional compact netted expansion, then
T factors through a closed subspace of CQ.

Proof, (a) Let {Tμ} be a weak unconditional compact netted ex-
pansion of T. We claim that {Tμ} is an unconditional compact
netted expansion of T. By way of contradiction suppose that for
some x G B the series ΣμTμx does not converge unconditionally.
Then there exists an e > 0 and sequences (Fn), (F^) of finite subsets
of the index set such that for all m and n the sets Fn and F^ are
disjoint and

/ _j tηl-η% / j > 6.

for some choices of signs eη. Set yn = ΣηeFn

 eηTηx — ΣηeF^ eηTηx.
Then, the series Σ n yn converges weakly unconditionally Cauchy in
Y and inf \\yn\\ > e. So, by a theorem of Bessaga and Pelczynski [4]
the space Y contains a copy of CQ. This contradicts the hypothesis.
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Since the series ΣμTμx converges unconditionally for every x G J3,
by the uniform boundedness principle

sup < oo,

where the supremum is taken over all finite subsets F of the index
set M. Equivalently, the series ΣμTμ is weakly unconditionally
Cauchy in K(X, Y). Since K(X,Y) does not contain any copy of
c0 by a theorem of Bessaga and Pelczynski [4], the series converges
in norm. Clearly, it converges to T.

(b) This is immediate from (a) and a theorem of T. Terzioglu
[24]. D

This completes the necessary discussion on the spaces of compact
operators. The following theorem due to L. Drewnowski [7] will also
be useful in the proof of Theorem 3.9. Here, the Banach space of all
countably additive vector measures from the σ-algebra Σ into the
Banach space Y is denoted by ca(Σ, Y).

THEOREM 3.8 (Drewnowski). // a σ-algebra Σ admits an atom-
less probability measure, then for any Banach space Y the following
statements are equivalent

(a) /oo^cα^r).

(b) co->cα(Σ,y).

(c) B(l\Y)φK(l\Y).

The following theorem gives another necessary and sufficient con-
dition on a Banach space Y for all operators from C(Ω) into Y to
be compact.

T H E O R E M 3.9. For any compact nonscattered Hausdorff space
Ω and any Banach space Y the following are equivalent.

(a) B(C(Q),Y) = K(C(Q),Y).

(b) B(12,Y) = K(12,Y) and each T G B{C(Ω),Y) has a weak

unconditional compact netted expansion.

Proof. ( a )=Kb) We get the equality B(12,Y) = K(12,Y) from
Theorem 3.2 and that each T € B(C(Ω),Y) admits a weak uncon-
ditional compact netted expansion is obvious.
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(b)==^(a) Since Ω is nonscattered, by a theorem of A. Pelczynski,
W. Rudin, and Z. Semadeni (see [22, p. 338]), it admits an atomless
regular Borel probability measure. Since B(12,Y) = K(12,Y), by
Theorem 3.8, it follows that c0 ψt ca(Σ, F), where Σ denotes the σ-
algebra of all Borel subsets of Ω. Since if (C(Ω), Y) is isometrically
embeddable in cα(Σ,F) (see [5, pp. 152-154]), c0 ψt K(C(Ω),Y).
Now the conclusion follows from Proposition 3.7. D

COROLLARY 3.10. If for some p with 1 < p < 2, B(P,Y) =
K(P, Y) and each operator in JB(C(Ω), Y) has a weak unconditional
compact netted expansion, then B(C(Ω),Y) = K(C(Ω),Y).

Proof This follows from Corollary 2.4 and Theorem 3.9. D

Recall that a Banach space is said to be separably universal
if it contains an isometric copy of every separable Banach space.
Recall also that for a compact Hausdorίf space Ω the space C(Ω) is
separably universal if and only if Ω is nonscattered (see [14]). Note
that if μ is a regular Borel measure whose support is an infinite
compact Hausdorff space, then there exists a nonscattered compact
Hausdorίf space Ω' such that L°°(μ) = C(Ω'). In particular, l°° =
C(Ω') for some nonscattered compact Hausdorff space Ω'.

COROLLARY 3.11. For any nonscattered compact Hausdorff
space Ω; any Banach space Y with a weak unconditional compact
netted expansion of identity, and any regular Borel measure μ on a
compact Hausdorff space the following statements hold.
(a) S(C(Ω), Y) = ϋT(C(Ω), Y) if and only ifB(l2, Y) = K(l2, Y).

(b) For any nonscattered compact Hausdorff space Ω' we have
B(C(Ω),Y) = K(C(Ω),Y) if and only if B(C{Ω'),Y) =

(c) £(C(Ω), P) = tf(C(Ω), P) forl<p<2.

(d) £(C(Ω), P) φ K(C(Ω), P) for 2 < p < oo.

(e) £(Z/»(μ), P) = tf(L°°(μ), lp) forl<p<2.

(f) B(L°°(μ), P) φ K{U»{μ), P) for 2 < p < oo.

Proof (a) This follows from Theorem 3.2 and Theorem 3.9.

(b) This follows from (a).
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(c) Since 1 < p < 2, by a result of H.R. Pitt [16], we have
B(l2,lp) = K(12JP). We know that lp has a weak unconditional
compact netted expansion of identity, so by (a) we get J3(C(Ω), lp) =

(d) Since 2 < p < oo, we obviously have B(12JP) φ K(l2,lp).
Now the conclusion follows from Theorem 3.2.

(e) follows from (c) and (f) follows from (d). D

Parts (e) and (f) of Corollary 3.11 follow also from [19, Remark 2].
The following conclusion is clear from what we have proved so

far.

CONCLUSION 3.12. Let Σ(Ω) denote the class of all Banach
spaces Y for which all operators from C(Ω) into Y are compact iff
all operators from I2 into Y are compact. Then, for a Banach space
Y the following statements hold.
(a) IfY has an unconditional basis, then Y G Σ(Ω).

(b) IfY has an unconditional basis consisting of finite dimensional
subspaces, then Y G Σ(Ω).

(c) IfY has a weak conditional compact netted expansion of iden-
tity, thenY G Σ(Ω).

(d) // each operator from C(Ω) into Y admits a weak uncondi-
tional compact netted expansion, then Y G Σ(Ω).

(e) // each operator from C(Ω) into Y factors through a closed
subspace of CQ, then Y G Σ(Ω).

(f) // each operator from C(Ω) into Y is absolutely 2-summing,
thenY G Σ(Ω).

(g) IfY has the Schur property, then Y G Σ(Ω).
We conclude this section with a remark, whose proof is left to the

reader.

REMARK. In Theorem 3.8 the space I2 can not be replaced by
an P-space with p φ 2.

4. Factorization. In this section Ω is any (scattered or nonscat-
tered) compact Hausdorff space. Now we will use some of our earlier
theorems to prove some results regarding the space ΦCo(C(Ω)) of all
operators on C(Ω) factoring through CQ.
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PROPOSITION 4.1. For an infinite compact Hausdorff space Ω;

and for a closed subspace X of CQ the following inclusions hold.
(a) Φ x (C(Ω))CΦ C o (C(Ω)).

(b) K{C(Ω)) C ΦC0(C(Ω)), but K(C(n)) φ Φco(C(Ω)).

Proof, (a) Let T G ΦX(C(Ω)) be arbitrary and T = T2Tγ be a
factorization of T through X. Since X is a closed subspace of c0, by a
theorem of J. Lindenstrauss and A. Pelczynski [15, Theorem 3.1], T2

extends to a bounded linear operator T2 from Co into C(Ω). Clearly,

τ = f2τιeΦC0(C(Ω)).

(b) Let T e K(C(Ω)) be arbitrary. Then by the theorem of
T. Terzioglu [24], T factors through a closed subspace of c0. Hence,
by (a) T e Φco(C(Ω)), (i.e., K{C(Ω)) C ΦCo(C(Ω))). To prove that
K(C(Ω)) Φ ΦC0(C(Ω)) let us first suppose Ω is scattered. Since Ω
is an infinite set, the space C(Ω) contains a complemented subspace
M isomorphic to c0 (see [19, p. 201]). Let P : C(Ω) -> M be a
continuous projection onto M, let M —> C(Ω) be the inclusion map.
Clearly, JP factors through c0 and is noncompact. Now suppose Ω
is nonscattered. First note that there is a noncompact operator T
in B(C(Ω)). (For, otherwise our Theorem 3.2 would imply that
B(12,CQ) = K(12,CQ). On the other hand, the formal identity map
from I2 to Co is not compact.) Now note that since Ω is nonscattered
there exists an isometry J in B(c0, C(Ω)). Clearly, JT G ΦC0(C(Ω))
and JT is noncompact. D

THEOREM 4.2. For a compact Hausdorff space Ω and for a

separable Banach space X the following are equivalent.

(a) ΦX(C(Ω))CK{C(Ω)).

(b) Φχ(C(Ω)) C ΦC0(C(Ω)) ; but Φχ(C(Ω)) φ ΦC0(C(Ω)).

Proof, (a) ==> (b) This is immediate from Proposition 4.1.

(b)=Φ>(a) First observe that c0 /> X. For, otherwise since X is
separable, a theorem of Sobczyk [23], would imply that an isomor-
phic copy of Co is complemented in X. So, we would get Φco (C(Ω)) C
Φχ(C(Ω)), contrary to our assumption. To prove that Φχ(C(Ω)) C
K(C(Ω)), it suffices to prove that B(C{Ω),X) = K(C(Ω),X). If
Ω is scattered, then B(C(Ω),X) = K(C(Ω),X) by Corollary 1.2.
If Ω is nonscattered, then C(Ω) is separably universal. So, there
is an isometry J : X -> C(Ω). If T G 5(C(Ω),X), then by our
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hypothesis JT e ΦCo(C(Ω)). So, suppose JT = T2TX is a factor-
ization through c0. Note that T2 G B(cQ, J(X)) and c0 = C(S) for
some scattered compact Hausdorff space S. Since c0 /> «/(^)j by
Corollary 1.2 the operator T2 is compact. D
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Added in proof. After this paper was accepted for publication we
learned that Corollary 1.2 (a)«Φ=Φ>(b)«Φ=>(c) was already known.
See Proposition 2 of the following paper.
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