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Abstract
Let X be a CW-complex with basepoint. We obtain a simple description of the

Borel construction on the free loopspace of the suspension of X as a wedge of
the classifying space of the circle and the homotopy colimitof a diagram consist-
ing of products of a number of copies ofX and the standard topologicaln-simplex.
This is obtained by filtering the cyclic bar construction on the James model of the
based loopspace by word length in order to express the homotopy type of the free
loopspace as a colimit of powers ofX and standard cyclic sets. It is shown that
this colimit is in fact a homotopy colimit and commutativityof homotopy colimits
is used to describe the Borel construction.

1. Introduction

Let X be a connected CW-complex with a basepoint� and letY D 6(X) be the
reduced suspension ofX. The first aim of this paper is to give a combinatorial model
of the free loopspace onY, which will be denoted byL(Y). To achieve this, we start
with the cyclic bar construction introduced by F. Waldhausen [21] which was applied
to the monoid of Moore loops onY by T. Goodwillie [11]. It is shown in the latter
paper that we obtain a cyclic space (i.e. a cyclic object in the category of spaces) whose
geometric realization is weakly equivalent to the free loopspace onY in a way which
preserves theS1-action. Following an idea of W. Dwyer we replace the monoid of
Moore loops onY by J(X)—the I.M. James model of the based loopspace ofX. By
filtering the cyclic bar construction by word length, we obtain a simple description of
the free loopspace in terms of the standard cyclic sets indexed by cartesian products of
X (Theorem 1).

The next section describes the Borel construction on the free loopspace of a sus-
pension (Theorem 6). The proof is based on the observation that the colimit describing
the free loopspace obtained in the earlier section is in facta homotopy colimit.

The Borel construction on the free loopspace has been studied earlier by
C.-F. Bödigheimer [3], Bödigheimer and I. Madsen [4] as well G. Carlsson and
R.L. Cohen [5]. We will return to the relation later on in the paper.
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2. The cyclic bar construction on the James model

We work in the category Top of compactly generated Hausdorfftopological spaces
as described in Steenrod [18]. We use the symbol� to denote a homeomorphism, the

symbol ' to denote a homotopy equivalence, and the symbol
w

' to denote a weak
homotopy equivalence.

We recall the main facts about cyclic sets. The cyclic category 3 was introduced
by A. Connes in [7]. Our notation and terminology will be consistent with the fun-
damental reference by J.-L. Loday [14]. The objects are the finite ordered sets [n] D
{0, 1,: : : , n}, wheren � 0. The morphisms are generated by the order preserving maps
Æi W [n�1]! [n]—skip elementi , the order preserving maps�i W [nC1]! [n]—repeat
elementi for i D 0, : : : , n (as in the simplicial category1) and the cyclic order pre-
serving maps�n W [n] ! [n], �n(i ) D i � 1 mod (nC 1). With respect to the simplicial
face and degeneracy maps, the cyclic operators satisfy the following relations:

�nÆi D

(

Æi�1�n�1, for 1� i � n,

Æn,for i D 0,

�n�i D

(

�i�1�nC1, for 1� i � n,

�n�
2
nC1, for i D 0.

A cyclic space is a contravariant functor from3 to the category of spaces (a cyclic set
is a special case of a cyclic space, when all the spaces in the range ofX have discrete
topology).

There is a forgetful functor which associates with each cyclic space the underlying
simplicial space. Forn � 0 let 1n be the closed topologicaln-simplex, i.e.

{

(x0, : : : ,

xn) 2 Rn
�

�

Pn
iD0 xi D 1 and xi � 0

}

. The geometric realization of a cyclic space is by
definition the geometric realization of the underlying simplicial space,

jXj D

 

a

n�0

Xn �1
n

!,

�,

where� ranges over the simplicial relations: (x, �
�

(u)) � (��(x), u) for � 2 1. The
key property of cyclic spaces is the fact that the geometric realization of the underlying
simplicial space has a canonical action ofS1, see W.G. Dwyer, M. Hopkins and D. Kan
[9] and Jones [13].

In what follows, a key role is played by the standard cyclic sets defined forn �
0 as

3[n] D Hom
3

op([n], �).
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We denote the dual elements of the generators of the cyclic category—Æi , �i and �n—
by di , si and tn. If an element of3[n] needs to be explicitly mentioned, it will be
understood as the composite of the latter. In what follows wewill make use of the map
3[n] to 3[n� 1], wheren � 1, obtained by precomposing an element� of 3[n] with
the generators0 W [n� 1]! [n] (i.e. � 7! �s0). Since the cyclic structure maps—di , si ,
tm—are applied on the left, this map3[n]! 3[n�1] is a map of cyclic sets (denoted
by (s0)� in what follows). We let�n denote the identity map [n] ! [n] in 3

op, which
is a generator of3[n]. The realization of3[n] is homeomorphic toS1

�1

n, with S1

acting by rotation of the first coordinate ([9] or [13]). There is also an action of the
cyclic groupZ=(nC 1) on 3[n], obtained by precomposition with the cyclic operator
tn, i.e. � 7! � tn. On the realization it takes the following form (J. Jones [13]):

�n(� , u0, : : : , un) D (� � u0, u1, : : : , un, u0),

where the first coordinate� belongs toS1
D R=Z, with the action of the generator of

Z on R given by t 7! t C 1.
It follows from the simplicial relations that every elementof 3[n] can be written

as a compositetk
m� , where � 2 1op. In particular, since there is a unique morphism

[0] ! [m] in 1

op, 3[0] in dimensionm is the cyclic group of ordermC 1 generated
by tm.

We define3[�1] to be the constant cyclic space on a point.
The cyclic bar construction on a topological monoid was introduced by Waldhausen

[21]. Let G be a topological monoid with identity element 1. Put0n(G) D GnC1
D G�

� � ��G (cartesian product ofnC1 copies ofG). We denote an element of0n(G) by (g0 j

� � � j gn). The following maps give the collection0
�

(G) the structure of a cyclic space.

di (g0 j � � � j gn) D

(

(g0 j � � � j gi giC1 j � � � j gn) for 0� i < n,

(gng0jg1 j � � � j gn�1) for i D n,

si (g0 j � � � j gn) D (g0 j � � � j gi j 1 j giC1 j � � � j gn) for 0� i � n,

tn(g0 j � � � j gn) D (gn j g0 j � � � j gn�1).

Proposition 1. Let X be a based, connected CW-complex. There exists a canon-
ical homotopy equivalence

� W j0

�

J(X)j ! L6X

which is S1-equivariant.

Proof. Let Y be a pathconnected pointed space and�Y denote the monoid of
Moore loops onY. Goodwillie [11] shows that there is a canonical weak equivalence


 W j0

�

�Yj ! LY
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which is S1-equivariant. Applying this toY D 6(X), we obtain a weak equivalence

j0

�

�6(X)j ! L6(X).

Combining this with the weak equivalenceJ(X)! �6(X) given by the James model
[12], we obtain a weak equivalence

� W j0

�

J(X)j ! L6(X)

which is S1-equivariant. Since we assumeX is a CW-complex, the domain of the
above map is a CW-complex. By Milnor [17], the spaceL6(X) has the homotopy type
of a CW-complex. Hence the above map is a homotopy equivalence by Whitehead’s
theorem.

3. A filtration of the cyclic bar construction by word length

The goal of this section is to relate0
�

J(X) to the standard cyclic sets3[n]. In
order to do so, we introduce a filtration of0

�

J(X) by word length (since the James
model J(X) consists of words inX of finite length).

Let kwk denote the length of a wordw in J X. We define the total word length
of an element (w0 j � � � j wm) in 0mJ(X) as kw0k C � � � C kwmk. For n � 0, let Fn

denote the subset of0
�

J(X) consisting of elements of total word length at mostn.

Lemma 1. For n � 0 the subset Fn is a cyclic subspace of0
�

J(X).

Proof. This follows from the observation that each of the structure maps in the
cyclic bar construction preserves total word length.

Hence we have a filtration:

F0 � F1 � F2 � � � � � 0�J(X).

We can describe the first two filtration elements directly. The cyclic spaceF0 con-
sists of a single element (� j � � � j �)

� �� �

nC1

in dimensionn. This cyclic space is isomorphic

to 3[�1]. The cyclic spaceF1 has the following description. Each pointx 2 X n {�}
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generates a cyclic subset ofF1 of the following form.

2 W (x j � j �) (� j x j �) (� j � j x)

1 W (x j �) (� j x)

0 W (x)

 

!

t2  

!

t2

 

!

t2

!

!

t1

Clearly, this is a copy of3[0]. Inside F1 we also have a copy ofF0 generated
by the basepoint{�}. We will let the symbolX also denote the constant cyclic space
generated by the CW-complexX (i.e. all structure maps are equal to the identity), and
similarly for the symbol{�}. HenceF1 is isomorphic, as a cyclic space, to the colimit
of the following diagram:

{�} �3[0] X �3[0]

3[�1]

 

!

N�0

 

!

N

�0

where N�0 is the unique map to3[�1] (the cyclic model for the one point space) and
N�0 is the product of the inclusion of the basepoint and the identity on 3[0]. These
maps will appear again in the second definition below. There are two reasons why
the description of the filtration elementF2 needs to be somewhat more complicated.
First, although a typical element (x, y) in X � X generates a copy of3[1], if either
x or y is the base point�, then the pair generates a copy of3[0] accounted for in
F1. Second, given a pair of pointsx, y 2 X n {�}, the pair (x, y) generates the same
cyclic subset as (y, x). In order to make the bookkeeping transparent, we introduce the
categoryL and the functorG whose values are products of a number of copies ofX
(i.e. a constant cyclic space on the CW-complexX) and the standard cyclic set (of an
appropriate dimension). The colimit operation applied to the diagramG(L) gives the
cyclic bar construction.

DEFINITION. Let L be the category whose objects are the following pairs of non-
negative integers:

(n, n) and (n, nC 1), where n � 0.

The morphisms are freely generated by:
• �n W (n, nC 1)! (n, n), for n � 0,
• �n W (n, nC 1)! (nC 1, nC 1), for n � 0,



298 J. SPALIŃSKI

• 
n�1 W (n, n)! (n, n), for n � 2,
modulo the relation (
n�1)n

D id for n � 2.

The initial part ofL is described by the following diagram:

(0, 1) (1, 2) (2, 3) � � �

(0, 0) (1, 1) (2, 2) (3, 3)


1 
2

 

!

�0
 

!

�0
 

!

�1
 

!

�1
 

!

�2
 

!

�2
 

!

�3

DEFINITION. Let G W L! Top3
op

be the functor defined as follows:

G(n, m) D Xn
�3[m� 1],

where Xn denotes the constant cyclic space on the CW-complexXn (i.e. with identity
structure maps). On morphisms, we setG(�0) D N�0, G(�0) D N�0; for n � 1, � 2 3[n]:

G(�n)(x0, : : : , xn�1, �) D (x0, : : : , xn�1, �s0),

G(�n)(x0, : : : , xn�1, �) D (x0, �, x1, : : : , xn�1I �)I

and for n � 2 and� 2 3[n� 1]:

G(
n�1)(x0, x1, : : : , xn�1, �) D (x1, : : : , xn�1, x0, �tn�1).

Note that the cyclic structure onXn
� 3[n � 1] and Xn

� 3[n] is obtained by
applying the cyclic operators (di , si , tn) on the left to the last coordinate (i.e.� and
� in the formulas above). The mapsG(�n) and G(
n�1) are defined using the action
of the cyclic operatorss0 and tn�1 on the right. For this reason these are maps of
cyclic spaces.

Theorem 1. The colimit of the functor G is homeomorphic to the cyclic barcon-
struction on J(X):

colimL G � 0
�

J(X).

Moreover, if we restrict to the N-skeleton ofL (i.e. pairs with both entries less than
or equal to N), the colimit is isomorphic to FN , the N-th word length filtration of
0

�

J(X).

Proof. The proof is based on the following three observations:
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• For n � 1, the element (x0, : : : , xn�1, �n�1) 2 Xn
�3[n� 1]n�1 represents (x0 j � � � j

xn�1) 2 0n�1J(X).
• Face maps applied to this element represent removal of bars.(Simplicial dimension
in 3[n� 1] corresponds to dimension in0

�

J(X).)
• The role of the elements in the upper row of the diagram (cyclic spacesG(n, nC
1)) is to ensure that elements of the form (x0, : : : , xn�1, �n) with somexi D � for i > 0
represent degenerate simplices in the colimit.

In order to establish a homeomorphism of the colimit with0
�

J(X) (in each di-
mension), forn � 0 we construct maps of cyclic spaces

�n W G(n, n)! 0

�

J(X),

�n W G(n, nC 1)! 0

�

J(X),

which are compatible with the maps in the diagramG(L).
We set�0(�, �

�1) D (�) and�0(�, �0) D (�). For n � 1, � 2 3[n�1] and � 2 3[n]
we let

�n(x0, : : : , xn�1, �) D �(x0 j � � � j xn�1),

�n(x0, : : : , xn�1, �) D �(x0 j � j x1 j � � � j xn�1).

First we need to check that the following diagram commutes where n � 1 (the
commutativity of then D 0 analogue of this diagram is obvious):

Xn
�3[n]

Xn
�3[n� 1] XnC1

�3[n]

0

�

J(X)

 

!

G(�n)
 

!

G(�n)

 

!

�n

 

!

�nC1

�nG(�n)(x0, : : : , xn�1, �) D �n(x0, : : : , xn�1, �s0)

D �n�s0(x0, : : : , xn�1, �n�1)

D �s0�n(x0, : : : , xn�1, �n�1)

D �s0(x0 j � � � j xn�1)

D �(x0 j � j x1 j � � � j xn�1),

�nC1G(�n)(x0, : : : , xn�1, �) D �nC1(x0, �, x1, : : : , : : : , xn�1, �)

D �(x0 j � j x1 j � � � j xn�1).

Moreover, each of the above composites must be equal to�n, which it clearly is.
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Second, we need to check that the following diagram commutesfor n � 2:

Xn
�3[n� 1] Xn

�3[n� 1]

0

�

J(X)

 

!

G(
n�1)

 

!

�n

 

!

�n

�nG(
n�1)(x0, : : : , xn�1, �) D �n(x1, : : : , xn�1, x0, �tn�1)

D �n(�tn�1(x1, : : : , xn�1, x0, �n�1))

D �tn�1�n(x1, : : : , xn�1, x0, �n�1)

D �tn�1(x1 j � � � j xn�1jx0)

D �(x0 j � � � j xn�1) D �n(x0, : : : , xn�1, �).

Hence the maps�n and�n assemble to a map from the diagramG(L) to 0
�

J(X),
and therefore induce a unique map

� W colimL G! 0

�

J(X).

Since every nondegenerate element in0
�

J(X) is an iterated face map of an elem-
ent of the form (x0 j � � � j xn�1), we conclude that the map� is onto.

It is a little harder to show that the map� is one to one. We will call two elements

(x0, : : : , xn�1, �) 2 Xn
�3[n� 1] and (y0, : : : , ym�1,  ) 2 Xm

�3[m� 1]

equivalent if they determine the same element in the colimit. Hence we need to show
that if two elements as above map by� to the same element in0

�

J(X), then they
are equivalent.

First, note that if (x0, : : : , xn�1, �) is such thatx0 D � � � D xn�1 D �, then the
equality �n(x0, : : : , xn�1, �) D �m(y0, : : : , ym�1,  ) implies y0 D � � � D ym�1 D � and
the two tuples determine the same element in the colimit, i.e. are equivalent.

Hence from now on we assume that at least onexi and at least oney j is different
than �. Therefore, by changing� or  if necessary (replacing a givenx-tuple or y-
tuple by an equivalent one), we may assumex0 ¤ � and y0 ¤ �.

Next, replacing a givenx-tuple or a giveny-tuple by an equivalent one if neces-
sary, we may assume that all thexi and all they j are different than�. (Essentially,
the role of the diagramG(L) is to allow replacement of tuples containing� in position
other than the first from the left by equivalent shorter tuples.)

Hence the proof of injectivity reduces to showing that for arbitrary (x0, : : : , xn�1,�)
and (y0, : : : , ym�1,  ) with all xi and y j different than� if we have

�n(x0, : : : , xn�1, �) D �m(y0, : : : , ym�1,  ),
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then (x0, : : : , xn�1, �) and (y0, : : : , ym�1,  ) are equivalent.
By definition of �n, the above equality can be restated as

�(x0 j � � � j xn�1) D  (y0 j � � � j ym�1).

It is not hard to check that any element in the cyclic category3

op can be uniquely
written asT SD where T is some power of a cyclic operator,S is a composite of de-
generacy maps, andD is a composite of face maps (for details see Loday [14], 6.1.8
and May [16], formula (3) on p. 4).

Hence we can write

� D Tx Sx Dx and  D TySy Dy.

By applying an appropriate power ofG(
n�1), we can replace the abovex-tuple by
an equivalent one in whichTx is the identity. Similarly for they-tuple. We will retain
the earlier notation, i.e. we have two tuples (x0, : : : ,xn�1, Sx Dx) and (y0, : : : , ym�1, Sy Dy)
which � maps to the same element in0

�

J(X). Since the coordinates equal to� in the
image0

�

J(X) are determined bySx and Sy, we conclude that these degeneracy maps
must be equal.

It remains to show that if

(x0, : : : , xn�1, Dx) and (y0, : : : , ym�1, Dy)

determine the same element in0
�

J(X), then they must be equivalent.
Since none of thexi or y j equals the base point�, we must haven D m, xi D yi

for i D 0, : : : , n, and finally Dx D Dy.
We conclude that the originalx-tuple andy-tuple are also equivalent.
We have obtained a continuous bijection� W colimL G! 0

�

J(X) (i.e. this map
is a continuous bijection in each simplicial dimension). Since we work in the category
of compactly generated Hausdorff spaces, to conclude that it is a homeomorphism, it
is enough to establish that it is proper, i.e. inverse imagesof compact sets are compact
(see e.g. N.P. Strickland [19], Proposition 3.17). Fix a simplicial dimensionp � 0. By
Lemma 9.3 in Steenrod [18], a compact subsetC of 0

�

J(X)p is contained in a filtra-
tion elementFm for some nonnegative integerm. Next, observe that the CW-structure
of X determines a canonical CW-structure in (Fm)p, as well ascolimL,n,k�m G(n, k).
Moreover, the map� establishes a bijection on the cells of the two structures, hence
it is a proper map.

Note that the cyclic subspace generated by�n(x0, : : : , xn�1, �n�1) need not be iso-
morphic to the standard cyclic set3[n�1]. Namely, if some of the elements (x0,:::,xn�1)
coincide, then this cyclic subspace will be isomorphic to the quotient of the standard cyc-
lic set3[n � 1] by a subgroup ofZ=n (the action given by precomposition withtn�1).
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This interesting property of cyclic spaces does not have a counterpart in the setting of
simplicial spaces.

For example, ifx0 is not the basepoint�, the cyclic subset�2(x0, x0, �1) is homeo-
morphic to3[1]=(Z=2), whose realization is homeomorphic to the Möbius band. More
precisely,3[1]=(Z=2) is a cyclic set with a single element in dimension zero, twonon-
degenerate elements in dimension 1 and a single nondegenerate element in dimension
2. The cyclic operatort1 switches the degenerate and one nondegenerate element, and
these give a copy of a circle with a freeS1-action in the realization. The remaining
nondegenerate element in dimension one is fixed by the cyclicoperator t1, and this
element generates a copy of a circle in the realization whichis fixed by the copy of
Z=2 sitting inside the groupS1.

The geometric realization is a left adjoint, hence commuteswith colimits (see
e.g. S. Mac Lane, Chapter 5, §5, [15]). Hence we have the following corollary.

Corollary 1. The free loopspace on the suspension of a based CW-complex has
the homotopy type of the colimit of the following diagram:

{�} � S1 X � S1
�1

1 X2
� S1

�1

2
� � �

{�} X � S1 X2
� S1

�1

1 X3
� S1

�1

2

 

!

 

!

 

!

 

!

 

!

 

!

 

!

The above model is related to the configuration space model (or the May–Milgram–
McDuff-Bödigheimer model) in the following way. LetX be a connected CW-complex
with basepoint� and Sn be the symmetric group onn elements. By Bödigheimer [3] or
Carlsson–Cohen [5] we have, up to homotopy,

L6(X) '

 

1

a

nD0

QCn(S1) �Sn Xn

!,

�

where QCn(S1) is the configuration space of orderedn-tuples of pairwise distinct points
on the circle and� is the standard basepoint condition:

(m1, : : : , mn) �Sn (x1, : : : , xn) � (m1, : : : , Omi , : : : , mn) �Sn (x1, : : : , Oxi , : : : , xn),

if xi D �. We can observe thatQCn(S1) is homeomorphic toS1
�

QCn�1(I ), where I
denotes the open unit interval. Moreover,QCn�1(I )=Sn�1 D 1

n�1
o (see e.g. C. Wester-

land [22]). However here1n�1
o denotes the open topologicaln-simplex, not the closed

simplex1n in our description.
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4. The Borel construction

Let G be a topological group andX a space on whichG acts. A. Borel [2] intro-
duces the space

XhG D EG�G X.

This space is currently referred to as the Borel construction or the homotopy orbit
space ofX by G. This space encodes the wayG acts on X and invariants of this
space can be used to study the action. For an interesting short modern account, see
Dwyer and H.-W. Henn [8].

The main properties are as follows:
• The Borel construction on a point is the classifying space:{�}hG D BG.
• There is a fibration sequenceX ! XhG! BG.
• A G-map f W X! Y which is a homotopy equivalence induces a homotopy equiva-
lence of the Borel constructionsfhG W XhG! YhG.

For our next proposition, we need the following two standardresults.

Theorem 2. The pushout of the diagram A B ! C in which one of the two
maps (i.e. B! A or B ! C) is a cofibration is a homotopy pushout(i.e. such a
diagram is cofibrant).

Theorem 3. Given a group G, a free G-CW-complex is a cofibrant diagram in
TopG, and hence the homotopy orbit space coincides with the ordinary orbit space.

For a proof of the above, see e.g. J. Strom [20], Theorem 7.11 and Theorem 8.72.

Proposition 2. The colimit which describes0
�

J(X) in Theorem 1is in fact a
homotopy colimit, i.e.

colimL G
w

' hocolimL G.

Proof. Let Gn D colim (k,l )2L,k,l�n G(k, l ). Clearly, GnC1 is the colimit of the
following diagram:

G(n, nC 1)

Gn G(nC 1, nC 1)


2

 

!

G(�n)
 

!

G(�n)
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and there are natural mapsGn ! GnC1 induced by the colimit. Moreover,

colimL G
w

' colim(G0! G1! G2! � � � ).

We know that a colimit over a sequential category is in fact a homotopy colimit
(see e.g. [8]). Hence

colimL G
w

' hocolim(G0! G1! G2! � � � ).

Next, we observe that the colimit diagram representingGnC1 above can be decom-
posed into two diagrams: a pushout and a diagram representing a cyclic group action
(via 
n). Since the right diagonal arrow in the above diagram is a cofibration (a prod-
uct of the basepoint inclusion with a number of identity maps), this pushout is in fact
a homotopy pushout. Next, since the action ofZ=(nC 1) on the result of the pushout
is free (the action is free on the3[n] factor), we conclude that the colimit diagram
defining GnC1 in terms of Gn is in fact a homotopy colimit. Hence we see that the
calculation ofcolimL G can be decomposed into three stages: a pushout, colimit over
a diagram representing a free finite group action, a sequential colimit. In our specific
case we conclude that these are homotopy colimits, and hencethe original colimit is
in fact a homotopy colimit.

We need the following two preliminary results.

Theorem 4 (Fiedorowicz and Loday, 5.12 in [10]). For any cyclic space X there
is a natural weak equivalence:

hocolim
3

op X
w

' E S1
�S1
jXj.

Theorem 5. Let C and C0 be small categories and F be aC � C0 diagram of
spaces, i.e. a functor FW C � C0

! Top. Then

hocolimC hocolimC0 F
w

' hocolimC0 hocolimC F .

For a proof see e.g. D.J. Benson and S.D. Smith [1], Theorem 4.5.20. Now we
can make the following calculation.

j0

�

J(X)jhS1
D E S1

�S1
j0

�

J(X)j
w

' hocolim
3

op
0

�

J(X)
w

' hocolim
3

op hocolim (n,m)2L G(n, m)
w

' colim (n,m)2L hocolim3op G(n, m).
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The first weak equivalence above follows from the above theorem of Fiedorowicz
and Loday, the second from our description of the cyclic bar construction at the begin-
ning of this section and the third from the commutativity of iterated homotopy colimits
stated in the theorem immediately above.

We let QG(n, m) D hocolim
3

op G(n, m). Observe that form� 1 we have:

QG(n, m)
w

' E S1
�S1
jG(n, m)j

w

' E S1
�S1 (Xn

� j3[m� 1]j)
w

' E S1
�S1 (Xn

� S1
�1

m�1)
w

' E S1
� Xn

�1

m�1

w

' Xn
�1

m�1.

Here is the justification of each weak equivalence above:
1. The theorem of Fiedorowicz and Loday.
2. The definition ofG(n, m).
3. The known structure of the realization of the standard cyclic set stated in the in-
troduction (Proposition 2.7 in [9] or Theorem 3.4 in [13]).
4. The realization of the standard cyclic set has a freeS1-action (again Proposition 2.7
in [9] or Theorem 3.4 in [13]).
5. Contractibility of E S1.

Moreover, we have

QG(0, 0)
w

' E S1
�S1
jG(0, 0)j

w

' E S1
�S1
�

w

' BS1.

For n � 1, the map QG(�n) W QG(n, nC 1)! QG(n, n) is the map

Xn
�1

n
! Xn

�1

n�1

induced bys�0 , i.e. is the product of the identity map onXn and the affine map from
the simplex to itself which identifies the 0-th and the 1-st simplex.

The map QG(�0) W QG(0, 1)! QG(0, 0) is a map sending the basepoint� to BS1.
For n � 1, the map QG(�n) W QG(n, nC 1)! QG(nC 1, nC 1) is the map

Xn
�1

n
! XnC1

�1

n

which is the product of the inclusion mapXn
! XnC1, (x0, : : : , xn�1) 7! (x0,�, x1, : : : ,

xn�1) and the identity map on1n.
The map QG(�0)W QG(0, 1)! QG(1, 1) is a map sending the basepoint� to the natural

basepoint ofX �10.
For n � 2, the map QG(
n�1) W QG(n, n)! QG(n, n) is the map

Xn
�1

n�1
! Xn

�1

n�1
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which is

(x0, : : : , xn�1, u0, : : : , un�1) 7! (x1, : : : , xn�1, x0, u1, : : : , un�1, u0).

We have established the following result.

Theorem 6. For a connected CW-complex X with basepoint� the Borel con-
struction on the free loopspace of the suspension has the following description:

E S1
�S1 L6(X)

w

' BS1
_ hocolim (n,m)2L, n,m�1 Xn

�1

m�1

where the maps between the various Xn
� 1

m�1 are the ones described immediately
above.

References

[1] D.J. Benson and S.D. Smith: Classifying Spaces of Sporadic Groups, Mathematical Surveys
and Monographs147, Amer. Math. Soc., Providence, RI, 2008.

[2] A. Borel: Seminar on transformation groups, Annals of Mathematics Studies46, Princeton
Univ. Press, Princeton, NJ, 1960.

[3] C.-F. Bödigheimer:Stable splittings of mapping spaces; in Algebraic Topology (Seattle, Wash.,
1985), Lecture Notes in Math.1286, Springer, Berlin, 1987, 174–187.

[4] C.-F. Bödigheimer and I. Madsen:Homotopy quotients of mapping spaces and their stable
splitting, Quart. J. Math. Oxford Ser. (2)39 (1988), 401–409.

[5] G.E. Carlsson and R.L. Cohen:The cyclic groups and the free loop space, Comment. Math.
Helv. 62 (1987), 423–449.

[6] R.L. Cohen:A model for the free loop space of a suspension; in Algebraic Topology (Seattle,
Wash., 1985), Lecture Notes in Math.1286, Springer, Berlin, 1987, 193–207.

[7] A. Connes: Cohomologie cyclique et foncteursExtn, C.R. Acad. Sci. Paris Sér. I Math.296
(1983), 953–958.

[8] W.G. Dwyer and H.-W. Henn: Homotopy Theoretic Methods in Group Cohomology, Advanced
Courses in Mathematics, CRM Barcelona, Birkhäuser, Basel, 2001.

[9] W.G. Dwyer, M.J. Hopkins and D.M. Kan:The homotopy theory of cyclic sets, Trans. Amer.
Math. Soc.291 (1985), 281–289.

[10] Z. Fiedorowicz and J.-L. Loday:Crossed simplicial groups and their associated homology,
Trans. Amer. Math. Soc.326 (1991), 57–87.

[11] T.G. Goodwillie: Cyclic homology, derivations, and the free loopspace, Topology 24 (1985),
187–215.

[12] I.M. James:Reduced product spaces, Ann. of Math. (2)62 (1955), 170–197.
[13] J.D.S. Jones:Cyclic homology and equivariant homology, Invent. Math.87 (1987), 403–423.
[14] J.-L. Loday: Cyclic Homology, Springer, Berlin, 1992.
[15] S. MacLane: Categories for the Working Mathematician, Springer, New York, 1971.
[16] J.P. May: Simplicial Objects in Algebraic Topology, Univ. of Chicago Press, Chicago, 1967.
[17] J. Milnor: On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc.90

(1959), 272–280.
[18] N.E. Steenrod:A convenient category of topological spaces, Michigan Math. J.14 (1967),

133–152.
[19] N.P. Strickland:The category of CGWH spaces, preprint, 2009.



BOREL CONSTRUCTION ON FREE LOOPSPACE 307

[20] J. Strom: Modern Classical Homotopy Theory, Graduate Studies in Mathematics127, Amer.
Math. Soc., Providence, RI, 2011.

[21] F. Waldhausen:Algebraic K -theory of topological spacesII; in Algebraic Topology, Aarhus
1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math.763, Springer,
Berlin, 1979, 356–394.

[22] C. Westerland:Configuration spaces in topology and geometry, Austral. Math. Soc. Gaz.38
(2011), 279–283.

Faculty of Mathematics and Information Science
Warsaw University of Technology
Koszykowa 75, 00-662 Warsaw
Poland
e-mail: jan.spalinski@gmail.com


