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Abstract
We prove the abundance theorem for semi log canonical fsfacpositive char-

acteristic.
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0. Introduction

A semi log canonical (for short, sla)-fold is a generalization of log canonical
(for short, Ic) n-folds. In this paper, we prove the abundance theorem fossttaces
in positive characteristic. We use the same definition ofvalieties as the one of [13].

Theorem 0.1. Let (X, A) be a projective slc surface over an algebraically closed
field of positive characteristic. If K+ A is nef then Kx + A is semi-ample.

Let us briefly review the history of the semi log canonicalietes in character-
istic zero. The notion of semi log canonical singularitissintroduced in [15] for a
moduli problem. The abundance theorem for slc surfaces aseprin [1] and [11].
[4] generalizes this result to dimension three. Moreovek,spbws that the abundance
theorem for slen-folds follows from the two parts:

(1) The abundance theorem for tefolds.

(2) The finiteness theorem of the pluri-canonical represent for ( — 1)-folds.

[6] shows that (2) holds for each € Z.. If n = 3, then (1) follows from [12]. If
n > 4, then (1) is an open problem. For a recent development oftlteery of slc
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varieties in characteristic zero, see [5], [6], [8] and [#or related topics, see [10],
[2] and [16].

In this paper, we use the strategy of [4]. Hence, we must pféyeand (2) in
the case where = 2 and chak > 0. In this case, (1) is a known result by [7]. It
is not difficult to prove (2). However, [4] uses many fundamaémesults based on the
minimal model theory and the Kawamata—-Viehweg vanishireptem. We can freely
use the minimal model theory for surfaces in positive charitic by [20] (cf. [7],
[14]). Although there exist counter-examples to the Kaaaianishing theorem in posi-
tive characteristic ([19]), we can use some weaker vanisttieorems obtained in [21]
and [22] (cf. [14]).

In characteristic two, some new phenomena happen. For dgainpcharacteris-
tic zero, the Whitney umbrelldx?> = yZ2} c A% is a typical example of slc surfaces
(cf. [1, Definition 12.2.1]). In characteristic two, this &¢ but not normal crossing in
codimension one. Moreover, [4] uses the following fact: if @diextensionL /K sat-
isfies [L : K] = 2 and its characteristic is zero, thér/K is a Galois extension. But,
in characteristic two, this field extensidryK may be purely inseparable. Thus, some
proofs are more complicated.

0.2 (Overview of contents). In Section 1, we summarize the mmiat The nor-
malization of an slc surface is an Ic surface. Therefore, haukl investigate Ic sur-
faces. Every Ic surface is birational to a dlt surface. ThnsSection 2, we consider
a dit surface X, A). More precisely, we considerA_ because_A. has the patch-
ing data of the normalization. In Section 3, we calculate tioemalization of nodal
singularities. In Section 4, we prove the main theorem. lotiBe 5, we summarize
fundamental results on dlt surfaces. These results may liekmavn but the author
can not find a good reference.

1. Notations

We will not distinguish the notations invertible sheavesl a&artier divisors. For
example, we will writeL + M for invertible sheaved and M.

Throughout this paper except for Section 3, we work over gelahically closed
field k of positive characteristic and let char=: p.

In this paper, avariety means a pure dimensional reduced scheme which is sepa-
rated and of finite type ovek. A curve or asurfacemeans a variety whose dimension
is one or two, respectively. Note that varieties, curves smdaces may be reducible.

Let X be a noetherian reduced scheme andXlet ( J X; be the irreducible decom-
position. LetY; — X; be the normalization oi;. Then we define th@ormalization
of X by [IYi = ][ Xi = X. We sayX is normal if the normalization morphism is
an isomorphism.

Let X be a variety. We say is aQ-divisor on X if A is a finite sumA =) § A,
where §; € Q and A; is an irreducible and reduced closed subscheme of codiorensi
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one which is not contained in the singular locus SKg(Note that, in this case, the
local ring Ox A, is a discrete valuation ring.

We will freely use the notation and terminology in [13]. Inetldefinition in [13,
Definition 2.8], for a pair K, A), A is not necessarily effective. But, in this paper, we
assumeA is an effectiveQ-divisor. For a reducible normal variet{ and an effective
Q-divisor A, we say K, A) is Ic (resp. dlt, kit) if each irreducible component is Ic
(resp. dlt, Kit).

For the definition of (nodes and) slc varieties, see Defini8dl and Definition 4.1.
These definitions are the same as [13, 1.41, 5.10].

2. Boundaries of dlt surfaces

In this section, we investigate dlt surfaces. First, we mmrsthe case of curves.
The main result of this section is Proposition 2.8. Propmsi2.8 is the surface version
of Proposition 2.1.

Proposition 2.1. Let (X, A) be an irreducible Ic curve. Let f X - R be a
projective surjective morphism such that(fx = Or. Assume that S= LA, # 0 and
let T:= f(9). If Kx + A =¢ 0, then one of the following assertions holds.

1) f.0s=0xr.
(2) f,0s# Or. X~ P! anddimR = 0. Moreover A = S and S is two distinct
points.

Proof. If dmR = 1, then we seeX ~ R and we obtain (1). We may assume
dimR = 0. Since ded{x + A) =0 and_A_ # 0, we seeX ~ P! and S has at most
two points. If Sis one point, then we obtain (1). ]

In the above proposition, (1) is a good case. Hence, we fjabs other case (2)
as above. For this, we want sufficient conditions foWs = O+.

We use the following vanishing theorem for rational surfaessentially established
in [22].

Proposition 2.2. Let (X, B) be a projective irreducible kit surface such that X is
a rational surface. Let D be @-Cartier Z-divisor such that B- (Kx + B) is nef and
big. Then H(X, D) = 0.

Proof. We can find a birational morphisth: Y — X from a smooth projective
surfaceY and finitely many prime divisor$Fj};c; on Y such that
(1) Ex(f) C Supp(Y_jec; Fi)-
2 fXB)U ZjeJ F is a simple normal crossing divisor.
(3) f*(D—(Kx + B))—>_3jF; is ample for some & §; <« 1.
(4) " (D —-(Kx+B) -2 8FT="1(D—(Kx+B)".
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We defineE by Ky = f*(Kx + B) + E. Since K, B) is klt, "E™ is effective and
f-exceptional. Thus, we obtai@x (D) = f.Oy(" f*D + E™). Therefore, by the Leray
spectral sequence, we obtain

0 — HY(X, Ox(D)) = HX(Y, Oy("f*D + ET).
Then, the assertion holds by
HYY, Oy("f*D + ET) = Hl(v, Ky +7f*(D —(Kx + B)) = Y_ 5 Fp) — 0,
where the last equation follows from [22, Theorem 1.4]. ]

Proposition 2.3. Let f: X — Y be a projective surjective morphism between ir-
reducible normal varieties such that.@x = Oy. Assume the following conditions.
(1) (X, A) is a Q-factorial Ic surface such thatX, {A}) is Kit.
(2) S:=LAL#0and let T:= f(S).
(3) —(Kx + A) is f-nef and f-big.
Then f.0Os = O7. In particular, for every ye Y, SN f~Y(y) is connected or an
empty set.

Proof. Srep 1. In this step, we assume dith> 1 and we prove the assertion.
Consider the exact sequence:

0— Ox(—LAL) > Ox - O.a, — 0.
Take the push-forward by :
0— f.Ox(—LAL) = Oy — f.0.a, > R ,.Ox(—LA).
It is sufficient to prove that the last terR! f.Ox(—LA_) vanishes. Since
—L AL = Ky + {A} = (Kx + A),

we haveR! f,Ox(—LA_) = 0 by [21, Theorem 2.12].

STEP 2. In this step, we assume divh= 0 and we prove the assertion. It is
sufficient to prove thatS is connected. Since rational surfaces satisfy the Kawamata
Viehweg vanishing theorem by Proposition 2.2, we can appl/ game argument as
Step 1. Thus we may assume thétis not rational. We can run aK + A)-MMP
by [20, Theorem 6.8]. Then we have

h: X3 x LR

whereq: X — X’ is a composition of extremal birational contractions dndX’ — R
is a Mori fiber space.
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We prove dimR = 1. Let u: X” — X’ be a resolution anK” — Q be a ruled
surface structure. We may assume tfais not rational. Note thaX’ has at worst ra-
tional singularities, becauseX({A}) is kit and R'q,Ox = 0 (cf. [21, Theorem 2.12]).
Therefore eachu-exceptional curves goes to one point ¥ — Q. This X” — Q fac-
tors throughX’. In particular, there exists a surjectioff — Q to a smooth projective
curve. This meang(X’) > 2. Therefore we see difR # 0.

Hence we may assume diRi= 1. Note that—(Kyx + A’) is nef and big. As-
sume that—(Kyx + A’) is ample. Sinceo(X’) = 2 by [20, Theorem 6.8 (4) (b)]X’
has the two Kx- + A’)-negative extremal rays. Since these extremal rays anenspa
by rational curves (cf. [20, Proposition 4.6]R is a rational curve. IfX” — X' is a
resolution, thenX” — R is a ruled surface structure. This means tiAtis rational.
This case is excluded. Therefore we may assume -tfiity: + A’) curve C’ on X’
such that Kx. + A’)-C’ = 0. This impliesC”? < 0 andh’(C”) = R. Moreover we see

0=(Kyxy +A)-C'>(Kx +C)-C.

If 0 > (Kx +C’)-C’, thenC’ ~ P! by [20, Theorem 5.3]. This case is excluded. Thus
the above inequality is an equality. In particular, we h@&e- LA’,. Let C C X be the
proper transform oC’. ThenC satisfiesh(C) = RandC C LA_. We can apply Step 1
of this proof toh: X — R because-(Kx + A) is h-nef andh-big. Then,SN h=(r)

is connected for every € R. This andh(C) = R imply that S is connected. ]

Lemma 2.4. Let
"
f:X3X SR

be projective morphisms between normal varieties suchghatbirational and {Ox =
Og. Assume the following conditions.

(1) (X, A) is a Q-factorial Ic surface such thatX, {A}) is kIt.

(2) Ex(@) =: E is an irreducible curve.

(3) —(Kx + A) is g-nef.

(4) LA is g-nef.

Then for every re R, the number of connected components af; N f~(r) is equal
to the number of connected components @fA_ N f/~1(r).

Proof. Letq(E) =: x; and f'(xp) =:ro. If EN Supp.AL = @, then the assertion
is clear. Thus, we may assunieN Supp.A. # 0.

We claim q(Supp.Al) = Suppg.Al. The inclusionq(Supp.AL) O Suppg. A
is clear. Then, it is enough to show(E) € Supp.g.A.l. If E ¢ Supp AL, thenE N
Supp. AL # @ implies q(E) € Supp.g.Al. On the other hand, iE C Supp.A_, then
the g-nefness implies that there exists a prime compog E of LA with CNE #
0. We see

q(E) € q(C) C Supp.g.A,
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In each case, we obtain the claim.
For everyr € R, we obtain

a(SuppAL N £74r)) = a(Supp. AL N g (7))
= q(Supp.AJ) N f74(r)
= Suppg.AL N f7(r).

Assume that the numbers of connected components are diffefdien there exist at
least two connected componenfs and X, of Supp.A.nN f ~}(rg) such thatx) € q(X1)
and x;, € q(Xz). We take the intersection

Supp AN fi(rg) = X, LI Xp LI -
with g~*(xy) and we obtain the following equation
Supp AL N g H(xp) = (X2 Ng(xp) L (X2 NgH(xp)) LI ---.

Thus, in order to derive a contradiction, it is sufficient toye that SuppA_Ng1(x})
is connected. Since(Kx + A) is g-nef andqg-big, we can apply Proposition 2.3. Thus
Supp. AN g i(xg) is connected. O

Proposition 2.5. Let f: X — Y be a projective surjective morphism between ir-
reducible normal varieties such that.®x = Oy. Assume the following conditions.
(1) (X, A) is a Q-factorial Ic surface such thafX, {A}) is KiIt.
(2) S:=LAL#0and let T:= f(9).
(3) Kx +A=;0.
4 T=1f(9CY.
Then f,0Os = Or. In particular, for every ye Y, SN f~Y(y) is connected or an
empty set.

Proof. By (4), we have dinY # 0. If dimY = 2, then the assertion follows
from Proposition 2.3. Thus we may assume = 1. It is sufficient to prove that
Oy = f,.0x — f.Os is surjective. Since the problem is local, by shrinkivigwe may
assume thatf (S) = P € Y. If Sis connected, therf,Os ~ Op and Oy — f,Os is
surjective. Therefore, it is sufficient to prove thatis connected. We define a reduced
divisor D by

S+ D = Supp(f *P).
If D=0, thenSis connected sinc& = Supp(f *P). Therefore, we assume that #

0. Then, there exists an irreducible curizeC SuppD such thatE N S # 0. We see
(Kx + {A}) - E < 0. Thus, we obtain a birational morphisgqn: X — X’ such that
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Ex(@) = E. Let A’ := g.A. By Lemma 2.4, if SuppA’, is connected, then so is
Supp.Al. We can repeat this argument and we obtain a projective rsmsh

A
frX X' SY

where § is a birational morphism such that E}(= SuppD. Let A" := §.A. It
is sufficient to show that Supp”. is connected. This follows from Supp’. =
Supp(f"*P). ]

In Proposition 2.8, the most complicated case is the Mori fidpace to a curve.
Thus we investigate this case in the following lemma.

Lemma 2.6. Let f: X’ — R be a projective surjective morphism between normal
varieties such that /iOx = Or. Assume the following conditions.
(1) (X', A) is a Q-factorial Ic surface such thatX’, {A’}) is KiIt.
(2) S :=LA] 75 0.
(3) Kx +A"=¢ 0.
(4) There is a(Kx' + {A’})-negative extremal contraction’gX’ — V over R such
thatdimV = 1L
Then the ghorizontal part(S)" of S satisfies one of the following assertions.
(@ (S)" =S, which is a prime divisgrand [K(S)) : K(V)] = 2.
(b) (S)" =S, which is a prime divisgrand [K(S)) : K(V)] = L.
() (S)"=S + S, where each Sis a prime divisorand [K(S): K(V)] = 1.
Furthermore there is aQ-Cartier Q-divisor Dy on V such that K + A = g*(Dy).
In the case(b), f;0s = Os/s).

Proof. The assumption (3) meaKks +A’ =4 0. Thus, by (4)L A’ is g'-ample.
We see 8)" # 0.

We prove that general fibers of : X' — V areP!. The dimension of every fiber
is one. Since dinv =1 and f;Ox = Oy, the field extensiorK (X")/K(V) is alge-
braically closed and separable (cf. [3, Lemma 7.2]). Treeefgeneral fibers are geo-
metrically integral. LetF be a general fiber ofy, that is, F is a fiber which is a
proper integral curve such th& N Sing(X) = @. The adjunction formula implies

(Kx +F)-F=Kx-F=-A"-F<—S)"-F <O0.

This meansF ~ P*.

By (Kx + F)- F = —2, we have §)" - F < 2 for a general fibefF. Therefore
one of (a), (b) and (c) holds. By the abundance theorem ([2@oflem 18.4]), we see
Kx + A" ~q,¢ 0. This meansn(Kx + A’) = g™*(D) for some integem and some
Z-divisor D on V. We define aQ-divisor Dy by D = mDy.

Assume (b) and let us provelOg = Oy g). Since dinV =1, we have dinR =0
or dimR = 1. Assume dinR = 0. It is sufficient to prove tha8 is connected. This
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holds because all of the fibers gf are irreducible and)" # 0. Assume dinR = 1.
Then, we seef’(S) =V ~ R. SinceS andR are birational, the morphisnfis: S —
R is an isomorphism. We can write

S=S+F+-+F

where eachF; is the reduced subscheme whose support is a fibey.of
We prove f;Og = Og by the induction orr. If r = 0, then the assertion follows
from S, ~ R. Assumer > 0. Consider the exact sequence:

0— Og = Os_f, ® Or, — Oi—F)nr, — 0.

The last map defined by the difference. Note that the last terthe scheme-theoretic
intersection. It is easy to see th&8 - F)NF ~S NF. Then §-FK)NF is
reduced becaus8 ~ R. Consider the push-forward of the above exact sequence:

0— f;Og — f;Og,Fr D f;OFT — f>;O(S’7Fr)ﬁFr - R! f;Og.

We seeR!f/Ox = 0 by [21, Theorem 2.12]. This implieR!f/Og = 0. SinceF;
and § — )N F are reduced, we havé,Or, >~ f/Os_r)nr, = Of/r,). This means
f.Og — f/Os_f, is an isomorphism. By the induction hypothesis, we obtHi@g ~
f;(’)g_;:Y jad OR. ]

REMARK 2.7. In the last argument in the above proof, we use the fatigviact.
Let A be a ring and letM, N, L and P are A-modules. Assume the exact sequence

0->MZ2 NgL LS P oo

If 6: L — P is an isomorphism, thep;: M — N is also an isomorphism.
We can prove the following main result in this section.

Proposition 2.8. Let (X, A) be an irreducible dIt surface. Let :fX — R be a
projective surjective morphism such that(fx = Og. Assume that S= LA, # 0 and
let T:= f(9). If Kx + A =¢ 0, then one of the following assertions holds.

1) f.0s= Or.

(2) f.O0s# O7. There exist a projective surjective R-morphismXxg— V to a smooth
curve V and aQ-divisor Dy on V such that gOx = Oy and that Kx + A = g*(Dv)

as Q-divisors. Every connected component of S intersects therigental part $ of S.
Moreover the g-horizontal part S satisfies one of the following assertions.

(2.1s)S" = S, which is a prime divisgrand [K(S)) : K(V)] = 2. This field

extension is separable.
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(2.1i) S" = S, which is a prime divisgrand [K(S) : K(V)] = 2. This field ex-
tension is purely inseparable.

(22)S" =S + S, where $is a prime divisor and ds: § — V is an iso-
morphism for i= 1, 2

Proof. If f is birational, then Proposition 2.5 implies (1). Thus we nasgume
that dimR < dim X. We run a Kx + {A})-MMP on X over R. The end result is
a proper birational morphismy: X — X’ over R. Let f': X’ — R be the induced
morphism. SinceKx + A =¢ 0, we obtainKy + A’ =¢ 0 where A’ := g, A. Let
S := LA’L. Then it is easy to see thaK(, A’) is a Q-factorial Ic pair and X, {A’})
is Kit.

Step 1. Assume thatX’, {A’}) is a minimal model ovelR. Then Ky + {A’} is
f’-nef andKyx + A’ =4 0. So—_A’, is f’-nef. If dimR = 0, then_A’, = 0 because
X" is projective. Lemma 2.4 impliesA. = 0. This case is excluded. Assume dRe=
1. Since—_A', is f’-nef, we seef’(LA’J) £ R. Therefore, by Proposition 2.5, we
obtain (1).

STEP 2. Assume that there exists a Mori fiber space strucgireX’ — V over
R. Let

g: X=X = V.

Then—(Kx +{A’}) is g’-ample. Note that, if dinv = 1, then we can apply Lemma 2.6
and every connected component®intersectsS" by Lemma 2.4.

First, assume that diR = 0. If LA’ is connected, then we have (1) by Lemma 2.4.
Thus we may assume that\’_ is not connected.

We show dimV = 1. Assume dinV = 0. Then_A’, is ample. Thus its suitable
multiple is an effective ample Cartier divisor. This must t@ennected by the Serre
vanishing theorem. This case is excluded.

Thus we can apply Lemma 2.6. Since all of the fibers of the Mowrfispace
g: X’ =V are irreducible, we seeA’, = S + S,. This implies (2.2).

Second, assume that diti= 1. Then we have dild = 1. Note thatT = R~ V.
We can apply Lemma 2.6. Thus we obtain (a), (b) or (c) of Lemna & (a) or (c)
holds, then (2) holds. Thus we may assume that (b) of Lemmah@lés. We have
f,Os = Or. Lemma 2.4 impliexq(S) = S. By Proposition 2.3, we havd.Os =
f,O0s = O7. O

Example 2.9. Let chark = 2. Then there exists a projective dIt surfadeX, A)
and smooth projective curve R which satisfyoposition 2.8 (2.1i)

CONSTRUCTION Let Xg := A? and letCq := {(X, y) € A% | x = y?}. Note that
the restriction of the first projection t€ is purely inseparable of degree two. Let
Xo C X := P! x P! be the natural open immersion and [@tbe the closure ofc,
in X. Let g: X - P! =: V =: R be the first projection. It is easy to see ti@tis
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smooth andKx + C ~ g*Op1(—1). Thus, we see thaX( A := C) is dlt and that X, A)
satisfies Proposition 2.8 (2.1i).

3. Normalization of nodes

In this section, we calculate the normalization of nodagslarities to reduce prob-
lems for slc varieties to ones for dlt varieties. The mainoteen of this section is
Theorem 3.7. In this section, we do not work over a field and meattnoetherian or
excellent schemes.

First we recall the definition of the nodal singularities iretsense of [13, 1.41].

DEFINITION 3.1. Let (R,m) be a noetherian local ring. We s& has anode (or
R is noda)) if there exists an isomorphisR ~ S/(f) where §/) is a two-dimensional
regular local ring such thaf e > and thatf is not a square if?/[°.

We mainly use the following notations.

NoOTATION 3.2. Let (R, m) be a nodal noetherian local ring. By definition, we
can write R >~ S/(f) where §, [) is a two-dimensional regular local ring such that
f € 2 and thatf is not a square in?/(3. Take a generatof = (X, y). We can write

f =ax? +bxy+cy’+g

wherea, b, c € {0} U S* andg € 2. We setX :=x + (f) e R/(f) andy :=y +
(f) € R/(f).

REMARK 3.3. We use the same notations as Notation 3.2. We show thataye
assume
ces”
by replacing a generatdi, y} of [. If c € S¥, then there is nothing to show. # €
S¢, then we exchang& andy. Sincea, ¢ € {0} U S, we assumea = ¢ = 0. By
f ¢ 3, we seeb ¢ I, that is,b € S*. Taking another generatof := x —vy, Y :=y of
[=(x,¥) =(X,Y), we obtain
f =bxy+g
=b(X+Y)Y+g
=bXY +bY? +g.

By b € S*, we may assume € S*.
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We calculate the normalization of nodes. We divide the piotf the following two
cases:R is an integral domain or not. In Lemma 3.4, we treat the caserevR is not
an integral domain. In Lemma 3.5, we treat the case wikeig an integral domain.

Lemma 3.4. Let (R, m) be a nodal noetherian local ring. We use the same no-
tations asNotation 3.2 Assume that R is not an integral domain. Then the following
assertions hold.

(1) f has a decomposition &= Iil, with I, 1, € S which satisfies the following
properties.

e [1S#I,S.
e Foreachilel\2
e For each i |j is a prime element of ,Shat is |; S is a prime ideal.

(2) 11 and b satisfiesl = (I, I>).
(38) For each i, S/(l;) is regular.
(4) The natural homomorphism

v: R=5/(f) = §/(ll2) »> S/(1)) x §/(I2) =: T

is the normalization.
(5) m is the conductor of the normalizatiom: R < T, that is

m={reR|rT CR}.
(6) The normalizationv: R < T induces
0: k(m) = R/m — T/mT ~ k(m) x k(m),
where po 6 is the identity map for the projection; po the i-th factor.

Proof. (1) SinceSis a unique factorization domain, we obtain a decomposition
of f into prime elements:
f=ullt- 1

whereu € S, nj € Z.o andl; is a prime element ofS. In particular,l; € [. Then,
f ¢ 2 impliesny +---+n, <2. Sincen; +---+n, = 1 implies thatR is an integral
domain, we see; + --- 4+ n, = 2. Thus, we obtain one of the following two cases:
f= ulf or f =ulil, wherel;S#1,S. By f ¢ 2 andl; €[, we sedl; ¢ I°. Then, it is
enough to show that the cafe= ul? does not occur. Suppose= ul?. We can write

1 =ax+ By+h
wherew, g € {0} U S* andh € 2. We obtain

f = ul? = u(ax 4+ By + h)?> = u(ax + By)? + (an element of®).
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By replacing f with u= f, this contradicts the definition of nodes: Definition 3.1.

(2) SinceR is nodal, [4,1,) generates/[>. Then Nakayama’s lemma implies the
assertion.

(3) The assertion follows from (2).

(4) The assertion follows from (3).

(5) Let| C R be the conductor. The inclusiom O | is clear. We show the
inverse inclusionlg, I,) = m C |. By the symmetry, it suffices to prove € |. Take
§ =(s1+ (1), %2+ (12) € /(1) xS/(I2) = T. Then, we obtaini§ = (0+ (1), 1152+ (12)).
Therefore,l:& = v(11). This is what we want to show.

(6) Byv(i+12) = (24 (11),l1+(12), we seemT =m/(I1) xm/(l2). This implies
the assertion. O

Lemma 3.5. Let(R,m) be a nodal noetherian local ring. We use the same nota-
tions asNotation 3.2 Suppose & S* (cf. Remark 3.3) Assume that R is an integral
domain. Consider the following natural injective ring homarphism

: Yi_.
¢: R— R[i} =:T.
Then the following assertions hold.
(1) The ring homomorphisra: Sy/x]/(f/x?) — R[y/X] = T, y/X — y/X is an iso-
morphism.
(2) T is a regular ring.
(3) One of the following assertions holds.
(@) T/mT >~ k(m) x k(m) and the composition homomorphism

k(m) = R/m — T/mT ~ k(m) x k(m) 2> k(m)

is the identity map for i= 1, 2 where p is the projection to the i-th factor.
(b) T/mT is a field and the natural homomorphism

k(m) = R/m — T/mT

is a field extension withiT /mT : k(m)] = 2.
(4) The equation(y/X)? 4+ r1y/X +r, = 0 holds in y/X] = T for some ,r, € R.
In particular, T is a finitely generated R-module.
(5) T is the integral closure of R in the quotient field(K).
(6) The maximal idealn is the conductor of the normalizatipthat is m = {r € R|
rT C R}.

Proof. We use the same notations as Notation 3.2.
(1) Setz:=y/x € K(S). Let us checkf/x? e Jy/x] = §2z]. Since f € I? =
(X, )%, we can write f = ax? + Bxy + yy? for somea, 8,y € S. Then we see
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f /x? € 9z] by the following calculation:

f =ax?+ Bxy+ yy? = ax? + Bx(x2) + y(x2)? = x*(a + Bz + y ).
Consider the natural homomorphism

23]

We prove thatd is an isomorphism. For the time being, we show this assuntieg t
following two assertions.

(A) The S-algebra homomorphisrs/(f) — Sy/x]/(f/x?) is injective.

(B) Sy/x]/(f/x?) is an integral domain.

Consider the following commutative diagram 8falgebras:

X | <

S/(f) =m————— R
linjective linjective
y 2y 6 y

Note thatR[y/X] c K(R) = K(S/(f)) c K(Sy/x]/(f/x?). All of the four rings in
the above diagram are contained in the quotient fi®dSy/x]/(f/x?). In
K(S[y/x]/(f/x?)), the elementy/x + (f/x?) € Fy/x]/(f/x?) is the same a§/X €
R[y/X]. Therefore we obtain

{1/

(A) We show that the natural ma®/(f) — Sy/x]/(f/x?) is injective. For this,
consider the following natural compaosition map

R

and we show Kerf) = fS. The inclusion Ker{y) O fSis obvious. Let us prove the
inverse inclusion Kerg) C fS. Take an elemens € S such thaty(s) = 0, that is,
se (f/x®)9y/x]. We have

f m
S:—Z(to—i-tlz-l-"--l-tmy—m)
X X X
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wheret € S. Let us show that we can assume= 0. Assumem > 1. Moreover
assumety, € xS that is, ty, = xf, with f, € S. Then, by the following calculation:

t

ym 5 ym 5 ym—l
mem = Xtmx_m = Yim

we obtain another expressios:= (f/X?)(to + «++ + tm_2(y/X)™2 + t/,_,y™1/x™1)
for somet; _, € S. Thus, we assumen > 1 andty, ¢ xS Taking the multiplication
with x™*2, we obtain

SX™2 = f(toX™ + -+ + tr_a XY™ + try™).

This implies fty™ € xS But, both the elements, andy are not inxS. SincexS
is a prime ideal, we obtairf € xS Then we can writef = xg with ge S. f € I
implies g € I. Therefore, f is not a prime element, which contradicts thatis an
integral domain. Therefore, we may assume= 0 and we obtain

f
S= Fto.
Since f ¢ xS we seety € xS Repeating this, we seg € x2S, which impliess € fS.
This is what we want to show.
(B) First we prove thatSy/x] is a unique factorization domain. We see that
xgy/x] is a prime ideal because

SH / xs[ﬂ ~ SIZ1/(x, XZ — ) ~ (S/(x, Y)IZ]

is an integral domain. By Nagata’s criterion ([18, Lemma, H)y/x] is a unique fac-

torization domain if so is
X X X

This ring §1/x] is a unique factorization domain because s®&is

We show thatS[y/x]/(f/x?) is an integral domain. Sinc§[y/x] is a unique fac-
torization domain, let us check thdt/x? is a prime element. Assume that there exists
a decomposition

f k |

= (So-l-slz+'-'+S«y—k)(to+tlx+-"+tll|)

X X X X X

wheres, t; € S and both the factors in the right hand side are notS$fy(x])*. We
may assume that, ik > 1 (resp.l > 1), thens (resp.t;) is not in xS, We show that
k=0 orl =0 holds. Assume& > 1 andl > 1. We consider the following two cases:
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k=1=1andk+1|>3. If k=1 =1, then we obtainf = (X + s1y)(toX + t1y).
This contradicts thaff is a prime element. Ik 41 > 3, then taking the multiplication
with xK*', we seestiy*t' € xS By s ¢ xSandt ¢ xS we havey“*' € xS which

is a contradiction. Therefor&k = 0 or| = 0 holds. By the symmetry, we may assume
| = 0 and we obtain

f k
7=(50+qu+-"+&y—k)to.
X X X

If k>1 andty € xS then, forty = xt;, we obtain another expressiofi/x? = (xs +
o XS (Y/X)R  ysd(y/X)E . Thus we may assume thiat= 0 or to ¢ x S holds.
If kK =0, then we obtain the following contradictionf = x?spty. Assumety ¢ XS
Taking the multiplication withx¥, we seek < 2. This implies f = (s)x? + s;Xy +
SY)to. Since Hx? + sxy + y?2 e m and f € Sis a prime element, we havg €
S C (9y/x])*. This is a contradiction.

(2) Setz = y/x. First, we calculate the ringSy/x]/(f/x?)/(X). The element
f /x? can be written

f ax®+bxy+cy?+g  ax?+bx(x2) + c(x2)? + x3§

x2 X2 N X2

=a+bz+cZ +x§

for some@ € §z]. Here, since §, (x,y)) is a regular local ring, we can check that the
homomorphism

S21/(x2—y) > sm, 20 Y

X

is an isomorphism. Then, we see

(/2] /cra) f@=s L] [ctrey+ o

~ 9Z]/(xZ—-y,a+bZ+cZ? x)
~ k(m)[Z]/(@a + bZ + cZ?).

Fix a maximal idealn of Sy/x]/(f/x?) and we show that the local ring

(SLy/x]/(f/x%))n is regular.
We showX € n. AssumeX ¢ n. Thenn corresponds to a maximal ideal of

RIy/X][1/X] = R[1/X], that is, n = (nR[y/X][1/X]) N R[y/X]. Since R, m) is one
dimensional local integral domain ande m, R[1/X] is a field. It impliesn = (0).
Then Sy/x]/(f/x?) is a field. On the other hand, by the above isomorphism

(s[ﬂ / (f/x2)) / (%) ~ k(m)[Z] /(& + bZ + £2?)
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andc # 0, there exists a non-zero ideal) (of Jy/x]/(f/x?). Thus Jy/x]/(f /x?) is
not a field and we obtain a contradiction.

Therefore,Xx € n. To show that the local ringy/x]/(f/x?)). is regular, it is
enough to prove that the ring

(S[%]/(f/xz))/(i() ~ k(m)[Z]/@ + bZ + £Z?)

is regular. Ifa+ bz 4 ¢Zz? is irreducible overk(m), then the ringk(m)[Z]/(@+bZ +
¢Z?) is a field. Assume thai+bZ+cZ? is not irreducible ovek(m). We havec # 0.
There arex, 8 € R such that

a+bzZ+cZ2=¢Z+a)(Z+ B).

Since R is nodal, we see& # . Therefore,

(s[ﬂ/(f/xz))/a) ~ K(m)[Z)/(@ + BZ + €Z2) = k(m) x k(m).

This is what we want to show.
(3) Let us calculateT /mT. By

oraf2]-onfg] -]

we obtainT/mT =~ (y/x]/(f/x?)/(X). By the proof of (2), we obtain

(S[%]/(f/xz))/(i() ~ k(m)[Z]/(& + bZ + £22).

If a+bZ+ cZ? is irreducible, then we obtain (b). Assume ttat- bZ 4+ cZ? is not
irreducible. Then, we can write

a+bz+¢cz2=2¢Z+a)Z+ p).

Since R is nodal, we see # B. This implies (a).
(4) By Notation 3.2, we have

f =ax®+bxy+cy’+g

wherea, b, c € {0} U S* and g € I° = (x, y)3. Moreover, we have € S*. For some
a, B,v,8 €S, we obtain

f = ax? + bxy+ cy? + ax® + gx%y + yxy? + 8y°,
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which implies

f y v\’ y y\°
ﬁ_a+b;+c(;) +ax+ﬂy+yy;+8y ;)

v\’ y
=(c+ Sy)(;) + (b+ yy); + (a+ ax + By).

By ce S anddy € [, we seec + 3y € S*. Therefore the assertion follows from (1).
(5) The assertion follows from (2) and (4).
(6) Letl:={r e R|rT C R} be the conductor ideal. By this definition, is
an ideal of R. Note thatl is also an ideal off. SinceR # T, we obtain 1¢ I. In
particular,| C m. Let us showl D m. By (4), we obtain

y
X

y

X

T= R[_] =R+ R
This impliesXT C R. Thus,x € |I. Sincel is an ideal ofT = R[y/X], we seey =
Xy/X € |. Therefore,]| D XR+ yR=m. O

We say a schemeX is excellentif X is covered by open affine schemes whose
corresponding rings are excellent.
Combining Lemma 3.4 and Lemma 3.5, we obtain the followingulte

Proposition 3.6. Let X be a quasi-compact excellent reduced scheme ang let
be a scheme-theoretic point whose local rié , is nodal. Let S= {n} be the re-
duced scheme. Let: Y — X be the normalizationD C X the closed subscheme de-
fined by the conductor and € Y its scheme-theoretic inverse image

C:=y~}D) 2= v

immersion

v

closed
D— X
immersion

Then there exists an open subsete X’ C X which satisfies the following properties.
(0) Set Y:=v1(X),D:=DnX,C:=CnY and $:=Sn X.
(1) D’ is reduced and 'S= D’. In particular, D’ is an integral scheme.
(2) v|c: €' — D’ satisfies one of the following conditions
e C' ~ D]l D, with D) ~ D and each morphism

v|cr

D —~C = D’

are isomorphism.



552 H. TANAKA

e C’ is an integral scheme and the field extensionCKH/K(D’) satisfies
[K(C): K(D)] =2

Proof. We may assunm@ = SpecA, Y = Sped, D = SpecA/| andC = Sped/J
wherel = J. Let S, := A\ n where we consides as a prime ideal oAA. There are the
following two cases.

() Oxpy = A, = glA is not an integral domain.
(B) Ox,, = A, =S,'A'is an integral domain.

() Assume thatglA is not an integral domain. We can apply Lemma 3.4 to

glA. Then, by shrinkingy € SpecA, we obtain the following commutative diagram:

A A/py X A/p,

! I

S'A —— SH(A/p) x S H(A/p),

where (0)= p; Np,. SinceA is excellent, for each, the regular locudJ; of SpecA/p;
forms an open subset of SpAg¢gp;. Since S;l(A/pi) is regular, we obtaim € U;.
Therefore, by shrinking; € SpecA, we may assume that eadkyp; is regular. In par-
ticular, the homomorphisnA — A/p; x A/p, coincides with the normalization. Since
5;1(A/I) is reduced andA is noetherian, we may assume thafl is reduced by
shrinking Sped@. This implies (1). We show (2). We have the induced homomismph

G2 A/1 = (A/(1+p2)) < (A/(1 +p2)) = A/(1 + 1),

where the latter map is the projection to th¢h factor. By Lemma 3-457_191 is an
isomorphism. SinceX = SpecA is noetherian and the kernel and the cokerneb aé
a finitely generatedA-modules, we obtain the assertion.

(B) Assume thaLST,lA is an integral domain. We can apply Lemma 3.53701A.
We obtain the following commutative diagram:

A——— B

| !

S,'A— §/'B.
By Lemma 3.5,5,71(A/|) is reduced. This implies (1). By Lemma 3.5, there are the

following two cases:
(@) S,%(B/J)~ S(A/1)x S*(A/1) and the composition homomorphism

S, 4 A/ = S1(B/I) = SHA/) x A/ > S;HA/)

is the identity map foii = 1, 2 wherep; is the projection to thé-th factor.
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(b) $,1(B/J) is a field and the natural homomorphism

S, (A/1) — §,(B/J)

is a field extension with§ *(B/J) : S, *(A/1)] = 2.
For each case, we obtain (2) by a similar argumentofo ( ]

The following theorem is the main result in this section.

Theorem 3.7. Let k be a field. Let X be a pure-dimensional reduced separated
scheme of finite type over k. Assume that X jsafd for every codimension one
scheme-theoretic point € X, the local ring Ox , is regular or nodal. Let: Y — X be
the normalization D C X the closed subscheme defined by the conductor aadYC
its scheme-theoretic inverse image

C .= U_l(D). closed \
immersion

vic v

D closed
immersion

Let L be an invertible sheaf on X and fixesHO(Y, v*L®?). Let C= |JC; be the
irreducible decomposition where each & an integral scheme. Assume the following
conditions.

(1) The equation Y(s|c;) = slc, holds for every birational map:¢Cj --> C; such that
vlc, = v|c; og holds as rational maps. Note that(g|c,) = s|c, means that there exist
non-empty open subsetg C C;, Cj C C; and an isomorphism’gC/ — Cj induced
by g such that ’g(s|cj) = 8¢

(2) For every i there existsjte H(C;, v*L) such that §, = t®2.

Then there exists an elementeuH (X, L®?) such thatv*u = s.

Proof. Consider the exact sequence:
0— Ox - 1,0y & Op = v.0Oc — 0,
which implies
0 — HO(X, L#%) — HO(Y, v*L*?) @ HO(D, L*?|p) - H(C, v*L®?|c).

It suffices to show that there existss HO(D, L®2|p) such that ¢|c)*t = S|c. Since X

is S, we can replaceX with arbitrary open subschemé’ with codimy (X \ X') > 2.
Thus, we may assume th@t and D are regular and of pure codimension one. We can
apply Proposition 3.6. Then, by replacingwith its open subschem& — D satisfies
one of the following properties.
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(a) C is two copies ofD, that is,C ~ D 11 D.

() C — D is a finite surjective morphism between integral schemesh sihat
[K(C) : K(D)] = 2 and thatK(C)/K(D) is separable.

(c) C —» D is a finite surjective morphism between integral schemesh sihat
[K(C) : K(D)] = 2 and thatK(C)/K(D) is purely inseparable.

If (@) or (b) holds, then the condition (1) implies thglt descends td. If (c) holds,
then the condition (2) implies thac descends td. ]

REMARK 3.8. By the above proof, if the characteristic lofis not equal to 2,
then we can drop the second condition (2) in Theorem 3.7.

4. Abundance theorem for slc surfaces

The following definition of slc varieties is the same as Déifim-Lemma 5.10 in [13].
For more details, see also [13, 1.41, 5.1, 5.9, 5.10]. Momreove define sdlt varieties.

DEFINITION 4.1. LetX be a variety. Assume th&X is S, and thatX is regular
or nodal in codimension one. Lek be an effectiveQ-divisor such thatKy + A is
Q-Cartier. Letv: Y — X be the normalization and we definey by Ky + Ay =
v¥*(Kx + A). We say ¥, A) is slcif (Y, Ay) is lc. We say K, A) is sdlt variety if
(Y, Ay) is dIt and every irreducible component &f is normal.

REMARK 4.2. (1) Note thatsdlt in Definition 4.1 andsemi-ditin the sense of
[13, Definition 5.19] are different. There is an sdlt varietyich is not semi-dit (see
the example after [13, Definition 5.19]).

(2) In characteristic zero, semi-dit varieties are sdilt bg,[Definition 5.20]. In
positive characteristic, we do not know whether the notiohsemi-dit and sdlt have
some relations.

We recall theB-birational maps introduced in [4].

DEFINITION 4.3. Let (X, Ax) and (¥, Ay) be Ic varieties (may be reducible).
We sayo: (X, Ax) --> (Y, Ay) is a B-birational mapif o: X --> Y is a birational
map and there exist proper birational morphistnsW — X and g: W — Y from a
normal varietyW such that8 = o oo anda*(Kx + Ax) = B*(Ky + Ay). Note that
B-birational maps may permute the irreducible components.défine

Aut(X, Ax) :={o € Aut(X) | Kx + Ax = o*(Kx + Ax)}.

To obtain sections on slc varieties, we consider the folhgwsections on sdlit va-
rieties. The idea is very similar to the admissible section§4].
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DEFINITION 4.4. Let (X,A) be ann-dimensional projective sdlt variety with <
2. Let X = |J X; be the irreducible decomposition and let ][ X; — X be the nor-
malization. We define; by Ky, + A; = (v¥(Kx + A))|x,. Note that i, A;) is dlt.
Let m be a positive integer such that(Kx + A) is Cartier. We defineB-invariant
sectionsand separably gluable sectionas follows.
(1) We says € HO(X, m(Kx + A)) is B-invariant if g*(slx;) = slx, for every B-
birational mapg: (Xi, Aj) -—> (Xj, Aj).
(2) We says € HO(X, m(Kx + A)) is separably gluablef Sl{f,.ai. IS B-invariant.
We define vector subspaces

BI(X, m(Kx + A)) := {s is B-invariant ¢ H°(X, m(Kx + A)),
SEX, m(Kx + A)) := {s is separably gluablec Ho(X, m(Kx + A)).

Moreover, we define

BIA(X, 2m(Kx + A)) := {t? | t € BI(X, m(Kx + A))},

Sl{Leais € B1® (]_[I_Ai_h 2m(Kx + A)|LLLA.J>}-

G(X, 2m(Kx + A)) := {s

We says € HO(X, 2m(Kx + A)) is gluableif s € G(X, 2m(Kx + A)).

REMARK 4.5. In characteristip # 2, we do not need® 1@ (X,2m(Kx + A)) and
G(X,2m(Kx + A)). For more details, see Remark 3.8 and the proof of Prdpasit.9.

The following lemma teaches us that, in order to obtain eastion an slc surface,
we should consider gluable sections on a dit surface.

Lemma 4.6. Let (X, A) be a projective slc surface. Let: Y — X be the nor-
malization and let k + Ay := v*(Kx + A). Let u: (Z, Az) — (Y, Ay) be a birational
morphism from a projective diIt surfadg, A7) such that K + Az = u*(Ky + Avy).
Then the following assertions hold. IfesG(Z, 2m(Kz + Az)), then s= u*v*t for
some te HO(X, 2m(Kx + A)).

Proof. The assertion holds by Theorem 3.7. O

We summarize the basic properties Bfinvariant sections and (separably) glu-
able sections.

Lemma 4.7. Let (X, A) be an n-dimensional projective sdlt variety with<n2.
Let m be a positive integer such thatlkx + A) is Cartier.
(1) If s e BI(X, m(Kx 4+ A)), then € € BI@(X, 2m(Kx + A)).
(2) Ift € BIO(X, 2m(Kx + A)), then te BI(X, 2m(Kx + A)).
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(3) The vector space BK, m(Kx + A)) generatesOx(m(Kx + A)) if and only if
B1@A(X, 2m(Kx 4+ A)) generatesOx(2m(Kx + A)).

(4) If s e SGX, m(Kx + A)), then € € G(X, 2m(Kx + A)).

(5) Ift € G(X, 2m(Kx + A)), then te S X, 2m(Kx + A)).

(6) If the vector space S, m(Kx + A)) generates Ox(m(Kx + A)), then
G(X, 2m(Kx + A)) generateOx(2m(Kx + A)).

(7) Assume that X is normal and let:S LA, # 0. If the map

SG(X, m(Kx + A)) = BI(S, m(Kx + A)ls)
is surjective then so is the map
G(X, 2m(Kx + A)) — BI(S, 2m(Kx + A)|s).

Proof. (1), (2), (3) These assertions follow from the deifamit

(4) The assertion follows fromv{s?)|jj.a,, = ((V*S)1a,)>

(5) The assertions follows from (2).

(6), (7) The assertions follow from (4). ]

Lemma 4.8. Let (X, A) be a proper Ic curve or a proper Ic surface such that
Kx + A is semi-ample and S= LA # 0. Let f:= gky+a): X = R be a surjective
morphism to a projective variety R such thagtOf = Og. Let T:= f(S). Assume the
following conditions.
(@) f.0s= 0.
(b) There exist section:@s}i“:l C HO(S, m(Kx + A)ls) without common zeros for
some m.
Then for some r> 0, there exist sectiongu; }}:l C HO(X,rm(Kx + A)) which satisfy
the following conditions.
(1) vils=g for1<i<qandy|s=0forg+1=<i=I.
(2) {uj}l_, have no common zeros.

Proof. There is an ampl®-Cartier Q-divisor H on R such thatKx + A ~g
f*H. Forr » 0, we have the following commutative diagram.

HO(X, rm(Kx + A)) —— H(S, rm(Kx + A)ls)
HO(R, rmH) surjection HO(T, rmH|T)

Let uy, ..., uq € HY(X, rm(Kx + A)) be lifts of s[, ..., sy and let us consider the
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following corresponding sections.

U —— §

[

/ J
Uy — §

We may assume thatis so large that+ ® Or(rmH) is generated by global sections
where I is the corresponding ideal to the closed subschdmelett; ,, ..., t be

the basis ofH%(R, I+ ® Or(rmH)) and letug,,, ..., uj be its image toH(R, rmH).
Thenuj, ..., u have no common zeros. Thus the corresponding sectigns. ., u

satisfy the desired properties. ]
The following proposition is the key to prove the abundaramtem for slc surfaces.

Proposition 4.9. Let (X, A) be a projective dit surface such that:S LA # 0.
Let m be a sufficiently large and divisible integer such thaE@Z.q. If Ky + A is
nef then the following assertions hold.
(&) The following map is surjective

G(X, 2m(Kx + A)) — BI®(S, 2m(Kx + A)|s).

(b) Assume that B(IS,m(Kx + A)|s) generatesOs(m(Kx +A)|s). Then GX,2m(Kx +
A)) generatesOx(2m(Kx + A)).

Proof. We may assume that is irreducible. By the abundance theorem (cf. [7]),
we obtain f := ¢ky+a): X = R such thatf,Ox = Og. Let f(§) =:T. Then (1)
or (2) holds.
1) f.0s=0Or.
) f.0s# Or.

(1) Assumef,Os = O. By the diagram of the proof of Lemma 4.8, the map

HO(X, m(Kx + A)) — HY(S, m(Kx + A)|s)
is surjective. Thus the map
SGX, m(Kx + A)) — BI(S, m(Kx + A)ls)
is also surjective. Thus assertion (a) follows from Lemma &). We prove (b). Since

BI(S, m(Kx + A)|s) generateDs(m(Kx + A)|s), SGX, m(Kx + A)) also generates
Ox(m(Kx + A)) by Lemma 4.8. The assertion follows from Lemma 4.7 (6).
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(2) Assumef,Os # Or. We can apply Proposition 2.8 and we obtain Propos-
ition 2.8 (2). Then, we have projective morphisms

f: X3V R

whereV is a smooth projective curve.

CASE (2.1s). Assume Proposition 2.8 (2.1s) holds. By Lemma 4)7i(s suf-
ficient to prove (d)and (b).
(a) The following map is surjective:

SG(X, M(Kx + A)) — BI(S, m(Kx + A)ls).

(bY Assume thatBI(S, m(Kx + A)|s) generatesOs(m(Kx + A)|s). Then SGEX,
mM(Kx + A)) generateDx(m(Kx + A)).

First we prove (d) Note that there is a Galois involution S — S and: is B-
birational. Lets € BI(S, m(Kx + A)|s). Sinces is B-invariant, this sectiors is in-
variant for c. Thuss|s, is the pull-back of a section € HO(V, m(Dy)). Let u :=
gt € HO(X, m(Kx + A)). We prove thatu|s = s. Let S=[J S be the irreducible
decomposition. Sincé is reduced, we obtain the exact sequence:

0—>OS—>€BOS.
i

Therefore it is sufficient to prove thatls = s|g for everyi. Fori = 1, this is clear
by the construction. Thus we may assume tHats g-vertical. We take a proper bi-

rational morphismi: X” — X in Lemma 5.10. Letg”: X” % x 2 V. Note that
1:0gs = Os by Lemma 5.10 wheres” := LA”.. Thus it is sufficient to prove that
u”|lg = 8’|y whereu” := A*u, s” := A*s and §' is an irreducible component d8’
such thaty’-vertical. LetS] be the proper transform d§,. AssumeS'N§’" # @. Note
that, since X”, A”) is dlt, the scheme-theoretic intersecti8in §’ is reduced. Hence,
Lemma 5.10 implieg;Og ~ g;Og/ng. Sincem(Kx» + A”) is the pull-back ofm Dy,
this means

HO(S', m(Kx» + A"lg) ~ HO(S/ NS, m(Kx: + A")lsng)-

By U’|g = s"|g;, we haveu’|gng = s"|sng - Therefore, by the above isomorphism,
we seeu’|g = §'|g. If § satisfies§' N §" # 0 for SN § # 0, thenu’|s ="
by the same argument as above. By the inductive argument,vérical irreducible
componentS/ is contained in a connected componentSjfwhich intersectsS], then
u”|gj/ = s”|g,j/. By Lemma 2.4 and Proposition 2.8, every vertical irredlgciltomponent
S’ satisfies this property. Therefore, we see SG(X, m(Kx + A)) such thatu|s = s.
Second, we prove (b)We prove thaSG(X,m(Kx + A)) generate®x (m(K x + A)).
Lets,...,s € BI(S m(Kx + A)|s) be a basis and lat, ..., u € SGX, m(Kx +
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A)) be their lifts. Letty, ..., t € HO(V, mDy) be the corresponding sections. Since
B1(S, m(Kx + A)|s) generate®Ds(m(Kx + A)|s) andS— V is surjectivepty,...,t have
no common zeros. Thus the corresponding sectigns.,u, generate®x(m(Kx + A)).

CASE (2.2). Assume Proposition 2.8 (2.2) holds. It is sufficiemptove the above
assertions (&)and (b).

We prove (&) Note that there is 8-birational morphism: S, — S obtained by
S >V >SS, Letse BI(S m(Kx + A)|s). Sinces is B-invariant, we see*(s|g) =
s|s,. SinceS; ~ V, s|g is the pull-back of a sectione HO(V, mDy). Let u:= g*t €
HO(X, m(Kx + A)). We would like to prove thati|s = s. It is sufficient to prove that
uls = s|g for every irreducible componery of S. By the same argument as (2.1s),
it is sufficient to prove this equality only for = 1, 2. It is clear in the case where
i = 1. Sincet*(u|g) = uls, it is also clear in the case where= 2. The assertion (b)
holds by the same argument as (2.1s).

Case (2.1i). Assume Proposition 2.8 (2.1i) holds. We pee chark = 2.

We prove (a). Lets € BI®(S, 2m(Kx + A)|s). Then we haves = 52 where§ €
BI(S, m(Kx + A)|s). Note thatg|s: S — V is the relative Frobenius morphism. Thus
the absolute Frobenius morphisk: S, — S factors throughV:

dls, G
F:§5—V—>2S.
Note thatG is a nonk-linear isomorphism as schemes and that, for an invertihéafs
L onV,

G*(gls)’L =~ G*(9ls)*G*(G™)*L =~ G*F*(G™)"L ~ L®%

We showOy (2mDy) >~ G*Og (M(Kx + A)|g). Sincem € 2Z, we can writem = 2m’
wherem' € Z. First, we see

(9ls)"Ov(2m' Dy) = O (2M'(Kx + A)ls) = (9ls)"G*Os (M (Kx + A)]s).
Then, for an invertible sheaf
M := (G 1)*Oy(2m'Dy) ® Og (—m'(Kx + A)ls),
we obtainF*M = (g|g)*G*M ~ Og. This implies
Ov(2mDy) =~ G*(gls,)*Ov(2m'Dy)
~ G*F*(G H*Oy(2m'Dy)
~ G*F*Og (M (Kx + A)|s)
~ G*Og(M(Kx + A)lg).
Therefore, the sectiosn is the pull-back of

t:=G*se HOV, 2mDy).
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Let u:= gt € HO(X, 2m(Kx + A)). Then, by the same argument as (2.2s), we see
Uls = s. This meanau € G(X, 2m(Kx + A)).

We prove (b), that is, we prove th&(X, 2m(Kx + A)) generateDx(2m(Kx +
A)). Letsy,...,s € BI®O(S 2m(Kx + A)|s) be a basis and laty,...,u; € G(X,2m(Kx +
A)) be their lifts. Letty, ..., t € HO(V, 2mDy) be the corresponding sections. Here,
BIA(S, 2m(Kx + A)|s) generatesOs(m(Kx + A)|s) by Lemma 4.7 (3). Thus, since
S— V is surjective ty, ..., t; have no common zeros. Thus the corresponding sections
Uy, ..., Ur generateDx(2m(Kx + A)). ]

In order to constructB-invariant sections, we consider the following finiteness
theorem.

Theorem 4.10. Let(C,A) be a projective Ic curve and let m be a positive integer
such that niKc + A) is Cartier. Thenpm(Aut(C, A)) is a finite group wherepy, is a
group homomorphism defined by

pm: Aut(C, A) — Aut(H°(C, m(Kc + A))),

o+ (s o*s).

Proof. We may assume thét is irreducible. If the genug(C) > 2, then AutC)
is a finite group. Thereforegm(Aut(C, A)) is a finite group since Aug, A) C Aut(C).

If g(C) =1 and A # 0, then AutC, "A™ is a quasi-projective scheme and
HO(C, Tc ® Oc(-"AT)) = 0. Therefore, AufC, "A7) is a finite group. Thus,
pm(Aut(C, A)) is a finite group because A@(A) C Aut(C,"A™).

Assume thatg(C) =1 and A = 0. Let 0 C be the origin of the elliptic curve
C. ThenT_;( oo € Aut(C, [0]) for any o € Aut(C), whereT_;(g) is the translation
of C by —o(0). Note thatH%(C, Oc(Kc)) ~ k is spanned by a translation invariant
1-form on C and that AutC, [O]) is a finite group. Thereforep;(Aut(C)) is a finite
group. Sincepm = o™, pm(AUt(C)) is finite for everym > 0.

Finally, we assume tha = P*. If |SuppA| > 3, then AutC, A) is a finite group.

If deg(Kc + A) < 0, then there is nothing to prove. Therefore, we can reduee th
problem to the case when = AL = {two pointg. In this case, we can easily check
that pn(Aut(C, A)) is finite for everym > 0. Moreover, pm(Aut(C, A)) is trivial if m
is an even positive integer. O

The following proposition shows that the assumption of (bProposition 4.9 holds.

Proposition 4.11. Let (X, A) be a projective Ic curve. If K+ A is nef then
BI(X, m(Kx 4+ A)) generatesOx(m'(Kx + A)) for some integer m> 0.

Proof. We see thal°(X,m(Kx + A)) generate®x(m(Kx + A)) for some integer
m > 0. Let G := py(Aut(X, A)). Note that this group is finite by Theorem 4.10. Let
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N :=|G| and letG = {g1,...,gn}. For 1<i <N, let 0; be theN-variable elementary
symmetric polynomial of degreie If s € HO(X, m(Kx + A)), then

(Gi(gfs, ..., g9V € BI(X, NI m(Kx + A)).

Since
N N
m{gTS =0 = m{Gi (gis, ..., g5s) =0},
j=1 i=1
BI(X, NI m(Kx + A)) generateDx(N! m(Kx + A)). 0

Let us prove the main theorem of this paper.

Theorem 4.12. Let (X, A) be a projective slc surface. If K+ A is nef then
Kx + A is semi-ample.

Proof. Letv: Y — X be the normalization and we definey by Ky + Ay =
v*(Kx+A). There exists a birational morphism Z — Y from a projective dIt surface
(Z,Az) whereKz + Az = u*(Ky + Ay). By Lemma 4.6, it is sufficient to prove that
G(Z,mp(Kz + Az)) generatesDz(mg(Kz 4+ Az)) for somemg > 0. This follows from
Proposition 4.9 (b) and Proposition 4.11. ]

5. Appendix: Fundamental properties of dlt surfaces

We summarize fundamental properties for dit surfaces. ik ghction, we assume
that all surfaces are irreducible. The results in this seatiay be well-known for experts.

First, we recall the definition of dIt surfaces. It is easy &® ghat the following
definition is equivalent to [13, Definition 2.8] and [17, Défion 2.37].

DEFINITION 5.1. LetX be a normal surface and l& be aQ-divisor such that
Kx + A is Q-Cartier and 0< A < 1. Let

S(X, A) := Sing(X) U {x € Reg(X) | SuppA is not simple normal crossing &t.

We say ¥,A) is dlt if a(E,X,A) > —1 for every proper birational morphisrit Y — X
and every f -exceptional prime divisoE C Y such thatf(E) € S(X, A).

Proposition 5.2. Let X be a normal surface and l&t be a Q-divisor such that
Kx + A is Q-Cartier and0 < A < 1. The following assertions are equivalent
Q) (X, A) is dlit.
(2) There exists a projective birational morphispx X" — X from a smooth surface
such that Ex(u) U Suppu*(A) is a simple normal crossing divisor and each
w-exceptional prime divisor Esatisfies 4E;, X, A) > —1.
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Proof. Note thatS(X, A) is a finite set.
Assume (1), that is, assume thaf,(A) is dIt. Let f: Y — X be a log resolution
of (X, A). Let

Ex(f):=E U - UE UF -1 F

be the decomposition into the connected components wiere f(E;) € S(X, A) and
Qj := f(Fj) ¢ S(X, A). There exists a proper birational morphisms

vy%z0x

such thatZ is a normal surface and Eg( = F; U --- U Fs. Indeed,Z is obtained by
glueing the varietiesX \ {Py, ..., P} andY \ (FLU---UFs). Note that this morphism
h:Z — X is projective becaus@ is smooth. Thus this morphism satisfies (2).
Assume (2). Letf:Y — X be a proper birational morphism and IEtC Y be a
prime divisor such thaff (E) € S(X, A). We provea(E, X, A) > —1. We may assume

that there exists a proper birational morphié‘mf—> X" andY is smooth by replacing
Y with a desingularization of a resolution of indetermina¢y--> X’. There are two
cases: dimf/(E) = 0 and dimf’(E) = 1. The latter case is clear by (2). Thus we
may assumef’(E) is one point. LetKx + A" := u*(Kx + A). Since f(E) € (X, A),
there exists anu-exceptional curvek; such thatf’(E) € E;. We can write the prime
decomposition

A :=bE +--

whereb; < 1. Then we see tha(E, X, A) > —1 since A’ is simple normal crossing
and since the morphisni’: Y — X’ is a sequence of blow-ups. O

Proposition 5.3. Let (X, A) be a dlt surface. Then X i®-factorial.
Proof. See, for example, [20, Theorem 14.4]. O

Proposition 5.4. Let (X, A) be a dit surface. If aQ-divisor A’ satisfiesO < A’ <
A, then (X, A') is dIt.

Proof. Since X is Q-factorial, the assertion immediately follows from
Definition 5.1. O

Proposition 5.5. Let (X, A) be a dit surface. Then the following assertions are
equivalent.
1) (X, A)is plt.
(2) LAL is smooth.
(3) Each connected component oA is irreducible.
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Proof. See [17, Proposition 5.51]. Note that the proof of, [Pfoposition 5.51]
needs the relative Kawamata—Viehweg vanishing theorenmafoesolution of singular-
ities Y — X. This follows from [21]. 0

Corollary 5.6. Let (X, A) be a dIt surface. Then each prime component &f,
is smooth.

Proof. LetC be a prime component ofA,. Then (X, C) is plt by Propos-
ition 5.5. O

Proposition 5.7. Let (X,C + A’) be a dlt surface where C is a smooth curve in
X. Let(Kx + C 4+ A')|c =: K¢ + Ac. Then(C, Ac) is I, that is 0 < Ac < 1.

Proof. Letf:Y — X be an arbitrary resolution and I€y be the proper trans-
form of C. Let f*(Kx +C + A’) =: Ky + Cy 4+ Ay. Note thatC ~ Cy. Consider the
following commutative diagram.

CY . closed

l immersion

l

closed
—>
immersion

Y
lf
X

We prove thatAc is effective. Letf be the minimal resolution. Theny is effec-
tive andCy is not a prime component cky. Thus we have & Ac by the adjunction
formula.

Let f be a log resolution. Then, by Definition 5.1, we s&¢ < 1. This means
Ac < 1. Il

Corollary 5.8. Let (X, A) be a dit surface. Assume:S LAL# 0 and let Ks+
As:= (Kx + A)|s. Then S is normal crossing an@, As) is sdit.

Proof. By [17, Theorem 4.15]S is normal crossing. Thus, the assertion follows
from Proposition 5.7. ]

Proposition 5.9. Let (X, A) be an Ic surface. Then there exists a proper bi-
rational morphism h Z — X from a smooth surface Z such th@, A7) is dit where
Az is defined by k + Az = h*(Kx + A).

Proof. Letf:Y — X be a log resolution of X, A) and letKy + Ay := f*(Kx +
A). Let Ay = A] — Ay where AV and Ay are effective andA{ and Ay have no
common irreducible components. SinBg - Ay < 0 and each irreducible component
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of Ay is f-exceptional, there exists a-{)-curveC such thatC C SuppAy. Contract
this (—1)-curveY — Y’. We repeat this procedure and we obtain morphisms

foydz=h x

Then we see thaZ is smooth and & Az <1 whereKz + Az = h*(Kx + A). We
prove that Z, Az) is dit. Letl: W — Z be a proper birational morphism arel C W
be anl-exceptional prime divisor such thetE) € S(Z,A). We provea(Z,Az,E) > —1.
We may assume thal/ is smooth and : W — Z factors throughY. We obtain four
surfaces:

wavy2zh x

Note thatp(E) C SuppAy. There are two cases:
(0) dimp(E) =0 and
(0) dimp(E) = 1.

(0) Assume dinp(E) = 0. Note thatp is a composition of blow-ups. Sincé&y
is simple normal crossing anp(E) € SuppAy, we obtaina(Z, Az, E) > 0 by a direct
calculation.

(1) Assume dimp(E) = 1. Since p(E) C SuppAy, we obtain the inequality
a(Z,Az, E)>O O

Lemma 5.10. Let (X, A) be a dlt surface. Then there exists a proper birational
morphismi: X” — X from a normal surface Xwhich satisfies the following properties.
(1) For Kx» + A" := 2*(Kx + A), the pair (X", A”) is dIt.

(2) If §" and § are prime components ofA” such that 3# § and § NS/ # 0,
then $ N S is one point.
3) A (A" =cAs and 1O, = Oa

Proof. If (X, A) satisfies the condition (2), then the assertion is cleausTie
may assume that there exists prime componéhtand S; of LA such that§ # §
and § N S; has at least two points. Le® € § N S;. Note that, since X, A) is dlt,
P € Reg(X) and Supp\ is simple normal crossing &. Let u: Y — X be the blowup
at P and letKy + Ay := u*(Kx + A). We apply this argument toY( Ay) and we
repeat the same procedure. Then, by a direct calculationLantma 2.3, we obtain
the desired morphisnX” — X. O
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