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Abstract
We show that every five-dimensional Sasakian Lie algebra with trivial center is ϕ-symmetric.

Moreover starting from a particular Sasakian structure on the Lie group S L(2,R) × Aff(R) we
obtain a family of contact metric (k, μ) structures whose Boeckx invariants assume all values
less than −1.

1. Introduction

1. Introduction
In this paper we study some geometric features of Lie groups endowed with a left–

invariant Sasakian structure. We focus on the five dimensional case, our basic tool being
the complete classification of five dimensional Sasakian Lie algebras carried out by An-
drada, Fino and Vezzoni in [1]. These Lie algebras fall into two classes: those whose center
is one dimensional and generated by the Reeb vector field ξ, and those having trivial center.

Our results concern the centerless case, and our purpose is twofold. First of all we prove
that, in this case, the simply connected Lie group G corresponding to a Sasakian Lie alge-
bra is always a Sasakian ϕ-symmetric space. We remark that, in their classification of five
dimensional Sasakian ϕ-symmetric Lie algebras carried out in [5], Calvaruso and Fino ex-
cluded the centerless Lie algebras, so our result fills this gap. Indeed, we study the canonical
fibration G → G/H of the Sasakian space G over a homogeneous Kähler manifold G/H,
showing that G/H is always either a product of two one dimensional complex space forms,
namely CH1(λ) × CH1(μ), or CP1(λ) × CH1(μ), or it is a two dimensional complex space
form CH2(α).

Our second objective is to show that, starting from a particular Sasakian metric g on
the Lie group S L(2,R) × Aff(R), with contact form η, by a suitable deformation of g, one
obtains a one parameter family of left–invariant metrics ga, a > 1, associated to the same η,
for which the Reeb vector field ξ satisfies the (k, μ) curvature condition

(1) R(X, Y)ξ = k(η(Y)X − η(X)Y) + μ(η(Y)hX − η(X)hY), k, μ ∈ R,
where 2h denotes the Lie derivative of the structural tensor ϕ along ξ. For more information
about this widely studied class of associated metrics, we refer the reader to Blair’s book
[2, Chapter 7]. The Boeckx invariants Ia of these metrics exhaust all values in (−∞,−1).
We observe that Boeckx himself in [3] provided Lie group models for contact metric (k, μ)
spaces with I < −1; we feel that our construction provides an alternative way to obtain
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these models (at least in dimension five), which seems to be more geometrically transparent.
Indeed, the definition of the metrics ga relies on a general principle explored in [6], which
provides (k, μ) structures starting from Sasakian ones endowed with additional geometric
objects, namely a pair of conjugate, integrable Legendre distributions, whose Pang invari-
ants are suitable multiples of the original Sasakian metric. However, no specific examples
of application of these principle were given in [6], so we found it interesting to carry out
explicitly this construction on our Sasakian Lie groups.

2. Preliminaries

2. Preliminaries
For general notions concerning contact metric geometry and for the notation we refer the

reader to Blair’s book [2]. It is well known that a locally symmetric Sasakian manifold must
be a space of constant curvature [10]. This fact motivated Takahashi to introduce the notion
of Sasakian ϕ-symmetric space, which is an analogous notion of Hermitian symmetric space,
see [12]. We recall some basic facts concerning this concept. Let (M, ϕ, ξ, η, g) be a Sasakian
manifold. Consider an open neighborhood U of x ∈ M such that the induced Sasakian
structure on U, denoted with the same symbols, is regular. Let π : U → U/ξ be the
corresponding fibration and (J, ḡ) the induced Kählerian structure on U/ξ [9]. Then M is
called a Sasakian locally ϕ-symmetric space if U/ξ is always a Hermitian locally symmetric
space.

This notion can be characterized also using the concept of ϕ-geodesic symmetry. A ϕ-
geodesic of a Sasakian manifold (M, ϕ, ξ, η, g) is a geodesic γ of M such that η(γ′) = 0;
while a ϕ-geodesic symmetry of M at m ∈ M is a local diffeomorphism σm at m such that
for each ϕ-geodesic γ = γ(s), with γ(0) in the trajectory of the integral curve of ξ passing
through m, we have that

σm(γ(s)) = γ(−s)

for each s.

Theorem 1. A Sasakian manifold M is a Sasakian locally ϕ-symmetric space if and only
if it admits at every point a ϕ-geodesic symmetry which is also a local automorphism of the
structure.

Let M be a Sasakian locally ϕ-symmetric space. If any ϕ-geodesic symmetry of M is
extendable to a global automorphism of M, and if the Killing vector field ξ generates a one
parameter group of global transformations, then M is called a Sasakian ϕ-symmetric space.
The following theorems are proved in [12].

Theorem 2. A Sasakian globally ϕ-symmetric space is a principal G1-bundle over a
Hermitian globally symmetric space.

Here G1 is a 1-dimensional Lie group isomorphic to the one parameter group of transfor-
mations generated by ξ.

Theorem 3. A complete and simply connected Sasakian locally ϕ-symmetric space is a
globally ϕ-symmetric space.

Now let G be a simply connected Lie group endowed with a left-invariant Sasakian struc-
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ture (ϕ, ξ, η, g). Let g be the Lie algebra of G, so that ξ ∈ g. Then, by homogeneity, ξ is
regular (cf. [4, Theorem 4]) and the fibration of G is the canonical projection p : G → G/H,
where H ⊂ G is the analytic subgroup with Lie(H) = Rξ. In this case, the induced Kähler
metric ḡ on G/H is the unique one making p a Riemannian submersion; clearly it is G-
invariant. Hence G is a Sasakian ϕ-symmetric space if and only if G/H is a Hermitian
symmetric space.

3. Five-dimensional Sasakian Lie algebras

3. Five-dimensional Sasakian Lie algebras
A Sasakian Lie algebra is a Lie algebra g endowed with a quadruple (ϕ, ξ, η, g) where

ϕ ∈ End(g), ξ ∈ g, η ∈ g∗ and g is an inner product such that

(2)
η(ξ) = 1, ϕ2 = −Id + η ⊗ ξ, g(ϕX, ϕY) = g(X, Y) − η(X)η(Y),

g(X, ϕY) = dη(X, Y), Nϕ = −2dη ⊗ ξ,
where

Nϕ(X, Y) := ϕ2[X, Y] + [ϕX, ϕY] − ϕ[ϕX, Y] − ϕ[X, ϕY].

Five dimensional Sasakian Lie algebras have been classified in [1] treating separately the
two cases of Lie algebras with trivial or nontrivial center. We recall the classification result
concerning Sasakian Lie algebras with trivial center [1, Theorem 13]:

Theorem 4. Let (g, ϕ, ξ, η, g) be a five dimensional Sasakian Lie algebra with trivial
center. Then g is isomorphic to one of the following Lie algebras: the direct products
sl(2,R) × aff(R), su(2) × aff(R), or the non-unimodular solvable Lie algebra R2

� h3.

Here aff(R) and h3 denote respectively the Lie algebra of the Lie group of affine motions
of R and the real three-dimensional Heisenberg Lie algebra.

Let (g, ϕ, ξ, η, g) be a five dimensional Sasakian Lie algebra with trivial center. According
to [1, Section 3.2], after performing a -homothetic deformation of the structure, there
exists an orthonormal basis {e1, . . . , e5} of g satisfying:

ker η = span{e1, . . . , e4}, e5 = ξ, ϕ(e1) = −e2, ϕ(e3) = −e4,

and such that one of the following eight sets of bracket relations holds:

(A1)

[e1, e2] =
2
c

e1 − 2e5, [e1, e3] = ce4, [e1, e4] = −ce3, [e1, e5] = 0,

[e2, e3] = − f e4, [e2, e4] = f e3, [e2, e5] = 0, [e3, e4] = −2e5,

[e3, e5] = −e4, [e4, e5] = e3,

(A2)

[e1, e2] = −ae1 − be2 − 2e5, [e1, e3] = ce4, [e1, e4] = −ce3,

[e1, e5] = 0, [e2 e3] = −2 + ac
b

e4, [e2, e4] =
2 + ac

b
e3,

[e2, e5] = 0, [e3, e4] = −2e5, [e3, e5] = −e4,

[e4, e5] = e3,
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(B1)

[e1, e2] = −ae1 − 2e5, [e1, e3] =
2
a

e4, [e1, e4] = −2
a

e3, [e1, e5] = 0,

[e2, e3] = − f e4, [e2, e4] = f e3, [e3, e4] = −2e5, [e2, e5] = 0,

[e3, e5] = e4, [e4, e5] = −e3,

(B2)

[e1, e2] = −ae1 − be2 − 2e5, [e1, e3] = ce4, [e1, e4] = −ce3,

[e1, e5] = 0, [e2, e3] = −ac − 2
b

e4, [e2, e4] =
ac − 2

b
e3,

[e2, e5] = 0, [e3, e4] = −2e5, [e3, e5] = e4,

[e4, e5] = −e3,

(A3)

[e1, e2] = −ae1 − 2e5, [e1, e3] = −2
a

e4, [e1, e4] =
2
a

e3,

[e1, e5] = 0, [e2, e3] =
a
2

e3 − f e4, [e2, e4] = f e3 +
a
2

e4,

[e2, e5] = 0, [e3, e4] = −ae1 − 2e5, [e3, e5] = −e4,

[e4, e5] = e3,

(A4)

[e1, e2] = −ae1 − be2 − 2e5, [e1, e3] = −1
2

be3 + ce4,

[e1, e4] = −ce3 − 1
2

be4, [e1, e5] = 0,

[e2, e3] =
1
2

ae3 − 2 + ac
b

e4, [e2, e4] =
2 + ac

b
e3 +

1
2

ae4,

[e2, e5] = 0, [e3, e4] = −ae1 − be2 − 2e5,

[e3, e5] = −e4, [e4, e5] = e3,

(B3)

[e1, e2] = −ae1 − 2e5, [e1, e3] =
2
a

e4, [e1, e4] = −2
a

e3,

[e1, e5] = 0, [e2, e3] =
a
2

e3 − f e4, [e2, e4] = f e3 +
a
2

e4,

[e2, e5] = 0, [e3, e4] = −ae1 − 2e5, [e3, e5] = e4,

[e4, e5] = −e3,

(B4)

[e1, e2] = −ae1 − be2 − 2e5, [e1, e3] = −1
2

be3 + ce4,

[e1, e4] = −ce3 − 1
2

be4, [e1, e5] = 0,

[e2, e3] =
1
2

ae3 − ac − 2
b

e4, [e2, e4] =
ac − 2

b
e3 +

1
2

ae4,

[e2, e5] = 0, [e3, e4] = −ae1 − be2 − 2e5,

[e4, e5] = −e3, [e3, e5] = e4.

In the first two cases we have that the Lie algebra g is isomorphic to the direct product
sl(2,R) × aff(R), where
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⎧⎪⎪⎨⎪⎪⎩
aff(R) 	 span{ f e1 + ce2, e1 + ce5}
sl(2,R) 	 span{e3, e4, e5}

in case (A1), and ⎧⎪⎪⎨⎪⎪⎩
aff(R) 	 span{ae1 + be2 + 2e5, e1 − ce5}
sl(2,R) 	 span{e3, e4, e5}

in case (A2).
In cases (B1) and (B2) we have respectively that⎧⎪⎪⎨⎪⎪⎩

aff(R) 	 span{ae1 + e5, f e1 + e5}
su(2) 	 span{e3, e4, e5}

or ⎧⎪⎪⎨⎪⎪⎩
aff(R) 	 span{ae1 + be2 + 2e5, e1 + ce5}
su(2) 	 span{e3, e4, e5}

and thus g is isomorphic to the direct product su(2) × aff(R). Lastly, in cases (A3), (A4),
(B3), (B4) one has g 	 R2

� h3.

4. Sasakian ϕ-symmetric five-dimensional Lie groups

4. Sasakian ϕ-symmetric five-dimensional Lie groups
In this section we prove our main result:

Theorem 5. Let G be a five-dimensional simply connected Lie group endowed with a left-
invariant Sasakian structure. If the Lie algebra of G has trivial center, then G is a Sasakian
ϕ-symmetric space.

We need the following:

Lemma 1. Let (G/H, g) be a homogeneous Riemannian manifold, where G is a connected
Lie group and suppose we are given a reductive decomposition:

g = h ⊕m,
of the Lie algebra g of G. We suppose there exists an Ad(H)-invariant subspace n of m
satisfying:

(3) [g, h ⊕ n] ⊂ h ⊕ n, U(m, n) ⊂ n,
where U : m ×m→ m is the bilinear operator defined by

2〈U(X, Y), Z〉 = 〈[Z, X]m, Y〉 + 〈[Z, Y]m, X〉.
Here 〈 , 〉 is the Ad(H)-invariant scalar product on m corresponding to the Riemannian
metric g on G/H. Then the G-invariant distribution  determined by n is parallel with
respect to the Levi-Civita connection of g.

Proof. Let π : G → G/H be the canonical projection, e ∈ G the identity element of G and
o = π(e). For every a ∈ G we denote by τa the isometry of G/H given by τa(bH) = abH.
First of all we show that the fundamental vector field X∗ determined by a vector X ∈ n is a
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section of . Indeed, for every a ∈ G, according to (3) we have:

(Ad(a−1)X) ∈ h ⊕ n,
hence

(dτa−1 )aH(X∗aH) = (Ad(a−1)X)∗o = (dπ)e(Ad(a−1)X) ∈ o,

and this ensures that X∗aH ∈ aH . Now, let {e1, . . . , ek} be a basis of n. Then

{(e∗1)aH , . . . , (e∗k)aH}
is a basis of aH , for every point aH in a neighborhood W of o. Using the standard formula
for the Levi-Civita connection of a homogeneous Riemannian reductive space [8], and the
assumption (3), we get:

∇Xe∗i = −
1
2

[X, ei]m + U(X, ei) ∈ n,
for every X ∈ To(G/H). Here we are identifying To(G/H) with m via (dπ)e|m : m →
To(G/H). Then we see that for every section Y of  and X ∈ To(G/H), ∇XY belongs to o.
Hence, by the G-invariance, we can conclude that  is parallel. �

Proof of the theorem. Let (ϕ, ξ, η, g) be a left-invariant Sasakian structure on G. We
denote by H the one parameter subgroup generated by ξ, and with ḡ the induced Kähler
metric on G/H via the canonical submersion π : G → G/H. We denote by h = Rξ the Lie
algebra of H. As we recalled in Section 3, up to a -homothetic deformation, there exists
an orthonormal basis {e1, . . . , e5} of the Lie algebra g of G such that

ker η = span{e1, . . . , e4}, e5 = ξ, ϕ(e1) = −e2, ϕ(e3) = −e4,

and the elements e1, . . . , e5 satisfy one of the bracket relations (A1)-(A4) or (B1)-(B4).
Moreover, G/H is a homogeneous reductive space with a reductive decomposition given
by

g = h ⊕m,
where m := span{e1, . . . , e4}. The Kähler metric ḡ on G/H is the G-invariant metric induced
by the scalar product ge on m.

In cases (A1), (A2), (B1), (B2) we consider the G-invariant distributions 1 and 2 on
G/H determined respectively by

n1 := span{e1, e2}, n2 := span{e3, e4}.
Then 1 and 2 are orthogonal and complementary distributions on G/H and one can easily
check directly that n2 satisfies the conditions (3) of Lemma 1, yielding that 2 is parallel.
For example, in case (A1) we have:

U(e3, e1) =
1
2

ce4, U(e3, e2) = −1
2

f e4, U(e3, e3) = 0, U(e3, e4) = 0,

U(e4, e1) = −1
2

ce3, U(e4, e2) =
1
2

f e3, U(e4, e4) = 0.
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Then G/H is isometric to the direct product M1 × M2, where M1 and M2 are both 2-
dimensional homogeneous Kähler manifolds (cf. [8, Theorem 5.1, p. 211 and Theorem 8.1,
p. 172]). Of course, each of these spaces has constant curvature, and this proves that G/H
is a Hermitian symmetric space. Actually in case (A1) and (A2) the sectional curvature of
M1 is λ = − 4

c2 or λ = −(a2 + b2) respectively, and the sectional curvature of M2 is μ = −2 in
both cases; while λ = −a2, μ = 2 in case (B1) and λ = −(a2 + b2), μ = 2 in case (B2), as can
be readily checked explicitly by using the corresponding bracket relations. Of course, this
also yields that, as Hermitian symmetric spaces,

G/H � CH1(λ) × CH1(μ)

in cases (A1) and (A2), or

G/H � CH1(λ) × CP1(μ)

in cases (B1) and (B2).

Now consider the case (A3). We set:

E1 = ae1 + 2e5, E2 =
1
a

e2, E3 = e3, E4 = e4,

and s := span{E1, . . . , E4}. Then s is an ideal of g and

g = h ⊕ s.
Hence the analytic subgroup S of G corresponding to s acts simply transitively on G/H
and the restriction p : S → G/H provides a diffeomorphism between S and G/H. The
G-invariant Kähler structure (J, ḡ) of G/H transfers via p to a left-invariant Kähler structure
on S , denoted by the same symbols. We claim that S is a complex hyperbolic space CH2(α).

Observe that J is determined on s by:

JE1 = −a2E2, JE2 =
1
a2 E1, JE3 = −E4, JE4 = E3.

Moreover, s admits the following ḡ-orthogonal decomposition:

s = RA0 ⊕ a1 ⊕ a2,
where

A0 = |a|E2, a1 = span{E3, E4}, a2 = span{JA0}, λ = |a|2 .
The following relations hold:

[A0, X] =
|a|
2

X + S 0(X), [A0, JA0] = |a|JA0

[X, Y] = |a|ḡ(JX, Y)JA0, [X, JA0] = 0,

for every X, Y ∈ a1, where S 0 : a1 + a2 → a1 + a2 is the skew-symmetric derivation defined
by

S 0(E3) = −a f
|a| E4, S 0(E4) =

a f
|a| E3, S 0(JA0) = 0.

Now our claim follows from Heintze’s description of the complex hyperbolic space as a
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solvable Lie group endowed with a left-invariant Kähler metric of negative curvature (cf. [7,
Section 6]).

All the remaining cases can be treated similarly. In case (A4) consider

E1 = ae1 + be2 + 2e5, E2 =
1
b

e1, E3 = e3, E4 = e4,

and again the ideal s = span{E1, . . . , E4}. Now we have:

JE1 = −a
b

E1 + (a2 + b2)E2, JE2 = − 1
b2 E1 +

a
b

E2, JE3 = −E4, JE4 = E3,

and s admits the orthogonal decomposition:

s = RA0 ⊕ a1 ⊕ a2,
with

(4) A0 =
1

2λ
(a
b

E1 − (a2 + b2)E2
)
, λ =

√
a2 + b2

4
a1 = span{E3, E4}, a2 = span{JA0}.

Then the following relations hold

[A0, X] = λX + S 0(X), [A0, JA0] = 2λJA0

[X, Y] = 2λḡ(JX, Y)JA0, [X, JA0] = 0,

for X, Y ∈ a1, where S 0 : a1 + a2 → a1 + a2 is now given by

S 0(E3) = −2λ
c
b

E4, S 0(E4) = 2λ
c
b

E3, S 0(JA0) = 0,

and thus again S is a complex hyperbolic space. Cases (B3) and (B4) are referable to cases
(A3) and (A4) respectively. Indeed we can consider the ideals

s = span{ae1 + 2e5,
1
a

e2, e3, e4}
in case (B3) and

s = span{ae1 + be2 + 2e5,
1
b

e1, e3, e4}
in case (B4), and the left-invariant Kähler structure on such Lie algebras obtained as before.
One can check that in the first case this Lie algebra s is isometric to the one considered in
case (A3), while in the second case s is isometric to the Lie algebra considered in case (A4),
thus completing the proof. �

5. (k, μ)-contact metric spaces of dimension five

5. (k, μ)-contact metric spaces of dimension five
In [3] Boeckx classified all the non-Sasakian contact metric (k, μ)-spaces, i.e., the contact

metric manifolds whose curvature satisfies condition (1), up to -homothetic transforma-
tions. He showed that such a space is locally determined by its dimension and the number
I = (1 − μ/2)/

√
1 − k; moreover he gave explicit examples of (k, μ)-spaces, consisting of

some abstract Lie groups, for every possible dimension and and for every I � −1. We re-
mark that in his exposition Boeckx did not give any explicit description of these Lie groups.



Sasakian Lie Algebras with Trivial Center 47

In this section we shall construct 5-dimensional non-Sasakian (k, μ)-spaces with Boeckx in-
variant I < −1 in terms of classical Lie groups, using the classification of the 5-dimensional
Sasakian Lie algebras described in section 3. Our tool will be the relation between Sasakian
structures and non-Sasakian (k, μ)-structures explored by Cappelletti-Montano, Carriazo and
Martı́n-Molina in [6]. Their approach is based on the Pang invariant of a Legendre foliation
(cf. [11]). We recall that, if  is an integrable Legendre distribution on a contact manifold
(M, η), its Pang invariant is the symmetric bilinear form on the tangent bundle of , defined
by

Π(X, X′) = −(XX′η)(ξ) = 2dη([ξ, X], X′),

where ξ is the Reeb vector field.

Theorem 6. Let g be the Sasakian Lie algebra of type (A2) with

c = a = 0, b = −√2.

Let G be a connected Lie group with Lie algebra g and denote by (ϕ, ξ, η, g) the associated
left-invariant Sasakian structure on G. Then g admits an orthogonal decomposition

g = d+ ⊕ d− ⊕ Rξ
such that, for every real number a > 1, the modified left-invariant metric ga defined by:

(ga)e =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
age, on d+ × d+
age, on d− × d−
ηe ⊗ ηe, otherwise

is also associated to the contact form η and determines a contact metric (k, μ) structure on
G, whose Boeckx invariant is

(5) Ia = −a2 + 1
a2 − 1

.

Proof. Let {e1, . . . , e5} be the orthonormal basis of the Sasakian Lie algebra (g, ϕ, ξ, η, g),
with

(6) ker η = span{e1, . . . , e4}, e5 = ξ, ϕ(e1) = −e2, ϕ(e3) = −e4,

and for which the nonzero bracket relations are:

[e1, e2] =
√

2e2 − 2e5, [e2 e3] =
√

2e4, [e2, e4] = −√2e3,

[e4, e5] = e3, [e3, e4] = −2e5, [e3, e5] = −e4.

Now, we observe that the following two Lie sub-algebras of g:

d+ := span{e1 + e4, e2 + e3}, d− := span{e3 − e2, e1 − e4}
determine two totally geodesic, mutually orthogonal, Legendre left-invariant foliations +
and − of G with respect to the Sasakian structure. Moreover, the Pang invariants Π+

and
Π− are determined at the neutral element of G by:

Π+
(X, Y) = 2dη([ξ, X], Y) = −g(X, Y),

Π−(V,W) = 2dη([ξ,V],W) = −g(V,W),
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where X, Y ∈ d+ and V,W ∈ d−. Hence, by the left-invariance of the Sasakian structure, The-
orem 4.1 of [6] is applicable, ensuring that there exists a family of contact metrics (ka, μa)-
structure on G compatible with the contact form η, with

(7) ga =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1

ag, on T+ × T+
−ag, on T− × T−
η ⊗ η, otherwise

, ϕa =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1

aϕ, on T+
−aϕ, on T−
0, on Rξ

,

ka = 1 − (a2 − 1)2

16a2 , μa = 2 − a2 + 1
2a
,

and Ia = − a2 + 1
|a2 − 1| , parametrized by a < −1. This yields the result. �

Since Ia in (5) assumes all values in (−∞,−1), we can reformulate the above result in
order to obtain the following local classification of five dimensional (k, μ) contact metric
spaces. Denote by {E1, . . . , E5} the standard basis of the Lie algebra sl(2,R) × aff(R), satis-
fying the following relations:

[E1, E2] = E2, [E3, E4] = −E5, [E3, E5] = −2E4, [E4, E5] = 2E3.

Corollary 1. Every five-dimensional contact metric (k, μ)-space with Boeckx invariant
I < −1 is locally equivalent, up to a -homothetic deformation, to the direct product

S L(2,R) × A f f (R),

endowed with the left invariant contact metric structure (ϕ, ξ, η, g) determined with respect
to the standard basis {E1, . . . , E5} of aff(R) × sl(2,R) by:

ϕ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2s t 0 0
− 1

2 s 0 0 1
2 t 0

1
2 t 0 0 −s 0
0 t s 0 0
1
2 s 0 0 − 1

2 t 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, g ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2 s 0 0 1

2 t 0
0 4 − 2s −t 0 4
0 −t −s 0 0
1
2 t 0 0 −s 0
0 4 0 0 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

η(E1) = η(E3) = η(E4) = 0, η(E2) = η(E5) = 2, ξ =
1
2

E5,

where

s = −1
2

(

√
I − 1
I + 1

+

√
I + 1
I − 1

), t = − 1√
2

(

√
I − 1
I + 1

−
√

I + 1
I − 1

).

Remark 1. Concerning the already cited examples of (k, μ)-spaces provided by Boeckx,
they consist in a 2-parameter family of abstract Lie groups, endowed with a left-invariant
contact metric structure. Actually, one can check that, in the five dimensional case, the
corresponing Lie algebras are all isomorphic to sl(2,R) × aff(R).
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Università di Bari Aldo Moro
Via Orabona 4, 70125 Bari
Italy
e-mail: antonio.lotta@uniba.it


