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ON ALMOST-EVERYWHERE CONVERGENCE OF
INVERSE SPHERICAL TRANSFORMS

CHRISTOPHER MEANEY AND ELENA PRESTINI

Suppose that G/K is a rank one noncompact connected
Riemannian symmetric space. We show that if / is a hϊ-K-
invariant square integrable function on G, then its inverse
spherical transform converges almost everywhere.

l Introduction.

Recall the Caxleson-Hunt theorem about almost-everywhere convergence of
the partial sums of the inverse Fourier transform in one dimension. If we
take 1 < p < 2 and denote by / the Fourier transform of a function / in
LP(R) then for each R > 0 there is the partial sum

(1) SRf(x):= [* f(Oeixζdξ.
J-R

There is also the maximal function

(2) S*f(x):=sup\SRf(x)\.
R>0

The Carleson-Hunt Theorem states that if 1 < p < 2 then there is a constant
cp > 0 such that

(3) IIS7H, < cp | |/||p, V/ e L»(R).

When this is combined with the fact that the inverse Fourier transform
converges everywhere for elements of C£°(IR), a dense subspace of LP(R),
then the almost-everywhere convergence of {Sjιf(x) : R > 0} follows for all
/ £ LP(R). In fact, it suffices to know that there is the weak estimate on
the truncated maximal operator for all y > 0 and / G

(4) L:snp\SRf(x)-S1f(x)\>y\
I R>1 J

and this follows from (3). The inequality (3) has been extended to Hankel
transforms by Kanjin [4] and Prestini [6], for an appropriate interval of
values for p. In this paper we will be concentrating on the I? case.
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2. Bessel functions and Hankel transforms.

For a > —1/2 and 1 < p < 2 consider the weighted Lebesgue space

^p,α(05oo) with norm

Here σa = 2τrα + 1Γ(α + 1). Furthermore, there is the Hankel transform

where Ja is the usual Bessel function indexed by a. The corresponding

maximal function for the inversion of this transform is

T*f(x) = sup
R>0

Proposition 1 (Kanjin, Prestini). For a > —1/2 and

4(α + l)/(2α + 3) < p < 4(α + l)/(2α + 1)

is α constant cPia such that

||Tβ7||p.α < Cp,β||/||p,α, V/ € Lp,β(0,Oθ).

Following the notation of [9], we set

Jμ(z) := y^Γ (μ + i)r Q)

We will make use of the following alternative formulation of the Hankel

transform for L2 spaces. Notice that F G L2(0, oo) if and only if

\\F\\l = f < oo.

If λ H-> F(λ)X a h is in I>2,α(0, oo) and iϊ > 1 then we can take the partial

Hankel transform

(5) Γ F(X)X-a'^ ή ^ λ2 α + 1 dλ = t~a-l/2 [R F(X) (Xtγ/2ja(Xt) dX.
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3. Spherical transforms.

3.1. Notation. First, G will denote a noncompact connected semisimple Lie
group. Next, we fix a maximal compact subgroup K in G, and we assume
that the rank of the symmetric space K\G is one. Furthermore, let n be the
dimension of K\G. We assume that an Iwasawa decomposition G = ANK
is fixed once and for all.

Let α denote the Lie algebra of A inside g, so that α is isomorphic to the
real line. Following [9] we fix an element Ho of α so that α = MH0. There
is the map from the real line onto A defined by a(t) := exp(tH0), for all
real numbers t. Every element of G can be written as g = kιa(t)k2 for some
&i and k2 in K and t > 0. Hence, every bi-if-invariant function on G is
completely determined by its restriction to the set {a(t) : t > 0}. There is a
density D on [0, oo) which corresponds to the Haar measure on G,

/ f(x)dx= Γ I I f(k1a(t)k2)D{t)dk1dk2dt,
JG JO JK JK

for all / G CC(G). Let n be the dimension of the symmetric space K\G, and
let p denote the special number described in [9].

Lemma 1. The density D on [0, oo) has the properties:

D(t) = O(tn-1) as U 0 ,

and

D(t) = O{e2pt) as t -> oo.

3.2. Spherical Functions. To each complex number λ there is associated
the spherical function </?λ, which is a smooth bi-if-invariant function on G.
If λ is real then φx is bounded and there is the spherical transform

:= ί f(x)φχ(x)dx
JG

for all integrable functions on G. If we add the hypothesis that / is b'i-K-
invariant, then this reduces to a one-dimensional integral transform, namely,

:= Γ
Jo

f(a(t))φx(a(t))D(t)dt,

where D is the density used in equation (1.1) of [9]. It is known that there
is a density |c(λ)|~2 on [0, oo) so that the spherical transform extends from
being a map # : KL1{G)K Π L2(G) -+ C°°(0, oo) to an isometry
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This is the Plancherel theorem for bi-ίί-invariant functions [1]. It is also

known that if / e KC™(G)K then

f(x)= lim [R$f(\)φχ(x)\c(λ)\~2dλ

uniformly. Let SR denote the partial summation operator. Prom the results
of [9] about analyticity of spherical transforms, it is clear that SR cannot be
a bounded operator from KLP(G)K to KLP(G)K, when p < 2. Despite this,
Giulini and Mauceri have been able to treat some Riesz-Bochner means in
this case, [2],

The analogue of the maximal function (2) is

3DT/(α(t)) := sup
R>0

fR

Jo
= sup|5Λ/(o(t)) |

R>0

As we remarked above, to prove almost everywhere convergence, it is enough
to consider the truncated version of this maximal function,

rR

(6) 9K*/(α(*)) := sup [R$f(λ)φx(a(t))\c(\)\-2dλ
Jl

We wish to understand the L2 mapping properties of 9Jt*. This will involve
estimates on φλ(a(t)) for all ί > 0 and large λ. These asymptotic results were
found by Stanton and Tomas [9]. In [5] we use the results of Schindler[8] and
direct estimates on the Dirichlet kernel to treat the case when G = SX(2, M)
and K = 50(2). There we show that OJt* is bounded from KLP(SL(2,R))K

to L2 + Lp, when 4/3 < p < 2.

4. Asymptotic results.

Theorem 2.1 of [9] gives the asymptotics of ψ\(a(t)) for small values of t. In
this case φx(a(t)) behaves like a combination of Bessel functions.

Theorem 2. There exist Bo > 1 and Bλ > 1 such that for all 0 <t < Bo,

(tn~ι \1/2

l ) J(7) ^^)

+0, (-p-rj t2

aι{t)Jn/2(λt) +E2{λ,t)

with \aλ(t)\ < cBϊ1, for all 0 <t<BQ, and

c2t
4 t / | λ t | < l
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Similarly, they have the case for large t. Following Harish-Chandra [3],
they write

so that

ψx(a(t)) = c{\)eiλte~pt + c(-λ)e~iXte-pt + error terms.

Corollary 3.9 of [9] then describes the asymptotics of the functions φ\.

Proposition 3. For integers M > 0 and m > 0, real numbers t > Bo, and
real λ, there exist functions Λm(λ, t) and £M+I(A,£) and a constant A > 0
such that

φχ(t) = Λ0(ί) + £ Am(X,t)e-2mt = Ao(ί) + Σ Λm(λ,ί)e-
2rot +SM+l(X,t),

where A0(t) < AG0(t)j

The material at the top of page 260 in [9] shows that the m = 0 term
in this expansion is independent of λ since the factors 7* used there axe
constant in λ. Also notice that

(8) G0(t) = £ e2*1-*) = — ^ , Vt > 1.
i=o x β

In particular, Go is uniformly bounded on [2?0,00).
We conclude this section by pointing out the long range behaviour of the

c-functions, see Lemma 4.2 in [9].

Proposition 4. For real λ and integers a > 0,

In particular,

(9) KA)!"1 = O(λ ( n- 1 ) / 2), for large λ.

Also note that
c(-λ) = c(λ), Vλ E R

This means that c(λ)/|c(λ)| and c(—λ)/|c(λ)| both have absolute value one.
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5. The Main Theorem.

Theorem 1. Suppose that G is a non-compact, connected, semisimple Lie
group with finite centre and real rank one, with maximal compact subgroup
K. For every bi-K-invariant square-integrable function f on G, the partial
sums of the inverse spherical transform converge almost-everywhere on G.

5.1. Transplanting to one dimension. To prove this result we transplant
the problem to one about Hankel and Fourier transforms. This follows an
idea found in Schindler's paper [8]. If / is a square-integrable bi-ίί-invariant
function on G, set

«/(t) := (£>(<))1/2/(o(ί)), Vt > 0.

Immediately we see that fRf G £2(0, oo) and

(10) ||W/||L»<O,OO) = ||/IU»(G), V/ G KL\G)K.

For real numbers λ and t > 0, set

and define an integral transform on functions on (0, oo) by

JCF(X) := Γ F{t)φx(t) dt, Vλ > 0.
Jo

This has the properties that it is an isometry from L2(0, oo) to itself and
that

(11) KW)(λ) = Icίλjr^/ίλ), V/ G KL2(G)K.

Finally, notice that the maximal function we are interested in has the de-
scription as

(12) m*f(α(t)) = (D(t)y1/2 sup ί
Jl

We wish to prove that if 91/ G L2(0,oo) then t •-> (D(t))1/2SDΓ/(α(ί)) is
in I/2(0, oo), which is the same as asking that
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be square integrable on [0, oo). We also need to estimate the norm of this in

terms of the norm of £K/.

For the moment, replace ICψKf) by an arbitrary F G L2(0, oo), with the

same L2-norm. Notice that F may be thought of as the restriction to (0, oo)

of the Fourier transform of an element of L2(R). The results of Stanton and

Tomas show that we can write ψ\(t) in different ways, depending on the size

of t. For 0 < t < Bo the expansion in Proposition 4 means that we have

three pieces:

(13) φχ(t) = Co

For every B2 > Bo and Bo < t < B2 the expansion in Proposition 4 means

that we can write φ\{t) as

(14) <ψχ(t) =

The remaining case, when t > B2 > BQ is

(15) φx(t) =

m = l
oo

m = l

Later we will fix one value for J52 depending on the values of Bo, n, and p.

• Case of small ί, first piece. Here we must estimate

Tλ(t) =sup

with 0 < t < J30. Notice that ^(A)!"1 < const.(l + |λ | ) ( n ~ 1 ) / 2 and so the

function
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is in L2(l,oo) and | |Fi | | 2 < const.||F||2. Then we must estimate

sup

See equation (5). The Kanjin-Prestini theorem implies that

t -> sup / F1(X)(Xt)1^2 J ( n_2 ) / 2(λt) dX .r

is in I/2,(n-i)/2(0, oo) with norm less than or equal to a constant multiple of
ll-̂ i Ita? where the constant depends only on K\G. But this means that

α \l/2

lΆittfdt) < const.||F||2.
o /

This completes the necessary estimate on the first part.
• Case of small ί, second piece. Next, set T2(t) to be equal to

sup

This can be rearranged to become

x (t) sup JRF{X)X-1\c{X)\-1X-(n-1)/2Jn/2(Xt){Xt)1/2dX

But F2(λ) = FίλJλ-^cίλJI-^-ί"-1)/2 is in L2(l,oo) and

||^2||L2(I,OO) < const. | |F| | 2.

Now apply the Kanjin-Prestini theorem to

sup / F 2(λ)(ίλ) 1 / 2Jn / 2(λί)dλ .

R>1 J\

We also know that aτ is bounded on [0, JB0] We have proved that

αβ \ ^ ^ 2

°\T2(t)\2dt) <const. | |F| | 2.
• Case of small ί, third piece. Set

I pR

T3(t) = sup \
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for all 0 < t < Bo Prom the estimates for the error term described in
Proposition 4 we see that T3(ί) is less than or equal to

(16)
4 ί |F(λ)||c(λ)|-1dλ

[
i/t

The first term is dominated by

/ rl/t \ 1 / 2

const.£>(ί)1/2ί4||F||2 I / A""1 dλ 1 < const.JD(ί)1/2ί4 | |F||2(l - r n ) 1 / 2 .

Recalling that D(t) = O(t^n~^) as t —>• 0, we see that this is square integrable
over [0,B0].

For the second term, use the fact that it is dominated by

(17) ^- 1 )/ 2 / \F(λ)\λ~2dλ
hit

This shows that

Bo

|T3(ί)|2rff < const. | | F | | 2 .
V° /

• Small ί, summary. So far, we have shown that there is a Bo > 1 and a
constant c > 0, depending on K\G, such that for all / in KL2(G)K,

1/2

(18) \m*f{a(t))\2D(t)dt

• Case of medium size t Using the results of Proposition 4 we see that if
JB0 < t < B2, then we need to estimate terms of the form

(19) t H* sup dλ

(20) t »-> sup
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and

(21) t f-» sup

We will describe the cases with λ > 0, the cases where λ is replaced by — λ
are handled in the same manner. For the term (19) note that λ ι-> c(λ)/|c(λ)|
is a multiplier of ZΛ The Carleson-Hunt theorem states that

is in L2(0, oo) and the norm is less than or equal to const.||F||2. Recall that
Λo is bounded on [Bo, oo) and take into account the factor of t H* e~ptD(tY^2^
which is also bounded on [Bo, oo).

For the term (20) we can use integration by parts, since F is locally
integrable. That is, write

(22)

f
\C\X)\

The absolute value of these terms are less than or equal to

const. (D(t))1'V-'-2>t S*h(t)G0(t) U + jf* ^

where S*h is the Carleson-Hunt maximal operator applied to the function
h 6 î 2(M) with h(λ) = F(λ)c(λ)|c(λ)|~1, if λ > 1, and zero elsewhere.
We know that ||5f*/ι||2 < const.H^l^ Recalling that there is a factor of
e~pt(D(t))1^2 to take into account, we then see that the term (20) is in
L2([i?0, B2],D(t)dt) and the norm is dominated by a constant multiple of
| | F | | 2 , with the constant depending on G, Bo, and B2.

Now we concentrate on (21). The estimates in Proposition 4 show that
this is dominated by

2 Γ\F(λ)\e-ptGo(t)λ-2dλ <

This is clearly square integrable on intervals of the form
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• Medium ί, summary. Now we have shown that for B2 > Bo > 1 there
is a constant c> 0, depending on K\G, such that for all / in KL2(G)K

J

(23)
fB2

\ΰJt*f(a(t))fD(t)dή <c\\f\\2.

• Case of large t Here we know that

m = l

with |Λm(λ,ί)| < ^ρ m e 2 m | λ | - m G 0 ( ί) and

< v4pme2 m |λΓ1- r o2G0(ί).

If t > Bo + 2 + log(p), then the series above converges absolutely uniformly
on intervals of the form [Bo + 2 + log(p) + δ, oo) with δ > 0. We have set

Take F € L2(0, oo), then to each R > 1,

is equal to the sum

(24) D(t)1/2e-pt^0(t) I h1{\)e
iXtd\

m = l

R

where Λx G L2(R) has Λί(λ) = c(λ)|c(λ)|"1F(λ) for λ > 1, and similarly for
the φ-χ term. The Lebesgue dominated convergence theorem justifies the
interchange of integration and summation. The first part is handled directly
by the Carleson-Hunt theorem. On^the second part, use integration by parts
on each of the summands. Since hi is locally integrable, we see that

is equal to

hl(X)eiXt dλ ,ί) ds + Am(R,t) ^ M λ ) e i λ t dλ
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Taking absolute values we see that

(25) / /il(λ)Λm(λ,ί)eiλίrfλ

2AS*h1{t)G0(t)pme2m ί s~ι-m ds

+ AS*h1(t)G0(t)pme2mR-m,

and this is less than or equal to

AAS*h1{t)G0{t)pme2m

for all R > 1. Prom this it follows that

rR

 c(λ)
(26)

F(λ) m
< D(t)1/2e-pt AG0(t) 5'Λi(ί)

f -2mt+mlog(p)+2m
e

m=l

We are free to take B2 > Bo + log(p) + 2 so that the sum on the right hand
side is uniformly bounded for all t > B2- The Carleson-Hunt theorem shows
that

• Summary of the large t case. Now we have shown that there exists
B2 > Bo > 1 and a constant c > 0, depending on K\G, such that for all /
in KL2{G)K

1

1/2αoo \ 1/2

^ \m*f(a(t))\2D(t)dή <
This completes the proof of the theorem. Notice that we frequently move

from one L2 function to another using the Plancherel theorem for Fourier
and Hankel transforms, and we use the fact that bounded functions are
multipliers of L2. These devices are not available to us for other Lp spaces,
so that this method can only be expected to apply to the setting of L2.
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